第16章-分式--章检测题-含答案(HS)
- 格式:doc
- 大小:59.00 KB
- 文档页数:5
第十六章《分式》整章水平测试任何学习不可可能重复一次就可以掌握,必须经过多次重复、多方面、多个角度的反复训练才能取得跟多的收获,我们设计的试卷主要就是从这点出发,所以从你下载这张试卷开始,就与知识接近了一步。
一、精心选一选。
(每题3分,共30分)1.代数式-32x ,4x y -,x+y ,22x π+,273y y ,55b a ,98,中是分式的有( )A .1个B .2个C .3个D .4个 2.当x≠-1时,对于分式11x -总有( ) A .11x -=21x + B .11x -=211x x +- C .11x -=211x x -- D .11x -=13x --3.下列变形正确的是( )A .a b a b c c -++=-; B .a ab c b c -=--- C .a b a b a b a b -++=--- D .a b a b a b a b--+=-+- 4.学完分式运算后,老师出了一道题“化简:23224x xx x +-++-” 小明的做法是:原式222222(3)(2)26284444x x x x x x x x x x x +--+----=-==----; 小亮的做法是:原式22(3)(2)(2)624x x x x x x x =+-+-=+-+-=-; 小芳的做法是:原式32313112(2)(2)222x x x x x x x x x x +-++-=-=-==++-+++. 其中正确的是( ) A .小明B .小亮C .小芳D .没有正确的5.若分式6922-+-x x x 的值为0,则x 的值为( )A.3 B.-3或2 C .3 D.-36.若分式2112(4)x x --的值为正数,则x 的值为( ) A .x<2 B .2<x<4 C .x>2 D .x>2且x≠4 7.若关于x 的分式方程2344mx x=+--有增根,则m 的值为( ) A .-2 B .2 C .±2 D .48.甲、乙两班学生植树造林,已知甲班每天比乙班多植5棵树,甲班植80•棵树所用的天数与乙班植70棵树所用的天数相等,若设甲班每天植树x 棵,•则根据题意列出方程是( ) A .80705x x =- B .80705x x =+ C .80705x x =+ D .80705x x =- 9.一个人从A 地到B 地,去时速度为xkm/h ,回时速度为ykm/h ,•则这个人往返的平均速度为( )km/h . A .2x y+ B .2xy x y + C .xy x y + D .2()x y xy +10.实数a ,b 满足ab=1,记M=11a ++11b +,N=1a a ++1bb+,则M 、N 的大小关系为( ) A .M>N B .M=N C .M<N D .不确定 二、细心填一填。
八年级下期数学第十六章分式单元测试题及答案一、选择题(本题共16分,每小题2分)1、在x 1、21、212+x 、πxy 3、y x +3、ma 1+中分式的个数有( ) A 、2个 B 、3个 C 、4个 D 、5个2、下列各式中,一定成立的是( )A 、1-=---b a a b B 、()222b a b a -=- C 、y x yx xy y x -=---1222 D 、()2222a b b ab a -=+- 3、与分式23.015.0+-x x 的值,始终相等的是( ) A 、2315+-x x B 、203105+-x x C 、2032+-x x D 、2315 4、下列分式中的最简分式(不能再约分的)是( )A 、112++a aB 、aa a 222++ C 、cd ab 42 D 、2)1(22++a a 5、下列说法正确的是 ( )A 、若n m >,则88->-n mB 、42≤-x 的解集是2≥xC 、当m =32时, m m 23-无意义 D 、分式2)2(++m m m 总有意义6、下列从左边到右边的变形正确的是( )A 、)32(4124822b a ab ab ab b a -=--B 、22)21(41-=+-x x x C 、mm m 2321=+ D 、1=-+-b a b b a a7、若分式)1)(4()4)(4(--+-m m m m 的值为零,则m = ( )A 、±4B 、 4C 、 4-D 、 18、下列化简正确的是 ( )A 、b a b a b a +=++2B 、1-=+--b a b aC 、1-=---b a b aD 、b a b a b a -=--22二、填空题(本题共16分,每小题2分)1、 当x 时,分式42+-x x 有意义。
2、若32=a b ,则=+-ba b a 。
3、当x 时,分式242+-x x 的无意义;(1分) 当x 时,分式242+-x x 值为零;(1分) 4、计算(结果用科学计数技术法表示)(1) (3×10-8)×(4×103)= (1分) (2) (2×10-3)2÷(10-3)3 = (1分)5、化简:ab bc a 2= ,(1分) 12122+--x x x -2122x x -- = ;(1分) 6、化简:a y ya 242-⋅= ,(1分) =-÷+-)1(11m m m . (1分) 7、如果分式333++x x x 与的差为2 ,那么x 的值是 . 8、若=++≠==a c b a a c b a 则),0(753 .三、化简、计算(本题共25分,第1—5题每小题4分,第6题5分)1、a b a b a b a -+-+2、y y y y y y 93322-⋅⎪⎪⎭⎫ ⎝⎛+--3、 19)1(961222--⨯+÷++-a a a a a a4、x x x x x x x x -÷+----+4)44122(225、2224442yx x y x y x y x y y x x +÷--+⋅-6、已知:ba ab ab b a ++-==+21,4求:的值。
第16章 分 式16.1 分式及其基本性质1. 分式课中合作练题型1:分式、有理式概念的理解应用1.(辨析题)下列各式aπ,11x +,15x+y ,22a b a b --,-3x 2,0•中,是分式的有___________;是整式的有___________;是有理式的有_________.题型2:分式有无意义的条件的应用2.(探究题)下列分式,当x 取何值时有意义.(1)2132x x ++; (2)2323x x +-.3.(辨析题)下列各式中,无论x 取何值,分式都有意义的是( )A .121x +B .21x x +C .231x x +D .2221x x + 4.(探究题)当x______时,分式2134x x +-无意义. 题型3:分式值为零的条件的应用5.(探究题)当x_______时,分式2212x x x -+-的值为零. 题型4:分式值为±1的条件的应用6.(探究题)当x______时,分式435x x +-的值为1; 当x_______时,分式435x x +-的值为-1. 课后系统练 基础能力题7.分式24x x -,当x_______时,分式有意义;当x_______时,分式的值为零. 8.有理式①2x ,②5x y +,③12a -,④1x π-中,是分式的有( )A .①②B .③④C .①③D .①②③④9.分式31x a x +-中,当x=-a 时,下列结论正确的是( ) A .分式的值为零; B .分式无意义C .若a ≠-13时,分式的值为零; D .若a ≠13时,分式的值为零 10.当x_______时,分式15x -+的值为正;当x______时,分式241x -+的值为负. 11.下列各式中,可能取值为零的是( )A .2211m m +-B .211m m -+C .211m m +-D .211m m ++ 12.使分式||1x x -无意义,x 的取值是( ) A .0 B .1 C .-1 D .±1拓展创新题13.(学科综合题)已知y=123x x--,x 取哪些值时:(1)y 的值是正数;(2)y 的值是负数;(•3)y 的值是零;(4)分式无意义.14.(跨学科综合题)若把x 克食盐溶入b 克水中,从其中取出m 克食盐溶液,其中含纯盐________.15.(数学与生活)李丽从家到学校的路程为s ,无风时她以平均a 米/•秒的速度骑车,便能按时到达,当风速为b 米/秒时,她若顶风按时到校,请用代数式表示她必须提前_______出发.16.(数学与生产)永信瓶盖厂加工一批瓶盖,甲组与乙组合作需要a 天完成,若甲组单独完成需要b 天,乙组单独完成需_______天.17.(探究题)若分式22x x +-1的值是正数、负数、0时,求x 的取值范围.18.(妙法巧解题)已知1x -1y =3,求5352x xy y x xy y +---的值.19.当m=________时,分式2(1)(3)32m m m m ---+的值为零.2. 分式的基本性质一、填空题:1. 写出等式中未知的分子或分母:①x y 3= ()23x y ②)()).(().(2x xy y x x y x x +=+=+ ③y x xy 257=()7 ④ )()).(()(1b a b a b a +=-=- 2. 不改变分式的值,使分式的分子与分母都不含负号: ①=--yx 25 ; ②=---b a 3 .3. 等式1)1(12--=+a a a a a 成立的条件是________. 4. 将分式b a b a -+2.05.03.0的分子、分母中各项系数都化为整数,且分式的值不变,那么变形后的分式为________________.5. 若2x=-y ,则分式22y x xy -的值为________. 三、认真选一选1. 把分式yx x 322-中的x 和y 都扩大为原来的5倍,那么这个分式的值 ( ) A .扩大为原来的5倍 B .不变 C .缩小到原来的51 D .扩大为原来的25倍 2. 使等式27+x =xx x 272+自左到右变形成立的条件是 ( ) A .x <0 B.x >0 C.x ≠0 D.x ≠0且x ≠-23. 不改变分式27132-+-+-x x x 的值,使分式的分子、分母中x 的最高次数式的系数都是正数,应该是( ) A.27132+-+x x x B.27132+++x x x C.27132---x x x D.27132+--x x x四、解答题:1. (3×4=12)不改变分式的值,使分式的分子、分母中的首项的系数都不含 “-” 号: ①yx 32-- ②112+--x x ③ 2122--+-x x x ④1312+----x x x2. (6分)化简求值:222222484y x y xy x -+-,其中x=2,y=3.3.已知当x=3时,分式x+a/3x-b 的值为0,当x=1时,分式无意义,试求a,b 的值.4. (6分)已知x 2+3x -1=0,求x -x1的值.16.2 分式的运算1.分式的乘除一. 填空题1. 计算:=-⋅224)2()2(c ab c ;=⋅-⋅-4222)1()()(ab a b b a ; =-÷-⋅-)()()(2222xy x y y x ;=⋅-112112)2()2(yx x y ; =÷62332)2()43(a bc ab c ;=-⋅+-÷-222222)(xy x xy y xy x x xy 。
新人教版八年级数学下册第16章分式单元测试试卷及答案1.下列各式:()2221451, , , 532x x y x x xπ---其中分式共有() A .1个 B .2个 C .3个 D .4个2.下列计算正确的是()A .m m m x x x 2=+B .22=-n n x xC .3332x x x =?D .264x x x -÷=3.下列约分正确的是()A .313m m m +=+B .212y x y x -=-+C .123369+=+a b a bD .()()yx a b y b a x =-- 5.计算x x -++1111的正确结果是()A .0 B .212x x - C .212x - D .122-x 6.在一段坡路,小明骑自行车上坡的速度为每小时V 1千米,下坡时的速度为每小时V 2千米,则他在这段路上、下坡的平均速度是每小时()A .221v v +千米B .2121v v v v +千米C .21212v v v v +千米 D .无法确定 7.某厂接到加工720件衣服的订单,预计每天做48件,正好按时完成,后因客户要求提前5天交货,设每天应多做x 件,则x 应满足的方程为()A .x+48720─548720= B .x +=+48720548720 C .572048720=-x D .-48720x +48720=5 8.若0≠-=y x xy ,则分式=-x y 11()A .xy1 B .x y - C .1 D .-1 2.下列各式计算正确的是()A .11--=b a b aB .abb a b 2= C .()0,≠=a ma na m n D .a m a n m n ++= 3.下列各分式中,最简分式是()A .()()y x y x +-73B .n m n m +-22C .2222ab b a b a +-D .22222yxy x y x +-- 4.化简2293mm m --的结果是()A.3+m m B.3+-m m C.3-m m D.m m -3 5.若把分式xyy x +中的x 和y 都扩大2倍,那么分式的值() A .扩大2倍B .不变 C .缩小2倍 D .缩小4倍6.若分式方程xa x a x +-=+-321有增根,则a 的值是()A .1 B .0 C .—1 D .—2 7.已知432cb a ==,则c b a +的值是()A .54 B. 47 C.1 D.45 8.一艘轮船在静水中的最大航速为30千米/时,它沿江以最大航速顺流航行100千米所用时间,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?设江水的流速为x 千米/时,则可列方程()A .x x -=+306030100B .306030100-=+x xC .x x +=-306030100D .306030100+=-x x 9.分式12x ,212y ,15xy-的最简公分母为.13.计算22142a a a -=-- . 12.利用分式的基本性质填空:(1)())0(,10 53≠=a axy xy a (2)()1422=-+a a 13.分式方程1111112-=+--x x x 去分母时,两边都乘以. 14.要使2415--x x 与的值相等,则x =__________.15.计算:=+-+3932a a a __________. 16.若关于x 的分式方程3232-=--x m x x 无解,则m 的值为__________. 17.若分式231-+x x 的值为负数,则x 的取值范围是__________.11.计算2323()a b a b --÷= .12.用科学记数法表示—0.000 000 0314= . ()3322232n m n m --? 168422+--x x x x m n n n m m m n n m -+-+--2 22.(6分)先化简,后求值:222222()()12a a a a a b a ab b a b a b-÷-+--++-,其中2,33a b ==- (1)xx 3121=- (2)1412112-=-++x x x 1111-÷??? ??--x x x )2(216322b a a bc a b -?÷ 9323496222-?+-÷-+-a a b a b a a .(1)114112=---+x x x ;(2)0(,0)1 m n m n mn x x -=≠≠+.“先化简,再求值:22241()244x x x x x -+÷+-- 其中,x=—3”.小玲做题时把“x=—3”错抄成了“x=3”,但她的计算结果也是正确的,请你解释这是怎么回事?20.(8分)今年我市遇到百年一遇的大旱,全市人民齐心协力积极抗旱。
第十六章《分式》整章参考答案第十六童分式16.1.1从分数到分式16.2.2分式的加减〔―〕1. ±- m + n Ww)、曲、。
44 4. _3 为任意实数 6. C 7. C 8. C 9. D 10. (1) -<x<2; (2) 4⑶ x=2: 16.1.2 分式的差不多性质h-a 1. ------- 2a-ba-2b 2a-b 2. 4x+20 5x-10 3. 12(G -1)2(°-2)2 4. A 5. D 6. (1)— n (2) 兀+ 2 2 ;⑶-8(x —y)4:⑷ -----------4厂 x + 77. (1) 5ac 2b 2「…:⑵芈,卑:⑶ \0crb c 10“T c 6x^y 6A "y 时'梟:⑷y+1 T12c 16.2.1 分式的乘除〔一〕 1 jy 2.一丛 2 3・ 4. 9.v 5. C 6. C A 9.1 10・⑴•严+严+・・・ + x+l (2) 2咖—1 16.2.1 分式的乘除〔二〕 1. A 2・ B 1 3-D 4•乔 5. 4 —6. 4x4-6 7. 4-2/7? 8・不正确, 原式=%•—- x — 2 x — 2 1 X (X —2)2 9. 10.(吟 X+1 2加 2 X 5$ 1.⑴ ——:(2) v-y2.⑴ —:(2) a+b3.——4. 正5. a X x-l7. A 8. C 9. (1) X :(2) 1 10. 1211. 3 12.- x + 2 1+G 36, 3尸一/1•⑴ 0, (2) m+n 2. 9. 1 AM (2)-=——+------------- n 77 + 1 n{n +1) 16.2.2分式的加减〔二〕 ] 2x + 6 3. 10.二―,-1 a + b a+b 4・ 2 5・ D 6. A 7. ——!— x + 2 11.— 11 12・(1) □ , O 分不表示6和30, 16.2.3整数指数幕2•⑴一右’⑵W 3- 16.2.3整数指数幕 〔一〕 D 4- 5. 12" 6. %10 匚〕 1. (1) 9xl0"5, (2) 5.6X10-4 2. 0. 0002 3. 0. 0000000302 4. D 5. (1) 1.2x10二 ⑵ 9 6・ 2.667xlO 23〔个),1.675x10® (千克) 16.3分式方程〔一〕3. — 14. 5 5・ 1 6. A 7. C 8. D 9. A 10.⑴ x = 2\ (2)无解 11 •⑴ ⑴:⑵无解12. 31 B. m< — 2 16.3分式方程〔二〕 £ 1- (l4)xl 4 120 4. C 5・ B 6. B (1) 60 天,(2) 24 天 8.科普书7. 5元/本.文学书5元/本;(2)科普书2本.文学书3本 9•此 商品进价是500元, 第二个月共销售128件. 10. (1) 12 间,(2) 8000 元.8500 元 16.3分式方程[三〕 15 15 11.—— ----- =—x 1.2% 2 2. C 3. 5千米/时 4・甲速度24千米/时,乙速度60千米/时 5. 2元/米' 6. (1)优待率为32・5%: (2)标价750元 7.乙先到达第16童《分式》童节复习22. (1)丄•丄=丄一丄;⑵ n 〃 +1 n n +11 n n + \ n(n +1) n(n +1) n(n + l)元/吨・第十六章《分式》童节测试一、 选择题1-5 DDCBC 6-10 CDCBA 11-12 DD二、 填空题 13・ U 2 3.5, 2 14.—— 15. (v + 1)316. xv? I? (斗-3 18. 1 “一一 R a-h a 2 -ZZL 、 解答题4 a 4 \ + m y 19. (1)心±3: (2) x<2. 20. (1) 7 n : (2) : (3) ——:(4) 一 J 21.原9x 2y 2 4b 1-/7? x+ y 式=兀+1,取值时注意xH±l,—2・ 22.不可能,原式等于丄时,x = -\,现在分式无意4义. 23. (1) x = —3;⑵ 无解. 24. (1) 60天;⑵24天. 25.甲每分钟输入22 名,乙每分钟输入11名・ 26. (1)移项,方程两边分不通分,方程两边同除以-2x+10,分式 值相等,分子相等,那么分母相等:(2)有错误.从第③步显现错误,缘故:-2x + 10可能为零;(3)当-2x+10 = 0时,一2工=一10,尤=5,经检验知x = 5也是原方程的解,故原方程的解为1-5 13. 19.选择题BACCD 填空题 4.3x10-解答题 (1) 4:⑵ 6-10 DABDA lOOx-6 14. ------------ -500x-25 x+\ 11-12 AD 15・ 2ab 16. 24 17. 24 18. 5 20.化简结果为a+b, (取值要求:同工问)・21. (1) x = 2:23.有错,当a<2 时,分母有可能为零:改正:因为XH2,因 n 2 — a此——H2, oH-4,因此结果为a<2且3 24. 9 元. 25・12个月. 26. 2 (2)。
参考答案第十六章 分式16.1.1 从分数到分式1.2s m n + 2.11x +、22a b a b--,1()5x y +、23x -、0 3.12,43 4.3-,1- 5.3-,为任意实数 6.C 7.C 8.C 9.D 10.(1)34<x <2;(2)x <34或x >2;(3)x =2;(4)x =3416.1.2 分式的基本性质1.2b a a b --,22a b a b -- 2.420510x x +- 3.2212(1)(2)a a -- 4.A 5.D 6.(1)2m n;(2)24x z -;(3)48()x y --;(4)27x x ++ 7.(1)232352,1010ac b a b c a b c ;(2)2232,66ax by x y x y;(3)32222212,88c a b ab c ab c -;(4)2211,11y y y y +--- 8.12- 9.18 16.2.1 分式的乘除(一)1.2x y - 2. 292x y - 3. 213b - 4.9x 5.C 6.C 7.B 8.A 9.1a 10.(1)121n n x x x --++++ ,(2)200821- 16.2.1 分式的乘除(二)1.A 2.B 3.D 4.212y 5.2249x y6.46x + 7.42m - 8.不正确,原式21122(2)x x x x x =∙∙=--- 9.12 10.22()1x x -+ 16.2.2 分式的加减(一)1.(1)2m a ;(2)x y - 2.(1)2x ;(2)a b + 3.1x x - 4.正 5.58s a6.23s t t - 7.A 8.C 9.(1)2x x +;(2)11a + 10.12 11.3 12.13 16.2.2 分式的加减(二)1.(1)0,(2)m n + 2.126x -+ 3.a b + 4.2 5.D 6.A 7.12x -+ 8.23- 9.21(2)x -- 10.2a b +,-1 11.611 12.(1)□,○分别表示6和30,(2)1111(1)n n n n =+++ 16.2.3 整数指数幂(一)1.(1)116,(2)-1 2.(1)338y x-,(2)434a b 3.D 4.C 5.12a b 6.10x 16.2.3 整数指数幂(二)1.(1)5910-⨯,(2)45.610-⨯ 2.0.0002 3.0.000 000 0302 4.D 5.(1)31.210-⨯,(2)9 6.232.66710⨯(个),271.67510-⨯(千克)16.3 分式方程(一)1.0x = 2.1 3.-1 4.5 5.1 6.A 7.C 8.D 9.A 10.(1)2x =;(2)无解 11.(1)13x =;(2)无解 12.13313.m <-2 16.3 分式方程(二)1.1112()142x +⨯= 2.9012035x x =- 3.1%p d p =+ 4.C 5.B 6.B (1)60天,(2)24天 8.科普书7.5元/本、文学书5元/本;(2)科普书2本、文学书3本 9.此商品进价是500元,第二个月共销售128件. 10.(1)12间,(2)8000元、8500元16.3 分式方程(三)1.151511.22x x -= 2.C 3.5千米/时 4.甲速度24千米/时,乙速度60千米/时 5.2元/米3 6.(1)优惠率为32.5%;(2)标价750元 7.乙先到达第16章 《分式》 章节复习一、选择题1-5 BACCD 6-10 DABDA 11-12 AD二、填空题13. 54.310-⨯ 14.100650025x x --- 15.2ab 16.24 17.24 18.5三、解答题19.(1)32x y;(2)21x x +-+. 20.化简结果为a b +,(取值要求:a b ≠). 21.(1)2x =;(2)3x =. 22.(1)1n ·11111n n n =-++;(2)111n n -=+1(1)(1)n n n n n n +-++1(1)n n =+ 1n =·11n +;(3)244x x +. 23.有错,当a <2时,分母有可能为零;改正:因为2x ≠,所以223a -≠,4a ≠-,所以结果为a <2且4a ≠-. 24.9元. 25.12个月. 26.2元/吨.第十六章 《分式》 章节测试一、选择题1-5 DDCBC 6-10 CDCBA 11-12 DD二、填空题13. 3.5,2 14.2U R15.3(1)y + 16.2xy 17.()m m a b a -- 18.12n - 三、解答题19.(1)x ≠3±;(2)x <2. 20.(1)2249x y ;(2)44a b ;(3)11m m +-;(4)y x y-+. 21. 原式1x =+,取值时注意x ≠1,2±-. 22. 不可能,原式等于14时,1x =-,此时分式无意义. 23.(1)3x =-;(2)无解. 24.(1)60天;(2)24天. 25. 甲每分钟输入22名,乙每分钟输入11名. 26.(1)移项,方程两边分别通分,方程两边同除以210x -+,分式值相等,分子相等,则分母相等;(2)有错误.从第③步出现错误,原因:210x -+可能为零;(3)当2100x -+=时,210,5x x -=-=,经检验知5x =也是原方程的解,故原方程的解为55,2x x ==.。
参考答案第十六章 分式16.1.1 从分数到分式1.2s m n + 2.11x +、22a b a b --,1()5x y +、23x -、0 3.12,434.3-,1- 5.3-,为任意实数 6.C 7.C 8.C 9.D 10.(1)34<x <2;(2)x <34或x >2;(3)x =2;(4)x =3416.1.2 分式的基本性质1.2b a a b --,22a b a b -- 2.420510x x +- 3.2212(1)(2)a a -- 4.A 5.D 6.(1)2m n;(2)24x z -;(3)48()x y --;(4)27x x ++ 7.(1)232352,1010ac b a b c a b c ;(2)2232,66ax by x y x y ;(3)32222212,88c a b ab c ab c -;(4)2211,11y y y y +--- 8.12- 9.1816.2.1 分式的乘除(一)1.2x y - 2. 292x y - 3. 213b - 4.9x 5.C 6.C 7.B 8.A 9.1a 10.(1)121n n x x x --++++,(2)200821-16.2.1 分式的乘除(二)1.A 2.B 3.D 4.212y 5.2249x y 6.46x + 7.42m - 8.不正确,原式21122(2)x x x x x =∙∙=--- 9.12 10.22()1x x -+ 16.2.2 分式的加减(一)1.(1)2m a ;(2)x y - 2.(1)2x ;(2)a b + 3.1x x - 4.正 5.58s a6.23s t t - 7.A 8.C 9.(1)2x x +;(2)11a + 10.12 11.3 12.1316.2.2 分式的加减(二)1.(1)0,(2)m n + 2.126x -+ 3.a b + 4.2 5.D 6.A 7.12x -+ 8.23- 9.21(2)x -- 10.2a b +,-1 11.61112.(1)□,○分别表示6和30,(2)1111(1)n n n n =+++ 16.2.3 整数指数幂(一)1.(1)116,(2)-1 2.(1)338y x -,(2)434a b 3.D 4.C 5.12a b6.10x 16.2.3 整数指数幂(二)1.(1)5910-⨯,(2)45.610-⨯ 2.0.0002 3.0.000 000 0302 4.D 5.(1)31.210-⨯,(2)9 6.232.66710⨯(个),271.67510-⨯(千克)16.3 分式方程(一)1.0x = 2.1 3.-1 4.5 5.1 6.A 7.C 8.D 9.A 10.(1)2x =;(2)无解 11.(1)13x =;(2)无解 12.13313.m <-2 16.3 分式方程(二)1.1112()142x +⨯= 2.9012035x x =- 3.1%p d p =+ 4.C 5.B 6.B (1)60天,(2)24天 8.科普书7.5元/本、文学书5元/本;(2)科普书2本、文学书3本 9.此商品进价是500元,第二个月共销售128件. 10.(1)12间,(2)8000元、8500元16.3 分式方程(三)1.151511.22x x -= 2.C 3.5千米/时 4.甲速度24千米/时,乙速度60千米/时 5.2元/米3 6.(1)优惠率为32.5%;(2)标价750元 7.乙先到达第16章 《分式》 章节复习一、选择题1-5 BACCD 6-10 DABDA 11-12 AD二、填空题13. 54.310-⨯ 14.100650025x x --- 15.2ab 16.24 17.24 18.5 三、解答题 19.(1)32x y ;(2)21x x +-+. 20.化简结果为a b +,(取值要求:a b ≠). 21.(1)2x =;(2)3x =. 22.(1)1n ·11111n n n =-++;(2)111n n -=+1(1)(1)n n n n n n +-++1(1)n n =+ 1n =·11n +;(3)244x x +. 23.有错,当a <2时,分母有可能为零;改正:因为2x ≠,所以223a -≠,4a ≠-,所以结果为a <2且4a ≠-. 24.9元. 25.12个月. 26.2元/吨.第十六章 《分式》 章节测试一、选择题1-5 DDCBC 6-10 CDCBA 11-12 DD二、填空题13. 3.5,2 14.2U R 15.3(1)y + 16.2xy 17.()m m a b a -- 18.12n - 三、解答题19.(1)x ≠3±;(2)x <2. 20.(1)2249x y ;(2)44a b ;(3)11m m+-;(4)y x y -+. 21. 原式1x =+,取值时注意x ≠1,2±-. 22. 不可能,原式等于14时,1x =-,此时分式无意义. 23.(1)3x =-;(2)无解. 24.(1)60天;(2)24天. 25. 甲每分钟输入22名,乙每分钟输入11名. 26.(1)移项,方程两边分别通分,方程两边同除以210x -+,分式值相等,分子相等,则分母相等;(2)有错误.从第③步出现错误,原因:210x -+可能为零;(3)当2100x -+=时,210,5x x -=-=,经检验知5x =也是原方程的解,故原方程的解为55,2x x ==.。
新人教八年级(下)第16章《分式》一、填空题(每小题3分,共24分)1.下列各式:()2221451, , , 532x x y x x xπ---其中分式共有( ) A .1个 B .2个 C .3个 D .4个2.下列计算正确的是( )A .m m m x x x 2=+B .22=-n n x xC .3332x x x =⋅D .264x x x -÷=3.下列约分正确的是( )A .313m m m +=+B .212y x y x -=-+ C .123369+=+a b a b D .()()y x a b y b a x =-- 4.若x 、y 的值均扩大为原来的2倍,则下列分式的值保持不变的是( )A .y x 23B .223y xC .y x 232D .2323yx 5.计算xx -++1111的正确结果是( ) A .0 B .212x x - C .212x - D .122-x 6.在一段坡路,小明骑自行车上坡的速度为每小时V 1千米,下坡时的速度为每小时V 2千米,则他在这段路上、下坡的平均速度是每小时( )A .221v v +千米B .2121v v v v +千米C .21212v v v v +千米 D .无法确定 7.某厂接到加工720件衣服的订单,预计每天做48件,正好按时完成,后因客户要求提前5天交货,设每天应多做x 件,则x 应满足的方程为( )A .x+48720─548720= B .x +=+48720548720 C .572048720=-x D .-48720x +48720=5 8.若0≠-=y x xy ,则分式=-xy 11( ) A .xy1 B .x y - C .1 D .-1 二、填空题(每小题3分,共30分)9.分式12x ,212y ,15xy -的最简公分母为 .10.约分:(1)=b a ab2205__________,(2)=+--96922x x x __________.11.方程x x 527=-的解是 .12.利用分式的基本性质填空:(1)())0(,10 53≠=a axy xy a(2)() 1422=-+a a13.分式方程1111112-=+--x x x 去分母时,两边都乘以 .14.要使2415--x x 与的值相等,则x =__________.15.计算:=+-+3932a a a __________.16.若关于x 的分式方程3232-=--x m x x无解,则m 的值为__________.17.若分式231-+x x 的值为负数,则x 的取值范围是__________.18.已知2242141x y y x y y +-=-+-,则的24y y x ++值为______.三、解答题:(共56分)19.(4分)计算:(1)11123x x x ++ (2)3xy 2÷x y 2620.(4分)计算: ()3322232n m n m --⋅ 21.(4分)计算(1)168422+--x x xx(2)m n nn m m m n nm -+-+--222.(6分)先化简,后求值:222222()()12a a a a a b a ab b a b a b-÷-+--++-,其中2,33a b ==-23.(6分)解下列分式方程.(1)xx 3121=- (2)1412112-=-++x x x24.(6分)计算: 1111-÷⎪⎭⎫ ⎝⎛--x x x25.(6分)已知x 为整数,且918232322-++-++x x x x 为整数,求所有符合条件的x 的值.26.(6分)先阅读下面一段文字,然后解答问题:一个批发兼零售的文具店规定:凡一次购买铅笔301支以上(包括301支)可以按批发价付款;购买300支以下(包括300支)只能按零售价付款.现有学生小王购买铅笔,如果给初三年级学生每人买1支,则只能按零售价付款,需用()12-m 元,(m 为正整数,且12-m >100)如果多买60支,则可按批发价付款,同样需用()12-m 元.设初三年级共有x 名学生,则①x 的取值范围是 ;②铅笔的零售价每支应为 元;③批发价每支应为 元.(用含x 、m 的代数式表示).27.(6分)从甲地到乙地有两条公路,一条是全长600km 的普通公路,另一条是全长480km的高速公路,某客车在高速公路上行驶的平均速度比在普通公路上快45km /h ,由高速公路从甲地到乙地所需的时间是由普通公路从甲地到乙地所需时间的一半,求该客车由高速公路从甲地到乙地所需的时间.28.(8分)问题探索:(1)已知一个正分数mn (m >n >0),如果分子、分母同时增加1,分数的值是增大还是减小?请证明你的结论.(2)若正分数mn (m >n >0)中分子和分母同时增加2,3…k (整数k >0),情况如何?(3)请你用上面的结论解释下面的问题:建筑学规定:民用住宅窗户面积必须小于地板面积,但按采光标准,窗户面积与地板面积的比应不小于10%,并且这个比值越大,住宅的采光条件越好,问同时增加相等的窗户面积和地板面积,住宅的采光条件是变好还是变坏?请说明理由.。
八年级数学下册《第十六章 分式》单元测试卷及答案(华东师大版)一、选择题1.若分式y 1y 3-+的值是0,则y 的值是( ) A .3-B .0C .1D .1或3-2.下列分式中,是最简分式的是( )A .2xy xB .3333x x +- C .x yx y+- D .211x x +- 3.计算1a a÷的结果为( ) A .a B .21aC .1D .2a4.下列等式成立的是( )A .4453m n m n m n⋅=B .213m n m n +=+ C .2121m m n n=++D .m mm n m n=--++5.下列方程①4x x y y -=+,②15x =,③13πx x -=-,④11x a b =-中,是关于x 的分式方程的有( )个. A .1B .2C .3D .46.将分式2x yx y-中的x y ,的值同时扩大为原来的10倍,则分式的值( )A .扩大1000倍B .扩大100倍C .扩大10倍D .不变7.设11a b p a b =-++,1111q a b =-++则p ,q 的关系是( ) A .p q = B .p q > C .p q =-D .p q <8.根据规划设计,某工程队准备修建一条长1120米的盲道.由于情况改变,实际每天修建盲道的长度比原计划增加10米,结果提前2天完成了这一任务,假设原计划每天修建盲道x 米,根据题意可列方程为( )A .11201120210x x -=+ B .11201120210x x -=- C .11201120210x x-=+ D .11201120210x x-=-9.下列运算正确的是( )A .236a a a ⋅=B .()325a a =C .226235a a a +=D .()2139--= 10.成人体内成熟的红细胞的平均直径一般为0.000007245m ,保留三个有效数字的近似数,可以用科学记数法表示为( ) A .7.25×10﹣5m B .7.25×106m C .7.25×10﹣6mD .7.24×10﹣6m二、填空题11.分式256x y 和214xy 的最简公分母为 . 12.若12a b =,则分式3a b b+= . 13.已知,ab=-1,a+b=2,则式子b aa b+= .14.某化肥厂原计划五月份生产化肥120吨,由于采用了新技术,每天多生产化肥3吨,实际生产180吨.设原计划每天生产化肥x 吨.根据题意,列方程为 .三、解答题15.计算:.16.先化简,再求值:(21a a - ﹣a ﹣1)÷ 21a a - ,其中a =﹣2. 17.先化简,再求值:22121121x x x x x --⎛⎫-÷⎪+++⎝⎭,其中x 是1-,1,2中的一个合适的数.18.我国5G 手机产业迅速发展,5G 网络建成后,下载完一部1000MB 大小的电影,使用5G 手机比4G 手机少花190秒.已知使用5G 手机比4G 手机每秒多下载95MB ,求使用5G 手机每秒下载多少MB ?四、综合题19.我市某文具店准备购进A 、B 两种文具,A 种文具每件的进价比B 种文具每件的进价多20元,用4000元购进A 种文具的数量和用2400元购进B 种文具的数量相同.文具店将A 种文具每件的售价定为80元,B 种文具每件的售价定为45元.(1)A 种文具每件的进价和B 种文具每件的进价各是多少元?(2)文具店计划用不超过1600元的资金购进A 、B 两种文具共40件,其中A 种文具的数量不低于17件,该文具店有几种进货方案?(3)在(2)的条件下,文具店利用销售这40件文具获得的最大利润再次购进A 、B 两种文具(两种文具都买),直接写出再次购进A 、B 两种文具获利最大的进货方案.20.阅读下列材料:我们知道,分子比分母小的数叫做“真分数”:分子比分母大,或者分子、分母同样大的分数,叫做“假分数”.类似地,我们定义:在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”:当分子的次数小于分母的次数时,我们称之为“真分式”.如:11x x -+,21x x -这样的分式就是假分式;再如:31x +,221x x +这样的分式就是真分式,假分数74可以化成314+(即314)带分数的形式,类似的,假分式也可以化为带分式.如:()12121111x x x x x +--==-+++. 解决下列问题: (1)分式 5x 是 (填“真分式”或“假分式”);假分式52x x ++可化为带分式 形式;(2)如果分式41x x --的值为整数,求满足条件的整数x 的值; (3)若分式22382x x ++的值为m ,则m 的取值范围是 (直接写出结果)21.佳佳果品店在批发市场购买某种水果销售,第一次用1200元购进若干千克,且很快售完,由于水果畅销,第二次购买时,每千克的进价比第一次提高了10%,用1452元所购买的数量比第一次购进的数量多20千克.(1)求第一次购进该水果的进价?(2)已知第一次购进的水果以每千克8元很快售完,第二次购进的水果,以每千克9元售出100千克后,因出现高温天气,水果不易保鲜,为减少损失,便降价50%售完剩余的水果.该果品店在这两次销售中,总体上是盈利还是亏损?盈利或亏损了多少元?答案解析部分1.【答案】C【解析】【解答】解:由题意得:y-1=0且y+3≠0解得:y=1; 故答案为:C.【分析】分式值为0的条件:分子为0且分母不为0,据此解答即可.2.【答案】C【解析】【解答】解:A 、2xy yx x= 故此选项不合题意; B 、 ()()3133133311x x x x x x +++==--- 故此选项不合题意; C 、x yx y+- 是最简分式,故此选项符合题意; D 、 ()()21111111x x x x x x ++==-+-- 故此选项不合题意; 【分析】把一个分式中相同的因式约去的过程叫做约分,如果分式中没有可约的因式,则为最简分式,据此判断.3.【答案】B【解析】【解答】解:21111a aa a a ÷=⋅= 故答案为:B .【分析】利用分式的乘除法则计算求解即可。
一八年级数学下册第16章《分式》综合水平测试一、选择题:(每小题2分,共20分) 1.下列各式:2b a -,x x 3+,πy +5,()1432+x ,b a b a -+,)(1y x m-中,是分式的共有( )A.1个 B.2个 C.3个 D.4个2.下列判断中,正确的是( )A .分式的分子中一定含有字母B .当B =0时,分式BA无意义C .当A =0时,分式BA的值为0(A 、B 为整式) D .分数一定是分式3.下列各式正确的是( )A .11++=++b a x b x aB .22x y x y =C .()0,≠=a ma na m nD .a m an m n --=4.下列各分式中,最简分式是( )A .()()y x y x +-8534B .y x x y +-22 C .2222xy y x y x ++ D .()222y x y x +- 5.化简2293m m m --的结果是( )A.3+m m B.3+-m m C.3-m m D.m m-36.若把分式xyyx 2+中的x 和y 都扩大3倍,那么分式的值( ) A .扩大3倍 B .不变 C .缩小3倍 D .缩小6倍7.A 、B 两地相距48千米,一艘轮船从A 地顺流航行至B 地,又立即从B 地逆流返回A 地,共用去9小时,已知水流速度为4千米/时,若设该轮船在静水中的速度为x 千米/时,则可列方程( )A .9448448=-++x xB .9448448=-++x xC .9448=+xD .9496496=-++x x8.已知230.5x y z ==,则32x y z x y z +--+的值是( )A .17 B.7 C.1 D.13 9.一轮船从A 地到B 地需7天,而从B 地到A 地只需5天,则一竹排从B 地漂到A 地需要的天数是( )A .12 B.35 C.24 D.47 10.已知226a b ab +=,且0a b >>,则a ba b +-的值为( )A .2B .2±C .2D .2± 二、填空题:(每小题3分,共24分)11.分式392--x x 当x ______时分式的值为零,当x ________时,分式xx 2121-+有意义.12.利用分式的基本性质填空: (1)())0(,10 53≠=a axy xy a (2)()1422=-+a a 13.分式方程1111112-=+--x x x 去分母时,两边都乘以 .14.要使2415--x x 与的值相等,则x =__________.15.计算:=+-+3932a a a __________. 16. 若关于x 的分式方程3232-=--x m x x 无解,则m 的值为__________. 17.若分式231-+x x 的值为负数,则x 的取值范围是__________. 18. 已知2242141x y y x y y +-=-+-,则的24y y x ++值为______. 三、解答题:(共56分) 19.计算:(1)11123x x x++ (2)3xy 2÷x y 2620. 计算: ()3322232n m nm --⋅ 168422+--x x xxm n nn m m m n n m -+-+--222. 先化简,后求值:222222()()12a a a a a b a ab b a b a b -÷-+--++-,其中2,33a b ==-23. 计算:.xx 3121=- 1412112-=-++x x x1111-÷⎪⎭⎫ ⎝⎛--x x x 4214121111x xx x ++++++-25.已知x 为整数,且918232322-++-++x x x x 为整数,求所有符合条件的x 的值.26.先阅读下面一段文字,然后解答问题: 一个批发兼零售的文具店规定:凡一次购买铅笔301支以上(包括301支)可以按批发价付款;购买300支以下(包括300支)只能按零售价付款.现有学生小王购买铅笔,如果给初三年级学生每人买1支,则只能按零售价付款,需用()12-m 元,(m 为正整数,且12-m >100)如果多买6支,则可按批发价付款,同样需用()12-m 元.设初三年级共有x 名学生,则①x的取值范围是 ;②铅笔的零售价每支应为 元;③批发价每支应为 元.(用含x 、m 的代数式表示).27.某工人原计划在规定时间内恰好加工1500个零件,改进了工具和操作方法后,工作效率提高为原来的2倍,因此加工1500个零件时,比原计划提前了5小时,问原计划每小时加工多少个零件?28. A 、B 两地相距20 km ,甲骑车自A 地出发向B 地方向行进30分钟后,乙骑车自B 地出发,以每小时比甲快2倍的速度向A 地驶去,两车在距B 地12 km 的C 地相遇,求甲、乙两人的车速.二分式单元测试题 第17章 一、填空题 1、在有理式22xy ,πx ,11+a ,y x +1,122-m 中属于分式的有 .2、分式33+-x x 的值为0,则x= .3、分式x x 2-和它的倒数都有意义,则x 的取值范围是 .4、当_____=x 时,x--11的值为负数;当x 、y 满足 时,)(3)(2y x y x ++的值为32; 5、若分式y x y -3的值为4,则x,y 都扩大两倍后,这个分式的值为 6、当x= 时,分式11+x 与11-x 互为相反数. 7、若分式方程=-1x m 1-x -11有增根,则m= .8、要使方程=-11x a x -2有正数解,则a 的取值范围是9、+++)2)(1(1 x x )3)(2(1++x x +)2007)(2006(1.....+++x x =_____________10、若=a3b 4=c 5,则分式222c b a ac bc ab +++-=____________二、选择题(每小题3分,共30分)11、已知m 、n 互为相反数,a 、b 互为倒数,|x|=2,则ab x xnm -++2的值为( )A 、2B 、3C 、4D 、5 12、晓晓根据下表,作了三个推测:x1 lO 100100010000…3-x-1x 3 2.12.Ol 2.001 2.0001…①3-x-1x(x>0)的值随着x 的增大越来越小; ②3-x-1x(x>0)的值有可能等于2; ③3-x-1x(x>O)的值随着x 的增大越来越接近于2. 则推测正确的有( )A 、0个B 、1个C 、2个D 、3个 13. 下列分式方程有解的是( )A 、++12x 13-x =162-x B 、012=+x x C 、0122=-x D 、111=-x14. 下列式子:(1)y x y x y x -=--122;(2)ca ba a c ab --=--;(3)1-=--b a a b ;(4)yx y x y x y x +-=--+-中正确的是 ( )A 、1个B 、2 个C 、3 个D 、4 个 15. 若分式m x x ++212不论m 取何实数总有意义,则m 的取值范围是( )A 、m ≥1B 、m >1C 、m ≤1D 、m <116. 下列分式中是最简单分式的是( ).A 、264x yB 、x y y x --2)(2C 、b a b a ++22 D 、y x y x --22 17.下列分式与y x yx +-相等的是( )A 、55+++-y x y xB 、y x y x +-22C 、222)(y x y x --(x ≠y ) D 、2222y x yx +- 18. 纳米是一种长度单位,1纳米=10-9米,已知某种花粉的直径为3 500纳米,•那么用科学记数法表示该种花粉的直径为( ) A 、3.5×104米 B 、3.5×10-5米 C 、3.5×10-9米 D 、3.5×10-6米19.张老师和李老师同时从学校出发,步行15千米去县城购买书籍,张老师比李老师每小时多走1千米,结果比李老师早到半小时,两位老师每小时各走多少千米?若设李老师每小时走x 千米,则由题意得到的方程是( )A 、2115115=-+x xB 、2111515=+-x xC 、2115115=--x xD 、2111515=--x x20. 已知分式xyyx -+1的值是a ,如果用x 、y 的相反数代入这个分式所得的值为b ,则a 、b 关系( )A 、相等B 、互为相反数C 、互为倒数D 、乘积为-1 三、解答题21、化简:[22222a b a ab b -+++2ab ÷(1a +1b )2]·2222a b ab-+.22、当21,23-==b a 时,求⎪⎭⎫ ⎝⎛-+⋅⎪⎭⎫ ⎝⎛-+-b a ab b a b a ab b a +44的值.请你先化简:112223+----x x xx x x ,再选取一个使...原式有意义的数代入求值.24、A 玉米试验田是边长为a 米的正方形减去一个边长为1米的正方形蓄水池后余下部分,B 玉米试验田是边长为(a -1)米的正方形,两块试验田的玉米都收获了500千克.(1)那种玉米的单位面积产量高?(2)高的单位面积产量是低的单位面积产量的多少倍?四、探索题(每题10分,共30分)26、甲、乙两位采购员同去一家饲料公司购买两次饲料.两次饲料的价格有变化,两位采购员的购货方式也不同,其中,甲每次购买1000千克,乙每次用去800元,而不管购买多少饲料.(1)甲、乙所购饲料的平均单价各是多少?(2)谁的购货方式更合算?27、一个批发兼零售的文具店规定:凡一次购买铅笔300枝以上,(不包括300枝),可以按批发价付款,购买300枝以下,(包括300枝)只能按零售价付款.小明来该店购买铅笔,如果给八年级学生每人购买1枝,那么只能按零售价付款,需用120元,如果多购买60枝,那么可以按批发价付款,同样需要120元,①这个八年级的学生总数在什么范围内?②若按批发价购买6枝与按零售价购买5枝的款相同,那么这个学校八年级学生有多少人?三分式单元测试一、选择题1.下列各式中,正确的是()A.c ca b a b=--++B.c ca b b a=--+-C.c ca b a b-=-++D.c c a b a b=--+-2.计算2ab a-+a ba b+-的结果是()A.3a bb a+-B.3a ba b+-C.1 D.-13.下列约分正确的是()A.326xxx=B.0=++yxyxC.xxyxyx12=++D.214222=yxxy4.一枚五角的硬币直径约为0.018m,用科学记数法表示为()A.31.810-⨯m B.21.810-⨯m C.31810-⨯m D.11.810-⨯m 5.现有单价为x元的果冻a千克,单价为y元的果冻b千克,单价为z元的果冻c千克,若将这三种果冻混合在一起,则混合后的果冻单价为元.()A.x y z++B.cbazyx++++C.cbaczbyax++++D.zyxczbyax++++6.若分式252xx--的值为-1,则x的值等于()A.53-B.53C.73D.73-7.已知当2x=-时,分式axbx--无意义,当4x=时,分式的值为0,则a b+的值等于()A.-6 B.-2 C.6 D.28.若分式22xx x+化简为1xx+,则x应满足的条件()A.1x≠-或0x≠B.1x≠-C.1x≠-且0x≠D.0x≠9.小明通常上学时从家到学校要走一段上坡路,途中平均速度为m千米/时,放学回家时,沿原路返回,通常的速度为n千米/时,则小明上学和放学路上的平均速度为()千米/时.A.2nm+B.2mnm n+C.mnm n+D.mnnm+10.已知1ab=,1111Ma b=+++,11a bNa b=+++,则M与N的大小关系为()A.M=N B.M>N C.M<N D.不确定11.在正数范围内定义一种运算“※”,其规则为a※b=11a b+,如2※4113244=+=.根据这个规则,则方程x※(2x-)=1的解为()A.-1 B.1 C.16-D.1612.“五一”节到了,为了让同学们过一个充实而有意义的假期,老师推荐给大家一本好书.已知小芳每天比小荣多看5页书,并且小芳看80页书所用的天数与小荣看70页书所用的天数相等,若设小芳每天看书x页,则根据题意可列出方程为()A.80705x x=-B.80705x x=+C.80705x x=+D.80705x x=-二、填空题13.当x=时,分式127x-无意义;当x=时,分式242xx-+的值为零.14.公式21P U R-=可以改写成P=的形式.15.226()(1)x xA y=+,那么A=_____ ____.16.计算232()()y xyx y-÷-=.17.小聪的妈妈每个月给她m元零花钱,她计划每天用a元(用于吃早点、乘车)刚好用完,而实际她每天节约b元钱,则她实际可以比原计划多用天才全部消费完.18.如果记22()1xy f xx==+,并且f(1)表示当1x=时y的值,即f (1)=2211112=+;f(12)表示当12x=时y的值,即f(12)=221()12151()2=+.那么11(1)(2)()(3)()23f f f f f++++1()()f n fn+++=L___ ____(结果用含n的代数式表示,n为正整数).三、解答题(共10小题,共90分)19.当x的取值范围是多少时,(1)分式213xx+-有意义?(2)分式2361xx-+值为负数?20.计算:(1)2222()()64x xy y÷-;(2)21322()(2)a b ab----g;(3)2221()111m m m mm m m-+÷---g;(4)22224421yxyxyxyxyx++-÷+--.21.先将分式121312-+÷⎪⎭⎫⎝⎛-+xxx进行化简,然后请你给x选择一个你认为合适的数值代入,求原式的值.22.分式)3)(1()2)(1(aaaa-+++的值可能等于41吗?为什么?23.解方程:(1)214111xx x+--=--;(2)0)1(213=-+--xxxx.24.为了更好适应和服务新农村下经济的快速发展,某乡镇决定对一段公路进行改造.已知这项工程由甲工程队单独做需要40天完成;如果由乙工程队先单独做10天,那么剩下的工程还需要两队合做20天才能完成.(1)求乙工程队单独完成这项工程所需的天数;(2)求两队合做完成这项工程所需的天数.25.某校统考后,需将成绩录入电脑,为防止出现差错,全校2640名学生成绩数据安排甲、乙两位教务员分别录入计算机一遍,然后经过电脑比对输入成绩数据是否一致.已知甲的输入速度是乙的速度的2倍,结果甲比乙少用2小时输完.求这两位教务员每分钟各能录入多少名学生的考试成绩数据?答案一、选择题1.C 2.B 3.C 4.C 5.B 6.C 7.B 8.A 9.B 10.A 二、填空题(每小题3分,共24分)11.=-3、≠1212.26a 、2a - 13.(1)(1)x x +- 14.6 15.3a - 16.3± 17.-1<x <2318.2(提示:设24y y m +=,原方程变形为211x m x m -=--,方程两边同时乘以(1)(1)x m --,得(1)(1)(2)x m x m -=--,化简得m x +=2,即24y y m ++=2.三、解答题(共56分) 19.(1)原式=632666x x x ++=116x(2)原式=2236x xy y g=212x 20.原式=243343m n m n -g=1712m n - 21.(1)原式=2(4)(4)x x x --=4xx - (2)原式=2m n m n m n m n m n-++----=2m n m n m n -++--=m m n -- 22.原式=22222()()[]1()()()a a a a b a a b a b a b a b a b --÷-+--+-- =2222()[]1()()()a ab a a a b a a b a b a b ----÷+-+-=2()()1()ab a b a b a b ab-+-÷+-- =a b a b a b a b +-+--=2aa b- 当2,33a b ==-时,原式=2232(3)3⨯--=43113=411 23.(1)方程两边同时乘以3(2)x x -,得32x x =-,解得x =-1,把x =-1代入3(2)x x -,3(2)x x -≠0,∴原方程的解,∴原方程的解是x =-1.(2)方程两边同乘以最简公分母(1)(1)x x +-,得4)1(2)1(=++-x x ,解这个整式方程得,1=x ,检验:把1=x 代入最简公分母(1)(1)x x +-,(1)(1)x x +-=0,∴1=x 不是原方程的解,应舍去,∴原方程无解. 24.(1)原式=1111x x x -⎛⎫+⎪-⎝⎭g =1111x x x x -+--g =11x x x x--g =1 (2)原式=241124(1)(1)(1)(1)11x x x x x x x x +-+++-+-+++=224224111x x x ++-++=22222242(1)2(1)4(1)(1)(1)(1)1x x x x x x x +-++-++-+=2222422224(1)(1)1x x x x x ++-+-++=444411x x +-+=4444444(1)4(1)(1)(1)(1)(1)x x x x x x +-+-++- =4484(1)4(1)1x x x ++--=881x- 25.原式=222218339x x x x +-++--=22(3)2(3)(218)9x x x x --+++-2269x x +-=2(3)(3)(3)x x x ++-=23x -,∵918232322-++-++x x x x 是整数,∴23x -是整数,∴3x -的值可能是±1或±2,分别解得x =4,x =2,x =5,x =1,符合条件的x 可以是1、2、4、5.26.①241≤x ≤300;②x m 12-,6012+-x m27.设原计划每小时加工x 个零件,根据题意得:1500150052x x-=,解得x =150,经检验,x =150是原方程的根,答:设原计划每小时加工150个零件.28.设甲速为xkm/h ,乙速为3xkm/h ,则有xx x31260301220=--,解之得8=x ,经检验,x =8是原方程的根,答:甲速为8km/h ,乙速为24km/h.参考答案一、1. 11+a ,y x +1 2. 3 3.x ≠0 且x ≠2 4.x<1,x+y ≠0 5. 46. 07. 18. a <29. )2007)(1(2006++x x 10. 507二、11. B 12.C 13. D 14. B 15. B 16.C 17. C 18. D 19. B 20. B 三、21.22()a b + 22. 原式=a 2-b 2=2 23.原式=2x -1,答案不唯一,如取x =3,得原式=2×3-1=524. (1)A 玉米试验田面积是(a 2-1)米2,单位面积产量是15002-a 千克/米2; B 玉米试验田面积是(a -1)2米2,单位面积产量是2)1(500-a 千克/米2; 因为a 2-1-(a -1)2=2(a -1),而a -1>0,所以0<(a -1)2<a 2-1, 所以15002-a <2)1(500-a ,即B 玉米的单位面积产量高. (2) 2)1(500-a ÷15002-a =2)1(500-a ×50012-a =2)1()1)(1(--+a a a =11-+a a ,所以高的单位面积产量是低的单位面积产量的11-+a a 倍. 四、25. 猜想:当一个分数的分子小于分母时,分子与分母同加上一个正数后所得的分数大于原来的分数,当一个分数的分子大于分母时,分子与分母同加上一个正数后所得的分数小于原来的分数,即设一个分数b a(a 、b 均是正数)和一个正数m ,则b a (a >b )→b m a m ++>b a ,b a (a <b )→b m a m ++<b a. 理由是:b m a m ++-b a =()()()a b m b a m a a m +-++=()()m a b a a m -+,由于a 、b 、m 均是正数,所以当a >b ,即a -b >0时,b m a m ++-b a >0,即b m a m ++>ba,当a <b ,即a -b <0时,b m a m ++-b a <0,即b m a m ++<ba.26. (1)设两次购买的饲料单价分别为m 元/千克和n 元/千克(m ,n 是正数,且m ≠n )甲两次购买饲料的平均单价为2100010001000⋅+n m =2nm +(元/千克),乙两次购买饲料的平均单价为nm 8008002800+⨯=nm mn +2(元/千克).(2)甲、乙两种饲料的平均单价的差是2n m +-n m mn +2=)(2)(2n m m m ++-)(24n m mn+=)(24222n m mn n mn m +-++=)(2)(2n m n m +-,由于m 、n 是正数,因为m ≠n 时,)(2)(2n m n m +-也是正数,即2n m +-n m mn +2>0,因此乙的购买方式更合算.27. ①设这个学校八年级学生有x 人.由题意得,x ≤300且x +60>300,所以240<x ≤300;②有两个数量关系:一是批发价购买6枝与按零售价购买5枝的款相同;二是用120元按批发价付款比按零售价付款可以多购买60枝.若设批发价每支y元,则零售价每支65y 元.由题意得,y y 1206056120=+.解之得,y =31,经检验,y =31为原方程的解.所以,.30056120=y 即①240人<八年级的学生总数≤300人,②这个学校八年级学生有300人.三参考答案一、选择题1-5 DDCBC 6-10 CDCBA 11-12 DD 二、填空题13. 3.5,2 14.2U R 15.3(1)y + 16.2xy 17.()m m a b a--18.12n -三、解答题19.(1)x ≠3±;(2)x <2. 20.(1)2249x y ;(2)44a b ;(3)11mm +-;(4)yx y-+. 21. 原式1x =+,取值时注意x ≠1,2±-. 22. 不可能,原式等于14时,1x =-,此时分式无意义. 23.(1)3x =-;(2)无解. 24.(1)60天;(2)24天. 25. 甲每分钟输入22名,乙每分钟输入11名. 26.(1)移项,方程两边分别通分,方程两边同除以210x -+,分式值相等,分子相等,则分母相等;(2)有错误.从第③步出现错误,原因:210x -+可能为零;(3)当2100x -+=时,210,5x x -=-=,经检验知5x =也是原方程的解,故原方程的解为55,2x x ==。
第16章 分式 章检测题
一、选择题
1.下列分式是最简分式的是( )
A.2a 3a 2b
B.a a 2-3a
C.a +b a 2+b 2
D.a 2-ab a 2-b 2 2.使分式x -2(x -1)(x -2)
有意义,x 应满足的条件是( ) A .x ≠1 B .x ≠2 C .x ≠1或x ≠2 D .x ≠1且x ≠2
3.若分式x -2x +3
的值为0,则x 的值是( ) A .-3 B .-2 C .0 D .2
4.下列各式中,与分式x -y x +y
相等的是( ) A.(x -y )+5(x +y )+5 B.2x -y 2x +y C.(x -y )2x 2-y 2(x ≠y ) D.x 2-y 2
x 2+y 2 5.下列等式成立的是( )
A .(-3)-2=-9
B .(-3)-2=19
C .a -2×b -2=a 2×b 2 D.a 2-b 2b -a
=a +b 6.分式方程3x =4x +1
+1的解是( ) A .x =-3 B .x =1 C .x 1=3,x 2=-1 D .x 1=1,x 2=-3
7.若关于x 的分式方程x x -2=2-m 2-x
的解为正数,则满足条件的正整数m 的值为( )
A .1,2,3
B .1,2
C .1,3
D .2,3
8.已知a 2+a -2=7,则a +a -1的值( )
A .49
B .47
C .±3
D .3
9.甲、乙两人同时分别从A ,B 两地沿同一条公路骑自行车到C 地.已知A ,C 两地间的距离为110千米,B ,C 两地间的距离为100千米.甲骑自行车的平均速度比乙快2千米/时,结果两人同时到达C 地,求两人的平均速度.为解决此问题,设乙骑自行车的平均速度为x 千米/时,由题意列出方程,下列正确的是( )
A.110x +2=100x
B.100x =100x +2
C.110x -2=100x
D.110x =100x -2
二、填空题
10.若分式5m m -n
(m -n≠0)的分母经过通分后变为m 2-n 2,则分子变为_____5m 2
+5mn
_______.
11.已知x -3x 2-2x +1与x 2-1x +2
互为倒数,则x 的值为________. 12.在学习负整数指数幂的知识后,明明给同桌晶晶出了如下题目:将(p 3q -2)2(-
3p 4q ( ))-3的结果化为只含有正整数指数幂的形式,其结果为-q 527p 6,其中“( )”
处的数字是多少?聪明的你替晶晶同学填上“( )”的数字______.
13.若关于x 的分式方程x x -3-2=m x -3
有增根,则m 的值为______. 14.环境空气质量问题已经成为人们日常生活所关心的重要问题,我国新修订的《环境空气质量标准》中增加了PM 2.5检测指标,“PM 2.5”是指大气中危害健康的直径小于或等于2.5微米的颗粒物,2.5微米即0.000 002 5米.用科学记数法表示0.000 002 5为____________.
15.观察下列一组数:14,39,516,725,936,…,它们是按一定规律排列的,那
么这一组数的第n 个数是__________.
16.某市为治理污水,需要铺设一段全长600 m 的污水排放管道,铺设120 m 后,为加快施工进度,后来每天比原计划增加20 m ,结果共用11天完成这一任务,求原计划每天铺设管道的长度.如果设原计划每天铺设x m 管道,那么根据题意,可列方程________
三、解答题
17.计算下列各式,并且把结果化为只含有正整数指数幂的形式:
(1)(a -4)3(ab 3)-2 (2)(3a 2b )-2(a -3b -2)-1.
18.化简:
(1) a -b -(a +b )2a +b (2) x 2+4x +4x 2+2x ÷(2x -4+x 2x ) (3) (x -1x )÷x 2-2x +1x 2-x
19.解下列分式方程:
(1) x x -7-17-x =2 (2) x +1x -1+41-x 2
=1.
20.已知A =x 2+2x +1x 2-1-x x -1
(1)化简A ;
(2)当x 满足不等式组⎩⎪⎨⎪⎧x -1≥0,x -3<0,
且x 为整数时,求A 的值.
21.定义新运算:对于任意实数a ,b(其中a≠0),都有a ⊗b =1a -a -b a 等式右边
是通常的加法、减法及除法运算,比如:2⊗1=12-2-12=0
(1)求5⊗4的值;
(2)若x ⊗2=1(其中x≠0),求x 的值是多少?
22.先化简:(2x 2+2x x 2-1-x 2-x x 2-2x +1)÷x x +1
,然后解答下列问题: (1)当x =3时,求原代数式的值;
(2)原代数式的值能等于-1吗?为什么?
23.列方程或方程组解应用题:
为了响应“十三五”规划中提出的绿色环保的倡议,某校文印室提出了每个人都践行“双面打印,节约用纸”.已知打印一份资料,如果用A 4厚型纸单面打印,总质量为400克,将其全部改成双面打印,用纸将减少一半;如果用A 4薄型纸双面打印,这份资料的总质量为160克,已知每页薄型纸比厚型纸轻0.8克,求
A4薄型纸每页的质量.(墨的质量忽略不计)
24.“汉十”高速铁路襄阳段正在建设中,甲、乙两个工程队计划参与一项工程建
设,甲队单独施工30天完成该项工程的1
3,这时乙队加入,两队还需同时施工
15天,才能完成该项工程.
(1)若乙队单独施工,需要多少天才能完成该项工程?
(2)若甲队参与该项工程施工的时间不超过36天,则乙队至少施工多少天才能完成该项工程?
答案:
1---9 CDBCB DCCA
10. 5m2+5mn 11. -1
312. -3 13. 3 14. 2.5×10-
6
15.
2n-1
(n+1)2
16.
120
x+
600-120
x+20=11 17. (1)
1
a14b6(2)
1
9a
18. (1) -2b (2)
1
x-2(3) x+1
19. (1) 解得x=15,经检验x=15是分式方程的解
(2) 解得x=1.检验:把x=1代入(x-1)(x+1)=0,所以原方程无解
20. (1)A =1x -1
(2)∵⎩
⎨⎧x -1≥0,x -3<0,∴1≤x <3,∵x 为整数,∴x =1或x =2,∴①当x =1时,A =1x -1无意义; ②当x =2时,A =1x -1=12-1=1
21. (1)根据题意得:5⊗4=15-5-45=0
(2)∵x ⊗2=1 ∴1x -x -2x =1,解得x =32
检验:当x =32时,x≠0。
∴分式方程的解为x =32
22. (1)原式=x +1x -1.当x =3时,原式=3+13-1=2
(2)如果x +1x -1=-1,那么x +1=-(x -1),解得x =0,当x =0时,除式x x +1=0,原式无意义。
故原代数式的值不能等于-1
23. 设A4薄型纸每页的质量为x 克,则A4厚型纸每页的质量为(x +0.8)克
根据题意,得400x +0.8=2×160x ,解得x =3.2
经检验x =3.2是原分式方程的解,且符合题意
答:A4薄型纸每页的质量为3.2克
24. (1)设乙队单独施工,需要x 天才能完成该项工程
∵甲队单独施工30天完成该项工程的13
∴甲队单独施工90天完成该项工程
根据题意可得13+15(190+1x )=1,解得x =30,经检验x =30是原方程的根
答:乙队单独施工,需要30天才能完成该项工程
(2)设乙队参与施工y 天才能完成该项工程
根据题意可得190×36+y×130≥1,解得y ≥18
答:乙队至少施工18天才能完成该项工程。