2016年高考数学复习参考题------08.推理与证明
- 格式:doc
- 大小:499.50 KB
- 文档页数:6
考点47 推理与证明1.(A ,江西,5分)观察下列各式:,3437,49732==,,240174 =则20117的末两位数字为 ( ) 01.A 43.B 07.C 49.D注:“累计里程”指汽车从出厂开始累计行驶的路程.在这段时间内,该车每100千米平均耗油量为( )A .6升 B.8升 C .10升 D.12升3.(E ,浙江,5分)有三个房间需要粉刷,粉刷方案要求;每个房间只用一种颜色,且三个房间颜色各不 相同.已知三个房间的粉刷面积(单位:2m )分别为,,,z y x 且,z y x <<三种颜色涂料的粉刷费用(单 位:元2/m )分别为,,,c b a 且.c b a <<在不同的方案中,最低的总费用(单位:元)是 ( ) cz by ax A ++. cx by az B ++. cx bz ay C ++. cz bx ay D ++.4.(D ,湖北,5分)《算数书》竹简于上世纪湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典籍,其中记载有求“困盖”的术:置如其周,令相乘也,又以高乘之,三十六成一该数相当于给出了圆锥的底面周长L 与高h ,计算其体积V 的近似公式.3612h L v ≈它实际上是将圆锥体 积公式中的圆周率π似取为3.那么,近似公式h L v 2752≈相当于将圆锥体积公式中的π近似取为 ( ) 722.A 825.B 50157.c 113355.D 5.(D ,安徽,5分)如图,在等腰直角三角形ABC 中,斜边,22=BC 过点A 作BC 的垂线,垂足为;1A 过 点1A 作AC 的垂线,垂足为2A ;过点2A 作c A 1的垂线,垂足为,,3 ⋅A 依此类推,设,1a BA = ,,32121a A A a AA ==,,.76a A = 则=7a ______6.(B ,湖北,5分)传说古希腊毕达哥拉斯学派的数学家经常在沙滩上画点或用小石子表示数.他们研究过如图所示的三角形数:将三角形数1,3,6,10,…记为数列},{n a 将可被5整除的三角形数按从小到大的顺序组成一个新数 列},{n b 可以推测:2012)1(b 是数列}{n a 中的第____项;=-12)2(k b ______(用k 表示).7.(B ,湖南,5分)对于*,N n ∈将n 表示为⨯=k a n +⨯+--1122k k k a ,220011⨯+⨯+a a 当k i =时,,1=i a 当10-≤≤k i 时,i a 为O 或1.定义n b 如下:在n 的上述表示中,当k a a a a ,,,,210 中等于1的个数为奇数时:;1=n b 否则.0=n b=+++8642)1(b b b b _______(2)记m c 为数列}{n b 中第m 个为0的项与第1+m 个位0的项之间的项数,则m C 的最大值是_____8.(A ,陕西;5分)观察下列等式照此规律,第五个等式应为9.(C ,陕西,5分)观察下列等式:12)11(⨯=+312)22)(12(2⨯⨯=++5312)33)(23)(13(3⨯⨯⨯=+++照此规律,第n 个等式可为____.10. (E ,陕西,5分)观察下列等式:21211=- 41314131211+=-+- 61514161514131211++=-+-+-据此规律,第n 个等式可为11.(C ,山东,5分)定义“正对数”:⎩⎨⎧≥<<=+.1,ln ,10,0ln x x x x 现有四个命题: ①若,0,0>⋅>b a 则;ln )(ln a b a b ++=②若,0,0>>b a 则;ln ln )(ln b a ab +++=+③若,0,0>>b a 则;ln ln )(ln b a ba++-≥+ ④若,0,0>>b a 则.2ln ln ln )(ln ++≤++++b a b a其中的真命题有____(写出所有真命题的编号).12. (D ,四川,5分)以A 表示值域为R 的函数组成的集合,B 表示具有如下性质的函数)(x ϕ组成的集合:对于函数),(x ϕ存在一个正数M ,使得函数)(x ϕ的值域包含于区间].,[M M -例如,当x x x x sin )(,)(231==ϕϕ时,∈∈)(,)(21x A x ϕϕ.B 现有如下命题:①设函数)(x f 的定义域为D ,则,,)(A x f ∈的充要条件是;)(,,”b a f D a R b =∈∃∈∀②若函数,)(B x f ∈则)(x f 有最大值和最小值;③若函数)(),(x g x f 的定义域相同,且,)(A x f ∈,)(B x g ∈则;)()(B x g x f ∉+- ④若函数∈->+++=a x x x x a x f ,2(1)2ln()(2)R 有最大值,则.)(B x f ∈ 其中的真命题有 .(写出所有真命题的序号)13.(E ,北京,5分)高三年级267位学生参加期末考试,某班37位学生的语文成绩、数学成绩与总成绩在全年级中的排名情况如下图所示,甲、乙、丙为该班三位学生.从这次考试成绩看,①在甲、乙两人中,其语文成绩名次比其总成绩名次靠前的学生是_____ ;②在语文和数学两个科目中,丙同学的成绩名次更靠前的科目是_____ .14. (B ,福建,12分)某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数:;17cos 13sin 17cos 13sin )1(22-+o ;15cos 15sin 15cos 15sin )2(22 -+;12cos 18sin 12cos 18sin )3(22 -+o;48)18sin(48cos )18(sin )4(22 s ∞--+-.55cos )25sin(55cos )25(sin )5(22 --+-(I)试从上述五个式子中选择—个,求出这个常数;(Ⅱ)根据(I)的计算结果,将该同学的发现推广为三角恒等式,并证明你的结论,答案。
数学M单元推理与证明M1 合情推理与演绎推理8.M1[2014·北京卷] 学生的语文、数学成绩均被评定为三个等级,依次为“优秀”“合格”“不合格”.若学生甲的语文、数学成绩都不低于学生乙,且其中至少有一门成绩高于乙,则称“学生甲比学生乙成绩好”.如果一组学生中没有哪位学生比另一位学生成绩好,并且不存在语文成绩相同、数学成绩也相同的两位学生,那么这组学生最多有() A.2人B.3人C.4人D.5人8.B[解析] 假设A、B两位学生的数学成绩一样,由题意知他们语文成绩不一样,这样他们的语文成绩总有人比另一个人高,语文成绩较高的学生比另一个学生“成绩好”,与已知条件“他们之中没有一个比另一个成绩好”相矛盾.因此,没有任意两位学生数学成绩是相同的.因为数学成绩只有3种,因而学生数量最大为3,即3位学生的成绩分别为(优秀,不合格)、(合格,合格)、(不合格,优秀)时满足条件.20.M1 E7[2014·北京卷] 对于数对序列P:(a1,b1),(a2,b2),…,(a n,b n),记T1(P)=a1+b1,T k(P)=b k+max{T k-1(P),a1+a2+…+a k}(2≤k≤n),其中max{T k-1(P),a1+a2+…+a k}表示T k-1(P)和a1+a2+…+a k两个数中最大的数.(1)对于数对序列P:(2,5),(4,1),求T1(P),T2(P)的值;(2)记m为a,b,c,d四个数中最小的数,对于由两个数对(a,b),(c,d)组成的数对序列P:(a,b),(c,d)和P′:(c,d),(a,b),试分别对m=a和m=d两种情况比较T2(P)和T2(P′)的大小;(3)在由五个数对(11,8),(5,2),(16,11),(11,11),(4,6)组成的所有数对序列中,写出一个数对序列P使T5(P)最小,并写出T5(P)的值.(只需写出结论)20.解:(1)T1(P)=2+5=7,T2(P)=1+max{T1(P),2+4}=1+max{7,6}=8.(2)T2(P)=max{a+b+d,a+c+d},T2(P′)=max{c+d+b,c+a+b}.当m=a时,T2(P′)=max{c+d+b,c+a+b}=c+d+b.因为a+b+d≤c+b+d,且a+c+d≤c+b+d,所以T2(P)≤T2(P′).当m=d时,T2(P′)=max{c+d+b,c+a+b}=c+a+b.因为a+b+d≤c+a+b,且a+c+d≤c+a+b,所以T2(P)≤T2(P′).所以无论m=a还是m=d,T2(P)≤T2(P′)都成立.(3)数对序列P:(4,6),(11,11),(16,11),(11,8),(5,2)的T5(P)值最小,T1(P)=10,T2(P)=26,T3(P)=42,T4(P)=50,T5(P)=52.15.A1、M1[2014·福建卷] 若集合{a,b,c,d}={1,2,3,4},且下列四个关系:①a=1;②b≠1;③c=2;④d≠4有且只有一个是正确的,则符合条件的有序数组(a,b,c,d)的个数是________.15.6[解析] 若①正确,则②③④不正确,可得b≠1不正确,即b=1,与a=1矛盾,故①不正确;若②正确,则①③④不正确,由④不正确,得d=4;由a≠1,b≠1,c≠2,得满足条件的有序数组为a=3,b=2,c=1,d=4或a=2,b=3,c=1,d=4.若③正确,则①②④不正确,由④不正确,得d=4;由②不正确,得b=1,则满足条件的有序数组为a=3,b=1,c=2,d=4;若④正确,则①②③不正确,由②不正确,得b =1,由a ≠1,c ≠2,d ≠4,得满足条件的有序数组为a =2,b =1,c =4,d =3或a =3,b =1,c =4,d =2或a =4,b =1,c =3,d =2;综上所述,满足条件的有序数组的个数为6. 19.M1、M3[2014·广东卷] 设数列{a n }的前n 项和为S n ,满足S n =2na n +1-3n 2-4n ,n ∈N *,且S 3=15.(1)求a 1,a 2,a 3的值; (2)求数列{a n }的通项公式. 14.M1[2014·新课标全国卷Ⅰ] 甲、乙、丙三位同学被问到是否去过A ,B ,C 三个城市时,甲说:我去过的城市比乙多,但没去过B 城市; 乙说:我没去过C 城市;丙说:我们三人去过同一城市.由此可判断乙去过的城市为________.14.A [解析] 由于甲没有去过B 城市,乙没有去过C 城市,但三人去过同一个城市,故三人去过的城市为A 城市.又由于甲最多去过两个城市,且去过的城市比乙多,故乙只能去过一个城市,这个城市为A 城市.14.M1猜想一般凸多面体中F ,V ,E 所满足的等式是________.14.F +V -E =2 [解析] 由题中所给的三组数据,可得5+6-9=2,6+6-10=2,6+8-12=2,由此可以猜想出一般凸多面体的顶点数V 、面数F 及棱数E 所满足的等式是F +V -E =2.M2 直接证明与间接证明 4.M2[2014·山东卷] 用反证法证明命题“设a ,b 为实数,则方程x 2+ax +b =0至少有一个实根”时,要做的假设是( )A. 方程x 2+ax +b =0没有实根B. 方程x 2+ax +b =0至多有一个实根C. 方程x 2+ax +b =0至多有两个实根D. 方程x 2+ax +b =0恰好有两个实根4.A [解析] “方程x 2+ax +b =0至少有一个实根”等价于“方程x 2+ax +b =0有一个实根或两个实根”,所以该命题的否定是“方程x 2+ax +b =0没有实根”.故选A.M3 数学归纳法21.B11、M3、D5[2014·安徽卷] 设实数c >0,整数p >1,n ∈N *. (1)证明:当x >-1且x ≠0时,(1+x )p >1+px ;(2)数列{a n }满足a 1>c 1p ,a n +1=p -1p a n +c p a 1-p n ,证明:a n >a n +1>c 1p . 21.证明:(1)用数学归纳法证明如下.①当p =2时,(1+x )2=1+2x +x 2>1+2x ,原不等式成立.②假设p =k (k ≥2,k ∈N *)时,不等式(1+x )k >1+kx 成立.当p =k +1时,(1+x )k +1=(1+x )(1+x )k >(1+x )(1+kx )=1+(k +1)x +kx 2>1+(k +1)x . 所以当p =k +1时,原不等式也成立.综合①②可得,当x >-1,x ≠0时,对一切整数p >1,不等式(1+x )p >1+px 均成立. (2)方法一:先用数学归纳法证明a n >c 1p .①当n =1时,由题设知a 1>c 1p成立.②假设n =k (k ≥1,k ∈N *)时,不等式a k >c 1p成立. 由a n +1=p -1p a n +c p a 1-p n 易知a n >0,n ∈N *. 当n =k +1时,a k +1a k =p -1p +c p a -p k =1+1p ⎝⎛⎭⎫c a p k-1. 由a k >c 1p >0得-1<-1p <1p ⎝⎛⎭⎫c a p k-1<0. 由(1)中的结论得⎝⎛⎭⎫a k +1a k p=⎣⎡⎦⎤1+1p ⎝⎛⎭⎫c a p k -1p>1+p · 1p ⎝⎛⎭⎫c a p k -1=c a p k . 因此a p k +1>c ,即a k +1>c 1p, 所以当n =k +1时,不等式a n >c 1p也成立.综合①②可得,对一切正整数n ,不等式a n >c 1p 均成立.再由a n +1a n =1+1p ⎝⎛⎭⎫c a p n -1可得a n +1a n <1, 即a n +1<a n .综上所述,a n >a n +1>c 1p,n ∈N *.方法二:设f (x )=p -1p x +c p x 1-p ,x ≥c 1p ,则x p ≥c ,所以f ′(x )=p -1p +c p (1-p )x -p =p -1p ⎝⎛⎭⎫1-c x p >0. 由此可得,f (x )在[c 1p ,+∞)上单调递增,因而,当x >c 1p 时,f (x )>f (c 1p )=c 1p .①当n =1时,由a 1>c 1p>0,即a p 1>c 可知 a 2=p -1p a 1+c p a 1-p 1=a 1⎣⎡⎦⎤1+1p ⎝⎛⎭⎫c a p 1-1<a 1,并且a 2=f (a 1)>c 1p ,从而可得a 1>a 2>c 1p , 故当n =1时,不等式a n >a n +1>c 1p成立.②假设n =k (k ≥1,k ∈N *)时,不等式a k >a k +1>c 1p 成立,则当n =k +1时,f (a k )>f (a k +1)>f (c 1p ),即有a k +1>a k +2>c 1p,所以当n =k +1时,原不等式也成立.综合①②可得,对一切正整数n ,不等式a n >a n +1>c 1p均成立.19.M1、M3[2014·广东卷] 设数列{a n }的前n 项和为S n ,满足S n =2na n +1-3n 2-4n ,n ∈N *,且S 3=15.(1)求a 1,a 2,a 3的值; (2)求数列{a n }的通项公式.22.B12、M3[2014·全国卷] 函数f (x )=ln(x +1)-axx +a (a >1).(1)讨论f (x )的单调性;(2)设a 1=1,a n +1=ln(a n +1),证明:2n +2<a n ≤3n +2.22.解:(1)易知f (x )的定义域为(-1,+∞),f ′(x )=x [x -(a 2-2a )](x +1)(x +a )2.(i)当1<a <2时,若x ∈(-1,a 2-2a ),则f ′(x )>0,所以f (x )在(-1,a 2-2a )是增函数; 若x ∈(a 2-2a ,0),则f ′(x )<0,所以f (x )在(a 2-2a ,0)是减函数; 若x ∈(0,+∞),则f ′(x )>0,所以f (x )在(0,+∞)是增函数.(ii)当a =2时,若f ′(x )≥0,f ′(x )=0成立当且仅当x =0,所以f (x )在(-1,+∞)是增函数. (iii)当a >2时,若x ∈(-1,0),则f ′(x )>0,所以f (x )在(-1,0)是增函数; 若x ∈(0,a 2-2a ),则f ′(x )<0, 所以f (x )在(0,a 2-2a )是减函数;若x ∈(a 2-2a ,+∞),则f ′(x )>0,所以f (x )在(a 2-2a ,+∞)是增函数. (2)由(1)知,当a =2时,f (x )在(-1,+∞)是增函数. 当x ∈(0,+∞)时,f (x )>f (0)=0,即ln(x +1)>2xx +2(x >0).又由(1)知,当a =3时,f (x )在[0,3)是减函数. 当x ∈(0,3)时,f (x )<f (0)=0,即ln(x +1)<3xx +3(0<x <3).下面用数学归纳法证明2n +2<a n ≤3n +2.(i)当n =1时,由已知23<a 1=1,故结论成立.(ii)假设当n =k 时结论成立,即2k +2<a k ≤3k +2. 当n =k +1时,a k +1=ln(a k +1)>ln ⎝⎛⎭⎫2k +2+1>2×2k +22k +2+2=2k +3,a k +1=ln(a k +1)≤ln ⎝⎛⎭⎫3k +2+1<3×3k +23k +2+3=3k +3,即当n =k +1时,有2k +3 <a k +1≤3k +3,结论成立. 根据(i)(ii)知对任何n ∈N *结论都成立.21.B11,B12,E8,M3[2014·陕西卷] 设函数f (x )=ln(1+x ),g (x )=xf ′(x ),x ≥0,其中f ′(x )是f (x )的导函数.(1)令g 1(x )=g (x ),g n +1(x )=g (g n (x )),n ∈N +,求g n (x )的表达式; (2)若f (x )≥ag (x )恒成立,求实数a 的取值范围;(3)设n ∈N +,比较g (1)+g (2)+…+g (n )与n -f (n )的大小,并加以证明.21.解:由题设得,g (x )=x1+x (x ≥0).(1)由已知,g 1(x )=x 1+x, g 2(x )=g (g 1(x ))=x 1+x 1+x 1+x =x1+2x ,g 3(x )=x 1+3x ,…,可得g n (x )=x 1+nx. 下面用数学归纳法证明.①当n =1时,g 1(x )=x 1+x ,结论成立.②假设n =k 时结论成立,即g k (x )=x1+kx.那么,当n =k +1时,g k +1(x )=g (g k (x ))=g k (x )1+g k (x )=x 1+kx 1+x 1+kx =x1+(k +1)x ,即结论成立.由①②可知,结论对n ∈N +成立.(2)已知f (x )≥ag (x )恒成立,即ln(1+x )≥ax1+x恒成立. 设φ(x )=ln(1+x )-ax1+x (x ≥0),则φ′(x )=11+x -a(1+x )2=x +1-a (1+x )2, 当a ≤1时,φ′(x )≥0(仅当x =0,a =1时等号成立), ∴φ(x )在[0,+∞)上单调递增,又φ(0)=0, ∴φ(x )≥0在[0,+∞)上恒成立,∴a ≤1时,ln(1+x )≥ax1+x恒成立(仅当x =0时等号成立).当a >1时,对x ∈(0,a -1]有φ′(x )<0, ∴φ(x )在(0,a -1]上单调递减, ∴φ(a -1)<φ(0)=0.即a >1时,存在x >0,使φ(x )<0, 故知ln(1+x )≥ax1+x 不恒成立.综上可知,a 的取值范围是(-∞,1].(3)由题设知g (1)+g (2)+…+g (n )=12+23+…+nn +1,比较结果为g (1)+g (2)+…+g (n )>n -ln(n +1).证明如下:方法一:上述不等式等价于12+13+…+1n +1<ln(n +1),在(2)中取a =1,可得ln(1+x )>x1+x,x >0. 令x =1n ,n ∈N +,则1n +1<ln n +1n .下面用数学归纳法证明.①当n =1时,12<ln 2,结论成立.②假设当n =k 时结论成立,即12+13+…+1k +1<ln(k +1).那么,当n =k +1时,12+13+…+1k +1+1k +2<ln(k +1)+1k +2<ln(k +1)+ln k +2k +1=ln(k +2),即结论成立.由①②可知,结论对n ∈N +成立.方法二:上述不等式等价于12+13+…+1n +1<ln(n +1),在(2)中取a =1,可得ln(1+x )>x1+x,x >0. 令x =1n ,n ∈N +,则ln n +1n >1n +1.故有ln 2-ln 1>12,ln 3-ln 2>13,……ln(n +1)-ln n >1n +1,上述各式相加可得ln(n +1)>12+13+…+1n +1,结论得证.方法三:如图,⎠⎛0nx x +1d x 是由曲线y =x x +1,x =n 及x 轴所围成的曲边梯形的面积,而12+23+…+nn +1是图中所示各矩形的面积和,∴12+23+…+n n +1>⎠⎛0n x x +1d x = ⎠⎛0n ⎝⎛⎭⎫1-1x +1d x =n -ln (n +1), 结论得证.22.D1,D2,M3[2014·重庆卷] 设a 1=1,a n +1=a 2n -2a n +2+b (n ∈N *). (1)若b =1,求a 2,a 3及数列{a n }的通项公式.(2)若b =-1,问:是否存在实数c 使得a 2n <c <a 2n +1对所有n ∈N *成立?证明你的结论. 22.解:(1)方法一:a 2=2,a 3=2+1. 再由题设条件知(a n +1-1)2=(a n -1)2+1.从而{(a n -1)2}是首项为0,公差为1的等差数列, 故(a n -1)2=n -1,即a n =n -1+1(n ∈N *). 方法二:a 2=2,a 3=2+1.可写为a 1=1-1+1,a 2=2-1+1,a 3=3-1+1.因此猜想a n =n -1+1. 下面用数学归纳法证明上式. 当n =1时,结论显然成立.假设n =k 时结论成立,即a k =k -1+1,则a k +1=(a k -1)2+1+1=(k -1)+1+1=(k +1)-1+1, 这就是说,当n =k +1时结论成立. 所以a n =n -1+1(n ∈N *).(2)方法一:设f (x )=(x -1)2+1-1,则a n +1=f (a n ).令c =f (c ),即c =(c -1)2+1-1,解得c =14.下面用数学归纳法证明命题 a 2n <c <a 2n +1<1.当n =1时,a 2=f (1)=0,a 3=f (0)=2-1,所以a 2<14<a 3<1,结论成立.假设n =k 时结论成立,即a 2k <c <a 2k +1<1. 易知f (x )在(-∞,1]上为减函数,从而 c =f (c )>f (a 2k +1)>f (1)=a 2,即 1>c >a 2k +2>a 2.再由f (x )在(-∞,1]上为减函数,得c =f (c )<f (a 2k +2)<f (a 2)=a 3<1,故c <a 2k +3<1,因此a 2(k +1)<c <a 2(k +1)+1<1,这就是说,当n =k +1时结论成立.综上,存在 c =14使a 2n <C <a 2a +1对所有n ∈N *成立.方法二:设f (x )=(x -1)2+1-1,则a n +1=f (a n ). 先证:0≤a n ≤1(n ∈N *). ① 当n =1时,结论明显成立.假设n =k 时结论成立,即0≤a k ≤1. 易知f (x )在(-∞,1]上为减函数,从而 0=f (1)≤f (a k )≤f (0)=2-1<1.即0≤a k +1≤1.这就是说,当n =k +1时结论成立.故①成立. 再证:a 2n <a 2n +1(n ∈N *). ②当n =1时,a 2=f (1)=0,a 3=f (a 2)=f (0)=2-1,所以a 2<a 3,即n =1时②成立. 假设n =k 时,结论成立,即a 2k <a 2k +1. 由①及f (x )在(-∞,1]上为减函数,得 a 2k +1=f (a 2k )>f (a 2k +1)=a 2k +2, a 2(k +1)=f (a 2k +1)<f (a 2k +2)=a 2(k +1)+1.这就是说,当n =k +1时②成立.所以②对一切n ∈N *成立. 由②得a 2n <a 22n -2a 2n +2-1,即(a 2n +1)2<a 22n -2a 2n +2,因此a 2n <14. ③又由①②及f (x )在(-∞,1]上为减函数,得f (a 2n )>f (a 2n +1),即a 2n +1>a 2n +2.所以a 2n +1>a 22n +1-2a 2n +1+2-1,解得a 2n +1>14. ④ 综上,由②③④知存在c =14使a 2n <c <a 2n +1对一切n ∈N *成立.M4 单元综合2.[2014·陕西五校联考] 设△ABC 的三边长分别为a ,b ,c ,△ABC 的面积为S ,内切圆半径为r ,则r =2Sa +b +c.类比这个结论可知:四面体P -ABC 的四个面的面积分别为S 1,S 2,S 3,S 4,内切球的半径为r ,四面体P -ABC 的体积为V ,则r =( )A.V S 1+S 2+S 3+S 4B.2VS 1+S 2+S 3+S 4C.3V S 1+S 2+S 3+S 4D.4VS 1+S 2+S 3+S 42.C [解析] 由类比推理可知,选项C 正确. 4.[2014·烟台一模] 对大于或等于2的正整数的幂运算有如下分解方式: 22=1+3,32=1+3+5,42=1+3+5+7,…; 23=3+5,33=7+9+11,43=13+15+17+19,….根据上述分解规律,若m 2=1+3+5+…+11,p 3的分解中最小的正整数是21,则m +p =( )A .9B .10C .11D .124.C [解析] 由归纳推理可知,m =6,p =5,∴m +p =11.6.[2014·衡水中学调研] 已知椭圆中有如下结论:椭圆x 2a 2+y 2b2=1(a >b >0)上斜率为1的弦的中点在直线x a 2+y b 2=0上.类比上述结论可推得:双曲线x 2a 2-y 2b2=1(a >0,b >0)上斜率为1的弦的中点在直线________________________________________________上.6.x a 2-yb 2=0 [解析] 由类比推理可得.7.[2013·湖南两校联考] 在平面几何里有射影定理:设△ABC 的两边AB ⊥AC ,点D 是点A 在BC 边上的射影,则AB 2=BD ·BC .拓展到空间,在四面体A -BCD 中,DA ⊥平面ABC ,点O 是点A 在平面BCD 内的射影,且点O 在平面BCD 内,类比平面三角形射影定理,△ABC ,△BOC ,△BDC 三者面积之间的关系为________.7.S 2△ABC =S △BOC ·S △BDC [解析] 如图所示,依题意作出四面体A-BCD.连接DO ,并延长交BC 于点E ,连接AO ,AE ,则易知AO ⊥DE ,BC ⊥AO.由DA ⊥平面ABC ,得DA ⊥BC ,又DA ∩AO =A ,所以BC ⊥平面AED ,所以DE ⊥BC ,AE ⊥BC.又易知△AED 为直角三角形,其中∠DAE =90°,AO 为斜边ED 上的高,所以由射影定理得AE 2=EO ·ED.又S △ABC =12BC ·AE ,S △BOC =12BC ·EO ,S △BDC =12BC·DE ,所以AE =2S △ABC BC ,EO =2S △BOC BC ,DE =2S △BDC BC.由AE 2=EO·ED ,得S 2△ABC =S △BOC ·S △11.[2014·山东日照一中月考] 二维空间中圆的一维测度(周长)l =2πr ,二维测度(面积)S=πr 2,则S ′=l ;三维空间中球的二维测度(表面积)S =4πr 2,三维测度(体积)V =43πr 3,则V ′=S .已知四维空间中“超球”的三维测度V =8πr 3,猜想其四维测度W =________.11.2πr 4 [解析] 因为(2πr 4)′=8πr 3,所以猜想W =2πr 4.。
11.证明:(Ⅰ)当1n =时,211=左边=,01(11)(1)12⨯+-⨯=右边=, 左边=右边,等式成立.(Ⅱ)假设*()n k k =∈N 时,等式成立 即22221212(1)1234...(1)(1)(1)(1)2k k k k k k k --+-+-++-=-+-+. 则当1n k =+时,222212212(1)1234...(1)(1)(1)(1)(1)(1)2k k k k k k k k k --+-+-++-+-+=-+-+ 2(1)[(1)1]()(1)[(1)](1)22kk k k k k k +++=-++-=- ∴当1n k =+时,等式也成立根据(Ⅰ)、(Ⅱ)可知,对于任何*n ∈N 等式均成立.12.解:(Ⅰ)当1n =时,12S =即12a =,当2n ≥时,12n n n a S S n -=-=,又1221a ==⨯,∴2n a n =由21log 02n n b a +=得1()2n n b =(Ⅱ)11()2n n n n c a b n -==01221111111()2()3()...(1)()()22222n n n T n n --=⨯+⨯+⨯++-⨯+⨯(1)121111111()2()...(1)()()22222n n n T n n -=⨯+⨯++-⨯+⨯(2)(1)(2)-得12111()11111121()()...()()()122222212nn n n n T n n --=++++-⨯=-⨯- ∴114()(2)2n n T n -=-+.13.解:(Ⅰ)当12a =时,有不等式23()102f x x x =-+≤,∴1()(2)02x x --≤,∴不等式的解集为:1{|2}2x x ≤≤;(Ⅱ)∵1(1)(1)a a a a a+--=且0a >∴当01a <<时,有1a a >;当1a >时,有1a a <;当1=a 时,1a a=;(Ⅲ)∵不等式1()()()0f x x x a a=--≤当01a <<时,有1a a >,∴不等式的解集为1{|}x a x a ≤≤;当1>a 时,有1a a <,∴不等式的解集为1{|}x x a a≤≤;当1a =时,不等式的解集为{1}x ∈.福建省2016届高考数学(理科)-专题练习 数列、不等式、算法初步及推理与证明解 析一、选择题.1.【解析】由等差数列的性质可得4681012240a a a a a ++++=,解得848a =,设等差数列{}n a 的公差为d ,()911888112332333a a a d a d a -=+-+==,故选C .2.【解析】因为21102,4,n n a a a n +=-=所以214a a -=,解得198a =,由累加方法求得数列22298n a n n =-+,所以222989822226n a n n n n n n -+==+-≥=,而982n n =解得249n =,当n=7时,na n 由最小值263.【解析】∵4a 与14a 的等比中项为,∴8=,∴711288a a a +≥=,∴7112a a +的最小值为8.4.【解析】依题约束条件表示的平面区域如下图目标函数22x y +表示可行域内任一点(),A x y 到原点O 距离的平方,由图可知当OA 垂直于直线l :30x y +-=时,目标函数有最小值,又点O 与直线l=,所以目标函数的最小值为92,故选(B )OxyA11 -133 l5.【解析】由题可知,第一步,359,11≠==S k S ,,进入循环,第二步,358,20≠==S k S ,,进入循环,第三步,357,28≠==S k S ,,进入循环,第四步,356,35===S k S ,,循环结束,综上分析可得,判断框中应填入6>k ; 6.因为)2(log 1+=+n a n n ,所以()()()1232lg 2lg 3lg 4lg 5....log 2lg 2lg 3lg 4lg 1k k a a a a k k +==++,又因为123..k a a a a 为整数,所以k+2必须是2的n 次幂,即22nk =-,又[]1,2011k ∈,所以1222011n≤-≤,所以解得210n ≤≤,则在区间[]2011,1内所有的“期盼数”的和为:()()()()21123410222222222229202612--+-+-+-=-⨯=- ,故选择D 二、填空题.7.【解析】由已知,111411,4(),2(1)(2)12n n n n a a a n n n n ++===-++++所以,数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和为1111111124[()()...()]4()233412222nn n n n -+-++-=-=++++. 8.【解析】因为(0,1)a b ∈、且,a b ≠根据基本不等式ab b a 222≥+,又ab ab >,有ab b a 222>+, 又因为22,b b a a >>,所以22b a b a +>+,所以a b +最大.9.【解析】由于m m y x x y 2822+>+恒成立,需m m y x x y 2822m i n+>⎪⎪⎭⎫ ⎝⎛+,由基本不等式得882282≥⋅≥+yxx y y x x y ,因此m m 282+>,∴24<<-m .10. 【解析】观察可知整数对的排列规律是:和为2的只有1个,和为3的有2个且从第一个数是1的开始排列,,和为4的有3个且从第一个数是1的开始排列,,,和为5的有4个且从第一个数是1的开始排列, ,,,……依此类推;由于9(19)129452⨯++++==,由此可知第50个数对是和为11的第5个数对(5,6);故答案为:.三、解答题.(1,2)(2,1)(1,3)(2,2)(3,1)(1,4)(2,3)(3,2)(4,1))6,5(11.【解析】由归纳推理不难写出第个等式.用数学归纳法证明:分两步进行,第一步验证时等式成立,第二步假设时,等式成立,证明当时等仍然成立即可.第个等式为:=()n n *∈N 1n =(*)n k k =∈N 1n k =+n 2222121234(1)n n --+-+⋅⋅⋅+-1(1)(123)n n --+++⋅⋅⋅+。
第十三单元 推理与证明M1 合情推理与演绎推理M2 直接证明与间接证明23.D5,M2[2016·上海卷] 若无穷数列{a n }满足:只要a p =a q (p ,q ∈N *),必有a p +1=a q +1,则称{a n }具有性质P .(1)若{a n }具有性质P ,且a 1=1,a 2=2,a 4=3,a 5=2,a 6+a 7+a 8=21,求a 3;(2)若无穷数列{b n }是等差数列,无穷数列{c n }是公比为正数的等比数列,b 1=c 5=1,b 5=c 1=81,a n =b n +c n ,判断{a n }是否具有性质P ,并说明理由;(3)设{b n }是无穷数列,已知a n +1=b n +sin a n (n ∈N *),求证:“对任意a 1,{a n }都具有性质P ”的充要条件为“{b n }是常数列”.23.解:(1)因为a 5=a 2,所以a 6=a 3,a 7=a 4=3,a 8=a 5=2,于是a 6+a 7+a 8=a 3+3+2.又因为a 6+a 7+a 8=21,所以a 3=16.(2){b n }的公差为20,{c n }的公比为13, 所以b n =1+20(n -1)=20n -19,c n =81·(13)n -1=35-n , a n =b n +c n =20n -19+35-n . a 1=a 5=82,但a 2=48,a 6=3043,a 2≠a 6, 所以{a n }不具有性质P .(3)证明:充分性:当{b n }为常数列时,a n +1=b 1+sin a n .对任意给定的a 1,若a p =a q ,则b 1+sin a p =b 1+sin a q ,即a p +1=a q +1,充分性得证.必要性:用反证法证明.假设{b n }不是常数列,则存在k ∈N *,使得b 1=b 2=…=b k =b ,而b k +1≠b . 下面证明存在满足a n +1=b n +sin a n 的{a n },使得a 1=a 2=…=a k +1,但a k +2≠a k +1.设f (x )=x -sin x -b ,取m ∈N *,使得m π>|b |,则f (m π)=m π-b >0,f (-m π)=-m π-b <0,故存在c 使得f (c )=0.取a 1=c ,因为a n +1=b +sin a n (1≤n ≤k ),所以a 2=b +sin c =c =a 1,依此类推,得a 1=a 2=…=a k +1=c .但a k +2=b k +1+sin a k +1=b k +1+sin c ≠b +sin c ,即a k +2≠a k +1.所以{a n }不具有性质P ,矛盾.必要性得证.综上,“对任意a 1,{a n }都具有性质P ”的充要条件为“{b n }是常数列”.。
命题猜想四 算法、推理证明、排列、组合与二项式定理【考向解读】1.高考中主要利用计数原理求解排列数、涂色、抽样问题,以小题形式考查;2.二项式定理主要考查通项公式、二项式系数等知识,近几年也与函数、不等式、数列交汇,值得关注.2.直接证明和间接证明的考查主要作为证明和推理数学命题的方法,常与函数、数列及不等式等综合命题.3.以选择题、填空题的形式考查古典概型、几何概型及相互独立事件的概率;4.二项分布、正态分布的应用是考查的热点;5.以选择题、填空题的形式考查随机抽样、样本的数字特征、统计图表、回归方程、独立性检验等.6.在概率与统计的交汇处命题,以解答题中档难度出现.【命题热点突破一】程序框图(1)(2015·全国卷Ⅰ)执行图 所示的程序框图,如果输入的t =0.01,则输出的n =( )A .5B .6C .7D .8(2)执行如图 所示的程序框图,其输出结果是( )A .-54 B.12 C.54 D .-12【感悟提升】程序框图中单纯的顺序结构非常简单,一般不出现在高考中,在高考中主要出现的是以“条件结构”和“循环结构”为主的程序框图.以“条件结构”为主的程序框图主要解决分段函数求值问题,以“循环结构”为主的程序框图主要解决数列求和、统计求和、数值求积等运算问题,这两种类型的程序框图中,关键因素之一就是“判断条件”,在解题中要切实注意判断条件的应用.【变式探究】某程序框图如图所示,若该程序运行后输出的S的值为72,则判断框内填入的条件可以是()A.n≤8? B.n≤9? C.n≤10? D.n≤11?【命题热点突破二】合情推理与演绎推理例2、(1)(2015·山东卷)观察下列各式:C01=40;C03+C13=41;C05+C15+C25=42;C07+C17+C27+C37=43;……照此规律,当n∈N*时,=________.C02n-1+C12n-1+C22n-1+…+C n-12n-1(2)我们把平面内与直线垂直的非零向量称为直线的法向量,在平面直角坐标系中,利用求动点轨迹方程的方法可以求出过点A(-2,3),且法向量为n =(-1,2)的直线方程为(-1)×(x +2)+2×(y -3)=0,化简得x -2y +8=0.类比上述方法,在空间直角坐标系中,经过点A(1,2,3),且法向量为n =(-1,2,-3)的平面的方程为________.【感悟提升】由特殊结论得出一般结论的推理是归纳推理,归纳出的一般性结论要包含已知的特殊结论;根据已有结论推断相似对象具有相应结论的推理就是类比推理.归纳和类比得出的结论未必正确,其正确性需要通过演绎推理进行证明.合情推理和演绎推理在解决数学问题中是相辅相成的.【变式探究】已知cos π3=12,cos π5cos 2π5=14,cos π7cos 2π7·cos 3π7=18,……根据以上等式,可猜想的一般结论是________________.【命题热点突破三】排列与组合例3、四名大学生到三家企业应聘,每名大学生至多被一家企业录用,则每家企业至少录用一名大学生的情况有( )A .24种B .36种C .48种D .60种【感悟提升】解决排列组合问题的基本方法有直接法和间接法.直接法就是采用分类、分步的方法逐次求解,间接法是从问题的对立面求解.不论是直接法还是间接法,都要遵循“特殊元素、特殊位置优先考虑”的原则.注意几种典型的排列组合问题:相邻问题(捆绑法)、不相邻问题(插空法)、定序问题(组合法)、分组分配问题(先分组后分配)等.【变式探究】已知直线x a +y b =1(a ,b 是非零常数)与圆x 2+y 2=100有公共点,且公共点的横坐标和纵坐标均为整数,那么这样的直线有________条.【命题热点突破四】二项式定理例4、(1)(2015·天津卷)在⎝⎛⎭⎫x -14x 6的展开式中,x 2的系数为________. (2)若⎝⎛⎭⎫x 2-1x n 的展开式的二项式系数之和为64,则其常数项为( ) A .-20 B .-15 C .15 D .20【感悟提升】(1)二项式定理中最关键的是通项公式,求展开式中特定的项或者特定项的系数均是利用通项公式和方程思想解决的.(2) 二项展开式的系数之和通常是通过对二项式及其展开式中的变量赋值得出的,注意根据展开式的形式给变量赋值.【变式探究】(2015·全国卷Ⅱ)(a+x)(1+x)4的展开式中x的奇数次幂项的系数之和为32,则a=________.【高考真题解读】1.(2015·重庆,7)执行如图所示的程序框图,输出的结果为()A.(-2,2) B.(-4,0)C.(-4,-4) D.(0,-8)2.(2015·福建,6)阅读如图所示的程序框图,运行相应的程序,则输出的结果为()A.2 B.1 C.0 D.-13.(2015·北京,3)执行如图所示的程序框图,若输出k的值为8,则判断框内可填入的条件是()A .s ≤34B .s ≤56C .s ≤1112D .s ≤25244.(2015·新课标全国Ⅱ,8)下边程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入的a ,b 分别为14,18,则输出的a =( )A .0B .2C .4D .145.(2015·山东,13)执行如图所示的程序框图,输出的T 的值为________.6.(2015·广东,12)某高三毕业班有40人,同学之间两两彼此给对方仅写一条毕业留言,那么全班共写了________条毕业留言(用数字作答).7.(2015·北京,9)在(2+x )5的展开式中,x 3的系数为________(用数字作答).8.(2015·天津,12)在⎝⎛⎭⎫x -14x 6的展开式中,x 2的系数为________. 9.(2015·四川,6)用数字0,1,2,3,4,5组成没有重复数字的五位数,其中比40 000大的偶数共有()A.144个B.120个C.96个D.72个10. (2015·陕西,4)二项式(x+1)n(n∈N+)的展开式中x2的系数为15,则n=()A.4 B.5 C.6 D.7。
12.2推理与证明考点一合情推理与演绎推理1.(2017课标Ⅱ理,7,5分)甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则()A.乙可以知道四人的成绩B.丁可以知道四人的成绩C.乙、丁可以知道对方的成绩D.乙、丁可以知道自己的成绩答案D本题主要考查逻辑推理能力.由题意可知,“甲看乙、丙的成绩,不知道自己的成绩”说明乙、丙两人是一个优秀一个良好,则乙看了丙的成绩,可以知道自己的成绩;丁看了甲的成绩,也可以知道自己的成绩.故选D.2.(2014北京理,8,5分)学生的语文、数学成绩均被评定为三个等级,依次为“优秀”“合格”“不合格”.若学生甲的语文、数学成绩都不低于学生乙,且其中至少有一门成绩高于乙,则称“学生甲比学生乙成绩好”.如果一组学生中没有哪位学生比另一位学生成绩好,并且不存在语文成绩相同、数学成绩也相同的两位学生,那么这组学生最多有()A.2人B.3人C.4人D.5人答案B设学生人数为n,因为成绩评定只有“优秀”“合格”“不合格”三种情况,所以当n≥4时,语文成绩至少有两人相同,若此两人数学成绩也相同,与“任意两人成绩不全相同”矛盾;若此两人数学成绩不同,则此两人有一人比另一人成绩好,也不满足条件.因此:n<4,即n≤3.当n=3时,评定结果分别为“优秀,不合格”“合格,合格”“不合格,优秀”,符合题意,故n=3,选B.3.(2012江西理,6,5分)观察下列各式:a+b=1,a2+b2=3,a3+b3=4,a4+b4=7,a5+b5=11,……,则a10+b10=()A.28B.76C.123D.199答案C解法一:由a+b=1,a2+b2=3得ab=-1,代入后三个等式中符合,则a10+b10=(a5+b5)2-2a5b5=123,故选C. 解法二:令a n=a n+b n,则a1=1,a2=3,a3=4,a4=7,……得a n+2=a n+a n+1,从而a6=18,a7=29,a8=47,a9=76,a10=123,故选C.评析本题考查了合情推理和递推数列,考查了推理论证和运算求解能力.4.(2016北京,8,5分)袋中装有偶数个球,其中红球、黑球各占一半.甲、乙、丙是三个空盒.每次从袋中任意取出两个球,将其中一个球放入甲盒,如果这个球是红球,就将另一个球放入乙盒,否则就放入丙盒.重复上述过程,直到袋中所有球都被放入盒中,则( ) A.乙盒中黑球不多于丙盒中黑球 B.乙盒中红球与丙盒中黑球一样多 C.乙盒中红球不多于丙盒中红球 D.乙盒中黑球与丙盒中红球一样多答案 B 解法一:假设袋中只有一红一黑两个球,第一次取出后,若将红球放入了甲盒,则乙盒中有一个黑球,丙盒中无球,A 错误;若将黑球放入了甲盒,则乙盒中无球,丙盒中有一个红球,D 错误;同样,假设袋中有两个红球和两个黑球,第一次取出两个红球,则乙盒中有一个红球,第二次必然拿出两个黑球,则丙盒中有一个黑球,此时乙盒中红球多于丙盒中的红球,C 错误.故选B.解法二:设袋中共有2n 个球,最终放入甲盒中k 个红球,放入乙盒中s 个红球.依题意知,甲盒中有(n-k)个黑球,乙盒中共有k 个球,其中红球有s 个,黑球有(k-s)个,丙盒中共有(n-k)个球,其中红球有(n-k-s)个,黑球有(n-k)-(n-k-s)=s 个.所以乙盒中红球与丙盒中黑球一样多.故选B.5.(2017北京文,14,5分)某学习小组由学生和教师组成,人员构成同时满足以下三个条件: (i)男学生人数多于女学生人数; (ii)女学生人数多于教师人数; (iii)教师人数的两倍多于男学生人数.①若教师人数为4,则女学生人数的最大值为 ; ②该小组人数的最小值为 . 答案 ①6 ②12解析 设男学生人数为x,女学生人数为y,教师人数为z,由已知得{x >y,y >z,2z >x,且x,y,z 均为正整数.①当z=4时,8>x>y>4,∴x 的最大值为7,y 的最大值为6, 故女学生人数的最大值为6.②x>y>z>x 2,当x=3时,条件不成立,当x=4时,条件不成立,当x=5时,5>y>z>52,此时z=3,y=4. ∴该小组人数的最小值为12.6.(2016山东文,12,5分)观察下列等式: (sin π3)-2+(sin2π3)-2=43×1×2;(sin π5)-2+(sin 2π5)-2+(sin 3π5)-2+(sin 4π5)-2=43×2×3; (sin π7)-2+(sin2π7)-2+(sin 3π7)-2+…+(sin 6π7)-2=43×3×4; (sin π9)-2+(sin 2π9)-2+(sin 3π9)-2+…+(sin 8π9)-2=43×4×5;…… 照此规律,(sin π2n+1)-2+(sin 2π2n+1)-2+(sin 3π2n+1)-2+…+(sin 2nπ2n+1)-2= .答案4n(n+1)3解析 观察前4个等式,由归纳推理可知(sinπ2n+1)-2+(sin 2π2n+1)-2+…+(sin 2nπ2n+1)-2=43×n×(n+1)=4n(n+1)3. 评析 本题主要考查了归纳推理,认真观察题中给出的4个等式即可得出结论.7.(2015福建理,15,4分)一个二元码是由0和1组成的数字串x 1x 2…x n (n ∈N *),其中x k (k=1,2,…,n)称为第k 位码元.二元码是通信中常用的码,但在通信过程中有时会发生码元错误(即码元由0变为1,或者由1变为0).已知某种二元码x 1x 2…x 7的码元满足如下校验方程组:{x 4⊕x 5⊕x 6⊕x 7=0,x 2⊕x 3⊕x 6⊕x 7=0,x 1⊕x 3⊕x 5⊕x 7=0,其中运算⊕定义为:0⊕0=0,0⊕1=1,1⊕0=1,1⊕1=0.现已知一个这种二元码在通信过程中仅在第k 位发生码元错误后变成了1101101,那么利用上述校验方程组可判定k 等于 . 答案 5解析 设a,b,c,d ∈{0,1},在规定运算法则下满足:a ⊕b ⊕c ⊕d=0,可分为下列三类情形:①4个1:1⊕1⊕1⊕1=0,②2个1:1⊕1⊕0⊕0=0,③0个1:0⊕0⊕0⊕0=0,因此,错码1101101通过校验方程组可得: 由x 4⊕x 5⊕x 6⊕x 7=0,∴1⊕1⊕0⊕1≠0; 由x 2⊕x 3⊕x 6⊕x 7=0,∴1⊕0⊕0⊕1=0; 由x 1⊕x 3⊕x 5⊕x 7=0,∴1⊕0⊕1⊕1≠0, ∴错码可能出现在x 5,x 7上,若x 5=0,则检验方程组都成立,故k=5.若x 7=0,此时x 2⊕x 3⊕x 6⊕x 7≠0,故k ≠7. 综上分析,x 5为错码,故k=5.评析 本题主要考查推理,考查学生分析、解决问题的能力,属中等难度题. 8.(2015陕西文,16,5分)观察下列等式 1-12=121-12+13-14=13+14 1-12+13-14+15-16=14+15+16 ……据此规律,第n 个等式可为 . 答案 1-12+13-14+…+12n -1-12n =1n+1+1n+2+ (12)解析 规律为等式左边共有2n 项且等式左边分母分别为1,2,…,2n,分子为1,奇数项为正、偶数项为负,即为1-12+13-14+…+12n -1-12n ;等式右边共有n 项且分母分别为n+1,n+2,...,2n,分子为1,即为1n+1+1n+2+ (12).所以第n 个等式可为1-12+13-14+…+12n -1-12n =1n+1+1n+2+ (12). 9.(2014课标Ⅰ,理14,文14,5分)甲、乙、丙三位同学被问到是否去过A,B,C 三个城市时, 甲说:我去过的城市比乙多,但没去过B 城市; 乙说:我没去过C 城市; 丙说:我们三人去过同一城市.由此可判断乙去过的城市为 . 答案 A解析 由于甲、乙、丙三人去过同一城市,而甲没有去过B 城市,乙没有去过C 城市,因此三人去过的同一城市应为A,而甲去过的城市比乙多,但没去过B 城市,所以甲去过的城市数应为2,乙去过的城市应为A. 10.(2014陕西理,14,5分)观察分析下表中的数据:多面体 面数(F) 顶点数(V)棱数(E) 三棱柱 5 6 9 五棱锥 6 6 10 立方体6812猜想一般凸多面体中F,V,E 所满足的等式是 . 答案 F+V-E=2解析 观察表中数据,并计算F+V 分别为11,12,14,又其对应E 分别为9,10,12,容易观察并猜想F+V-E=2. 11.(2014北京文,14,5分)顾客请一位工艺师把A,B 两件玉石原料各制成一件工艺品.工艺师带一位徒弟完成这项任务.每件原料先由徒弟完成粗加工,再由工艺师进行精加工完成制作,两件工艺品都完成后交付顾客.两件原料每道工序所需时间(单位:工作日)如下:原料时间工序粗加工 精加工 原料A 9 15 原料B621则最短交货期为 个工作日. 答案 42解析 工序流程图如图所示:则最短交货期为6+21+15=42个工作日.12.(2014安徽文,12,5分)如图,在等腰直角三角形ABC 中,斜边BC=2√2.过点A 作BC 的垂线,垂足为A 1;过点A 1作AC 的垂线,垂足为A 2;过点A 2作A 1C 的垂线,垂足为A 3;…,依此类推.设BA=a 1,AA 1=a 2,A 1A 2=a 3,…,A 5A 6=a 7,则a 7= .答案14解析 由BC=2√2得AB=a 1=2⇒AA 1=a 2=√2⇒A 1A 2=a 3=√2×√22=1,由此可归纳出{a n }是以a 1=2为首项,√22为公比的等比数列,因此a 7=a 1×q 6=2×(√22)6=14.13.(2013安徽理,14,5分)如图,互不相同的点A 1,A 2,…,A n ,…和B 1,B 2,…,B n ,…分别在角O 的两条边上,所有A n B n 相互平行,且所有梯形A n B n B n+1A n+1的面积均相等.设OA n =a n .若a 1=1,a 2=2,则数列{a n }的通项公式是 .答案 a n =√3n -2解析 记△OA 1B 1的面积为S,则△OA 2B 2的面积为4S. 从而四边形A n B n B n+1A n+1的面积均为3S. 即得△OA n B n 的面积为S+3(n-1)S=(3n-2)S.∴a n 2=3n-2,即a n =√3n -2.评析 △OA n B n 的面积构成一个等差数列,而△OA n B n 与△OA 1B 1的面积比为a n 2,从而得到{a n}的通项公式.本题综合考查了平面几何、数列的知识.考点二 直接证明与间接证明1.(2014山东理,4,5分)用反证法证明命题“设a,b 为实数,则方程x 3+ax+b=0至少有一个实根”时,要做的假设是( )A.方程x 3+ax+b=0没有实根 B.方程x 3+ax+b=0至多有一个实根 C.方程x 3+ax+b=0至多有两个实根 D.方程x 3+ax+b=0恰好有两个实根答案 A 因为“方程x 3+ax+b=0至少有一个实根”等价于“方程x 3+ax+b=0的实根的个数大于或等于1”,因此,要做的假设是方程x 3+ax+b=0没有实根.2.(2015北京理,20,13分)已知数列{a n }满足:a 1∈N *,a 1≤36,且a n+1={2a n ,a n ≤18,2a n -36,a n >18(n=1,2,…).记集合M={a n |n ∈N *}.(1)若a 1=6,写出集合M 的所有元素;(2)若集合M 存在一个元素是3的倍数,证明:M 的所有元素都是3的倍数; (3)求集合M 的元素个数的最大值. 解析 (1)6,12,24.(2)证明:因为集合M 存在一个元素是3的倍数,所以不妨设a k 是3的倍数. 由a n+1={2a n ,a n ≤18,2a n -36,a n >18可归纳证明对任意n ≥k,a n 是3的倍数.如果k=1,则M 的所有元素都是3的倍数.如果k>1,因为a k =2a k-1或a k =2a k-1-36, 所以2a k-1是3的倍数,于是a k-1是3的倍数. 类似可得,a k-2,…,a 1都是3的倍数.从而对任意n ≥1,a n 是3的倍数,因此M 的所有元素都是3的倍数. 综上,若集合M 存在一个元素是3的倍数,则M 的所有元素都是3的倍数. (3)由a 1≤36,a n ={2a n -1,a n -1≤18,2a n -1-36,a n -1>18可归纳证明a n ≤36(n=2,3,…).因为a 1是正整数,a 2={2a 1,a 1≤18,2a 1-36,a 1>18,所以a 2是2的倍数,从而当n ≥3时,a n 是4的倍数.如果a 1是3的倍数,由(2)知对所有正整数n,a n 是3的倍数, 因此当n ≥3时,a n ∈{12,24,36}, 这时M 的元素个数不超过5.如果a 1不是3的倍数,由(2)知对所有正整数n,a n 不是3的倍数, 因此当n ≥3时,a n ∈{4,8,16,20,28,32}, 这时M 的元素个数不超过8.当a 1=1时,M={1,2,4,8,16,20,28,32}有8个元素. 综上可知,集合M 的元素个数的最大值为8.考点三 数学归纳法1.(2017浙江,22,15分)已知数列{x n }满足:x 1=1,x n =x n+1+ln(1+x n+1)(n ∈N *). 证明:当n ∈N *时,(1)0<x n+1<x n ; (2)2x n+1-x n ≤x n x n+12; (3)12n -1≤x n ≤12n -2.证明 本题主要考查数列的概念、递推关系与单调性基础知识,不等式及其应用,同时考查推理论证能力、分析问题和解决问题的能力. (1)用数学归纳法证明:x n >0. 当n=1时,x 1=1>0.假设n=k 时,x k >0,那么n=k+1时,若x k+1≤0,则0<x k =x k+1+ln(1+x k+1)≤0,矛盾,故x k+1>0. 因此x n >0(n ∈N *).所以x n =x n+1+ln(1+x n+1)>x n+1.因此0<x n+1<x n (n ∈N *).(2)由x n =x n+1+ln(1+x n+1)得,x n x n+1-4x n+1+2x n =x n+12-2x n+1+(x n+1+2)ln(1+x n+1).记函数f(x)=x 2-2x+(x+2)ln(1+x)(x ≥0),f '(x)=2x 2+xx+1+ln(1+x)>0(x>0). 函数f(x)在[0,+∞)上单调递增,所以f(x)≥f(0)=0,因此x n+12-2x n+1+(x n+1+2)ln(1+x n+1)=f(x n+1)≥0,故2x n+1-x n ≤x n x n+12(n ∈N *). (3)因为x n =x n+1+ln(1+x n+1)≤x n+1+x n+1=2x n+1,所以x n ≥12n -1.由x n x n+12≥2x n+1-x n 得1x n+1-12≥2(1x n -12)>0, 所以1x n -12≥2(1x n -1-12)≥…≥2n-1(1x 1-12)=2n-2, 故x n ≤12n -2.综上,12n -1≤x n ≤12n -2(n ∈N*).方法总结 1.证明数列单调性的方法.①差比法:作差a n+1-a n ,然后分解因式,判断符号,或构造函数,利用导数求函数的值域,从而判断其符号. ②商比法:作商a n+1a n ,判断an+1a n与1的大小,同时注意a n 的正负. ③数学归纳法.④反证法:例如求证:n ∈N *,a n+1<a n ,可反设存在k ∈N *,有a k+1≥a k ,从而导出矛盾. 2.证明数列的有界性的方法.①构造法:构造函数,求函数的值域,得数列有界. ②反证法. ③数学归纳法. 3.数列放缩的方法.①裂项法:利用不等式性质,把数列的第k 项分裂成某数列的相邻两项差的形式,再求和,达到放缩的目的. ②累加法:先把a n+1-a n 进行放缩.例:a n+1-a n ≤q n,则有n ≥2时,a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n-1)≤a 1+q+q 2+…+q n-1.③累乘法:先把a n+1a n 进行放缩.例:an+1a n≤q(q>0), 则有n ≥2时,a n =a 1·a2a 1·a 3a 2·…·a n a n -1≤a 1q n-1(其中a 1>0).④放缩为等比数列:利用不等式性质,把非等比数列{a n}放缩成等比数列{b n},求和后,再进行适当放缩.2.(2014重庆理,22,12分)设a1=1,a n+1=√a n2-2a n+2+b(n∈N*).(1)若b=1,求a2,a3及数列{a n}的通项公式;(2)若b=-1,问:是否存在实数c使得a2n<c<a2n+1对所有n∈N*成立?证明你的结论.解析(1)解法一:a2=2,a3=√2+1.由题设条件知(a n+1-1)2=(a n-1)2+1.从而{(a n-1)2}是首项为0,公差为1的等差数列,故(a n-1)2=n-1,即a n=√n-1+1(n∈N*).解法二:a2=2,a3=√2+1,可写为a1=√1-1+1,a2=√2-1+1,a3=√3-1+1.因此猜想a n=√n-1+1.下用数学归纳法证明上式:当n=1时结论显然成立.假设n=k时结论成立,即a k=√k-1+1,则a k+1=√(a k-1)2+1+1=√(k-1)+1+1=√(k+1)-1+1.这就是说,当n=k+1时结论成立.所以a n=√n-1+1(n∈N*).(2)解法一:设f(x)=√(x-1)2+1-1,则a n+1=f(a n).令c=f(c),即c=√(c-1)2+1-1,解得c=14.下用数学归纳法证明加强命题a2n<c<a2n+1<1.当n=1时,a2=f(1)=0,a3=f(0)=√2-1,所以a2<14<a3<1,结论成立.假设n=k时结论成立,即a2k<c<a2k+1<1.易知f(x)在(-∞,1]上为减函数,从而c=f(c)>f(a2k+1)>f(1)=a2,即1>c>a2k+2>a2.再由f(x)在(-∞,1]上为减函数得c=f(c)<f(a2k+2)<f(a2)=a3<1.故c<a2k+3<1,因此a2(k+1)<c<a2(k+1)+1<1.这就是说,当n=k+1时结论成立.综上,符合条件的c存在,其中一个值为c=14.解法二:设f(x)=√(x -1)2+1-1,则a n+1=f(a n ). 先证:0≤a n ≤1(n ∈N *).①当n=1时,结论明显成立. 假设n=k 时结论成立,即0≤a k ≤1. 易知f(x)在(-∞,1]上为减函数, 从而0=f(1)≤f(a k )≤f(0)=√2-1<1.即0≤a k+1≤1.这就是说,当n=k+1时结论成立.故①成立. 再证:a 2n <a 2n+1(n ∈N *).②当n=1时,a 2=f(1)=0,a 3=f(a 2)=f(0)=√2-1,有a 2<a 3,即n=1时②成立. 假设n=k 时,结论成立,即a 2k <a 2k+1. 由①及f(x)在(-∞,1]上为减函数,得 a 2k+1=f(a 2k )>f(a 2k+1)=a 2k+2, a 2(k+1)=f(a 2k+1)<f(a 2k+2)=a 2(k+1)+1.这就是说,当n=k+1时②成立.所以②对一切n ∈N *成立.由②得a 2n <√a 2n 2-2a 2n +2-1, 即(a 2n +1)2<a 2n 2-2a 2n +2,因此a 2n <14.③又由①、②及f(x)在(-∞,1]上为减函数得f(a 2n )>f(a 2n+1), 即a 2n+1>a 2n+2,所以a 2n+1>√a 2n+12-2a 2n+1+2-1,解得a 2n+1>14.④综上,由②、③、④知存在c=14使a 2n <c<a 2n+1对一切n ∈N *成立.评析 本题考查由递推公式求数列的通项公式,数学归纳法,等差数列等内容.用函数的观点解决数列问题是处理本题的关键.。
【4份】2016江苏高考数学(理科)大二轮总复习与增分策略专题四数列推理与证明目录专题四数列 (1)第1讲等差数列与等比数列 (1)二轮专题强化练 (6)专题四数列、推理与证明 (6)学生用书答案精析 (8)二轮专题强化练答案精析 (14)第2讲数列的求和问题 (18)二轮专题强化练 (24)学生用书答案精析 (27)二轮专题强化练答案精析 (32)第3讲数列的综合问题 (38)二轮专题强化练 (44)学生用书答案精析 (46)二轮专题强化练答案精析 (51)第4讲推理与证明 (56)二轮专题强化练 (62)学生用书答案精析 (65)二轮专题强化练答案精析 (71)专题四数列第1讲等差数列与等比数列1.(2015·课标全国Ⅰ改编)已知{a n}是公差为1的等差数列,S n为{a n}的前n项和,若S8=4S4,则a10=____________.2.(2015·安徽)已知数列{a n}是递增的等比数列,a1+a4=9,a2a3=8,则数列{a n}的前n项和等于________.3.(2014·广东)若等比数列{a n }的各项均为正数,且a 10a 11+a 9a 12=2e 5,则ln a 1+ln a 2+…+ln a 20=______.4.(2013·江西)某住宅小区计划植树不少于100棵,若第一天植2棵,以后每天植树的棵数是前一天的2倍,则需要的最少天数n (n ∈N *)等于________.1.等差、等比数列基本量和性质的考查是高考热点,经常以小题形式出现.2.数列求和及数列与函数、不等式的综合问题是高考考查的重点,考查分析问题、解决问题的综合能力.热点一 等差数列、等比数列的运算1.通项公式等差数列:a n =a 1+(n -1)d ;等比数列:a n =a 1·q n -1. 2.求和公式等差数列:S n =n (a 1+a n )2=na 1+n (n -1)2d ; 等比数列:S n =a 1(1-q n )1-q =a 1-a n q 1-q(q ≠1). 3.性质若m +n =p +q ,在等差数列中a m +a n =a p +a q ;在等比数列中a m ·a n =a p ·a q .例1 (1)设等差数列{a n }的前n 项和为S n .若a 1=-11,a 4+a 6=-6,则当S n 取最小值时,n =________.(2)已知等比数列{a n }公比为q ,其前n 项和为S n ,若S 3,S 9,S 6成等差数列,则q 3=________.思维升华 在进行等差(比)数列项与和的运算时,若条件和结论间的联系不明显,则均可化成关于a 1和d (q )的方程组求解,但要注意消元法及整体计算,以减少计算量. 跟踪演练1 (1)(2015·浙江)已知{a n }是等差数列,公差d 不为零.若a 2,a 3,a 7成等比数列,且2a 1+a 2=1,则a 1=________,d =________.(2)已知数列{a n }是各项均为正数的等比数列,a 1+a 2=1,a 3+a 4=2,则log 2a 2 011+a 2 012+a 2 013+a 2 0143=________. 热点二 等差数列、等比数列的判定与证明数列{a n }是等差数列或等比数列的证明方法(1)证明数列{a n }是等差数列的两种基本方法:①利用定义,证明a n +1-a n (n ∈N *)为一常数;②利用中项性质,即证明2a n =a n -1+a n +1(n ≥2).(2)证明{a n }是等比数列的两种基本方法:①利用定义,证明a n +1a n(n ∈N *)为一常数; ②利用等比中项,即证明a 2n =a n -1a n +1(n ≥2).例2 (2014·大纲全国)数列{a n }满足a 1=1,a 2=2,a n +2=2a n +1-a n +2.(1)设b n =a n +1-a n ,证明:{b n }是等差数列;(2)求{a n }的通项公式.思维升华 (1)判断一个数列是等差(比)数列,也可以利用通项公式及前n 项和公式,但不能作为证明方法.(2)a n +1a n=q 和a 2n =a n -1a n +1(n ≥2)都是数列{a n }为等比数列的必要不充分条件,判断时还要看各项是否为零.跟踪演练2 (1)(2015·南京模拟)已知数列{a n }的首项a 1=1,且满足a n +1=a n 4a n +1,则a n =__________________.(2)已知数列{a n }中,a 1=1,a n +1=2a n +3,则a n =________.热点三 等差数列、等比数列的综合问题解决等差数列、等比数列的综合问题,要从两个数列的特征入手,理清它们的关系;数列与不等式、函数、方程的交汇问题,可以结合数列的单调性、最值求解.例3 已知等差数列{a n }的公差为-1,且a 2+a 7+a 12=-6.(1)求数列{a n }的通项公式a n 与前n 项和S n ;(2)将数列{a n }的前4项抽去其中一项后,剩下三项按原来顺序恰为等比数列{b n }的前3项,记{b n }的前n 项和为T n ,若存在m ∈N *,使对任意n ∈N *,总有S n <T m +λ恒成立,求实数λ的取值范围.思维升华 (1)等差数列与等比数列交汇的问题,常用“基本量法”求解,但有时灵活地运用性质,可使运算简便.(2)数列的项或前n 项和可以看作关于n 的函数,然后利用函数的性质求解数列问题.(3)数列中的恒成立问题可以通过分离参数,通过求数列的值域求解.跟踪演练3 已知首项为32的等比数列{a n }不是..递减数列,其前n 项和为S n (n ∈N *),且S 3+a 3,S 5+a 5,S 4+a 4成等差数列.(1)求数列{a n }的通项公式;(2)设T n =S n -1S n(n ∈N *),求数列{T n }的最大项的值与最小项的值.1.设等差数列{a n }的前n 项和为S n ,且a 1>0,a 3+a 10>0,a 6a 7<0,则满足S n >0的最大自然数n 的值为________.2.已知等比数列{a n }中,a 4+a 6=10,则a 1a 7+2a 3a 7+a 3a 9=________.3.已知各项不为0的等差数列{a n }满足a 4-2a 27+3a 8=0,数列{b n }是等比数列,且b 7=a 7,则b 2b 12=________.4.已知各项都为正数的等比数列{a n }满足a 7=a 6+2a 5,存在两项a m ,a n 使得a m ·a n =4a 1,则1m +4m的最小值为________.提醒:完成作业 专题四 第1讲二轮专题强化练专题四 数列、推理与证明第1讲 等差数列与等比数列A 组 专题通关1.已知等差数列{a n }中,a 5=10,则a 2+a 4+a 5+a 9的值等于________.2.已知等差数列{a n }中,a 7+a 9=16,S 11=992,则a 12的值是________. 3.(2015·浙江改编)已知{a n }是等差数列,公差d 不为零,前n 项和是S n ,若a 3,a 4,a 8成等比数列,则________.①a 1d >0,dS 4>0;②a 1d <0,dS 4<0;③a 1d >0,dS 4<0;④a 1d <0,dS 4>0.4.设S n 为等差数列{a n }的前n 项和,(n +1)S n <nS n +1(n ∈N *).若a 8a 7<-1,则n =________时S n 最小.5.数列{a n }的首项为3,{b n }为等差数列且b n =a n +1-a n (n ∈N *),若b 3=-2,b 10=12,则a 8=________.6.若数列{n (n +4)(23)n }中的最大项是第k 项,则k =________. 7.(2015·课标全国Ⅱ)设S n 是数列{a n }的前n 项和,且a 1=-1,a n +1=S n S n +1,则S n =____________.8.已知数列{a n }的首项为a 1=2,且a n +1=12(a 1+a 2+…+a n ) (n ∈N *),记S n 为数列{a n }的前n 项和,则S n =________,a n =________.9.成等差数列的三个正数的和等于15,并且这三个数分别加上2、5、13后成为等比数列{b n }中的b 3、b 4、b 5.(1)求数列{b n }的通项公式;(2)数列{b n }的前n 项和为S n ,求证:数列{S n +54}是等比数列.10.(2015·广东)设数列{a n }的前n 项和为S n ,n ∈N *.已知a 1=1,a 2=32,a 3=54,且当n ≥2时,4S n +2+5S n =8S n +1+S n -1.(1)求a 4的值;(2)证明:⎩⎨⎧⎭⎬⎫a n +1-12a n 为等比数列; (3)求数列{a n }的通项公式.B 组 能力提高11.已知{a n }是等差数列,S n 为其前n 项和,若S 21=S 4 000,O 为坐标原点,点P (1,a n ),Q (2 011,a 2 011),则OP →·OQ →=________.12.(2015·福建改编)若a ,b 是函数f (x )=x 2-px +q (p >0,q >0)的两个不同的零点,且a ,b ,-2这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p +q 的值等于________.13.数列{a n }的前n 项和为S n ,已知a 1=15,且对任意正整数m ,n ,都有a m +n =a m ·a n ,若S n <t 恒成立,则实数t 的最小值为________.14.已知S n 是等比数列{a n }的前n 项和,S 4,S 2,S 3成等差数列,且a 2+a 3+a 4=-18.(1)求数列{a n }的通项公式;(2)是否存在正整数n ,使得S n ≥2 013?若存在,求出符合条件的所有n 的集合;若不存在,说明理由.学生用书答案精析专题四 数列、推理与证明第1讲 等差数列与等比数列高考真题体验1.192【详细分析】∵公差为1,∴S 8=8a 1+8×(8-1)2×1=8a 1+28, S 4=4a 1+6.∵S 8=4S 4,∴8a 1+28=4(4a 1+6),解得a 1=12, ∴a 10=a 1+9d =12+9=192. 2.2n -1【详细分析】由等比数列性质知a 2a 3=a 1a 4,又a 2a 3=8,a 1+a 4=9,所以联立方程⎩⎪⎨⎪⎧ a 1a 4=8,a 1+a 4=9,解得⎩⎪⎨⎪⎧ a 1=1,a 4=8或⎩⎪⎨⎪⎧ a 1=8,a 4=1,又数列{a n }为递增数列,∴a 1=1,a 4=8,从而a 1q 3=8,∴q =2.∴数列{a n }的前n 项和为S n =1-2n1-2=2n -1. 3.50【详细分析】因为a 10a 11+a 9a 12=2a 10a 11=2e 5, 所以a 10a 11=e 5.所以ln a 1+ln a 2+…+ln a 20=ln(a 1a 2…a 20)=ln[(a 1a 20)·(a 2a 19)·…·(a 10a 11)]=ln(a 10a 11)10=10ln(a 10a 11)=10ln e 5 =50ln e =50.4.6【详细分析】每天植树棵数构成等比数列{a n },其中a 1=2,q =2.则S n =a 1(1-q n )1-q=2(2n -1)≥100,即2n +1≥102. ∴n ≥6,∴最少天数n =6.热点分类突破例1 (1)6 (2)-12【详细分析】(1)设该数列的公差为d ,则a 4+a 6=2a 1+8d =2×(-11)+8d =-6, 解得d =2,所以S n =-11n +n (n -1)2×2=n 2-12n =(n -6)2-36,所以当S n 取最小值时,n =6.(2)若q =1,则3a 1+6a 1=2×9a 1, 得a 1=0,矛盾,故q ≠1.所以a 1(1-q 3)1-q +a 1(1-q 6)1-q=2a 1(1-q 9)1-q, 解得q 3=-12或1(舍). 跟踪演练1 (1)23-1 (2)1 005 【详细分析】(1)∵a 2,a 3,a 7成等比数列, ∴a 23=a 2a 7,即(a 1+2d )2=(a 1+d )(a 1+6d ),∴a 1=-23d , ∵2a 1+a 2=1,∴2a 1+a 1+d =1, 即3a 1+d =1,∴a 1=23,d =-1. (2)在等比数列中,(a 1+a 2)q 2=a 3+a 4, 即q 2=2,所以a 2 011+a 2 012+a 2 013+a 2 014=(a 1+a 2+a 3+a 4)q 2 010=3×21 005,所以log 2a 2 011+a 2 012+a 2 013+a 2 0143=1 005. 例2 (1)证明 由a n +2=2a n +1-a n +2得 a n +2-a n +1=a n +1-a n +2,即b n +1=b n +2.又b 1=a 2-a 1=1,所以{b n }是首项为1,公差为2的等差数列.(2)解 由(1)得b n =1+2(n -1)=2n -1, 即a n +1-a n =2n -1. ∴a n -a n -1=2n -3, a n -1-a n -2=2n -5, …… a 2-a 1=1,累加得a n +1-a 1=n 2,即a n +1=n 2+a 1. 又a 1=1,所以{a n }的通项公式为 a n =n 2-2n +2.跟踪演练2 (1)14n -3 (2)2n +1-3【详细分析】(1)由已知得1a n +1=1a n +4,∴1a n +1-1a n =4, 又1a 1=1, 故{1a n }是以1为首项,4为公差的等差数列, ∴1a n =1+4(n -1)=4n -3, 故a n =14n -3.(2)由已知可得a n +1+3=2(a n +3), 又a 1+3=4,故{a n +3}是以4为首项,2为公比的等比数列. ∴a n +3=4×2n -1,∴a n =2n +1-3.例3 解 (1)由a 2+a 7+a 12=-6 得a 7=-2,∴a 1=4, ∴a n =5-n ,从而S n =n (9-n )2.(2)由题意知b 1=4,b 2=2,b 3=1, 设等比数列{b n }的公比为q ,则q =b 2b 1=12,∴T m =4[1-(12)m ]1-12=8[1-(12)m ],∵(12)m 随m 增加而递减, ∴{T m }为递增数列,得4≤T m <8. 又S n =n (9-n )2=-12(n 2-9n )=-12[(n -92)2-814],故(S n )max =S 4=S 5=10,若存在m ∈N *,使对任意n ∈N *总有S n <T m +λ, 则10<4+λ,得λ>6.即实数λ的取值范围为(6,+∞). 跟踪演练3 解 (1)设等比数列{a n }的公比为q , 因为S 3+a 3,S 5+a 5,S 4+a 4成等差数列, 所以S 5+a 5-S 3-a 3=S 4+a 4-S 5-a 5,即4a 5=a 3, 于是q 2=a 5a 3=14.又{a n }不是递减数列且a 1=32,所以q =-12.故等比数列{a n }的通项公式为 a n =32×⎝⎛⎭⎫-12n -1=(-1)n -1·32n . (2)由(1)得S n=1-⎝⎛⎭⎫-12n=⎩⎨⎧1+12n,n 为奇数,1-12n,n 为偶数.当n 为奇数时,S n 随n 的增大而减小, 所以1<S n ≤S 1=32,故0<S n -1S n ≤S 1-1S 1=32-23=56.当n 为偶数时,S n 随n 的增大而增大,所以34=S 2≤S n <1,故0>S n -1S n ≥S 2-1S 2=34-43=-712.综上,对于n ∈N *,总有-712≤S n -1S n ≤56. 所以数列{T n }最大项的值为56,最小项的值为-712.高考押题精练 1.12【详细分析】∵a 1>0,a 6a 7<0,∴a 6>0,a 7<0,等差数列的公差小于零,又a 3+a 10=a 1+a 12>0,a 1+a 13=2a 7<0, ∴S 12>0,S 13<0,∴满足S n >0的最大自然数n 的值为12. 2.100【详细分析】因为a 1a 7=a 24,a 3a 9=a 26,a 3a 7=a 4a 6,所以a 1a 7+2a 3a 7+a 3a 9=(a 4+a 6)2=102=100. 3.4【详细分析】设等差数列{a n }的公差为d ,因为a 4-2a 27+3a 8=0,所以a 7-3d -2a 27+3(a 7+d )=0,即a 27=2a 7,解得a 7=0(舍去)或a 7=2,所以b 7=a 7=2.因为数列{b n }是等比数列,所以b 2b 12=b 27=4. 4.32【详细分析】由a 7=a 6+2a 5,得a 1q 6=a 1q 5+2a 1q 4,整理有q 2-q -2=0,解得q =2或q =-1(与条件中等比数列的各项都为正数矛盾,舍去),又由a m ·a n =4a 1,得a m a n =16a 21,即a 212m +n -2=16a 21,即有m +n -2=4,亦即m +n =6,那么1m +4n=16(m +n )(1m +4n ) =16(4m n +n m +5)≥16(24m n ·n m +5)=32, 当且仅当4m n =nm ,m +n =6,即n =2m =4时取得最小值32.二轮专题强化练答案精析专题四 数列、推理与证明第1讲 等差数列与等比数列1.40【详细分析】因为a 2+a 4=2a 3,a 5+a 9=2a 7, 所以a 2+a 4+a 5+a 9=2(a 3+a 7)=4a 5,而a 5=10, 所以a 2+a 4+a 5+a 9=4×10=40. 2.15【详细分析】因为a 8是a 7,a 9的等差中项,所以2a 8=a 7+a 9=16⇒a 8=8,再由等差数列前n 项和的计算公式可得S 11=11(a 1+a 11)2=11·2a 62=11a 6,又因为S 11=992,所以a 6=92,则d =a 8-a 62=74,所以a 12=a 8+4d =15.3.②【详细分析】∵a 3,a 4,a 8成等比数列,∴(a 1+3d )2=(a 1+2d )(a 1+7d ),整理得a 1=-53d ,∴a 1d =-53d 2<0,又S 4=4a 1+4×32d =-2d3,∴dS 4=-2d 23<0.4.7【详细分析】由(n +1)S n <nS n +1得(n +1)·n (a 1+a n )2<n ·(n +1)(a 1+a n +1)2,整理得a n <a n +1,所以等差数列{a n }是递增数列,又a 8a 7<-1,所以a 8>0,a 7<0,所以数列{a n }的前7项为负值,即S n 的最小值是S 7. 5.3【详细分析】∵{b n }为等差数列,设其公差为d , 由b 3=-2,b 10=12,∴7d =b 10-b 3=12-(-2)=14,∴d =2, ∵b 3=-2,∴b 1=b 3-2d =-2-4=-6,∴b 1+b 2+…+b 7=7b 1+7×62·d=7×(-6)+21×2=0,又b 1+b 2+…+b 7=(a 2-a 1)+(a 3-a 2)+…+(a 8-a 7)=a 8-a 1=a 8-3, ∵a 8-3=0,∴a 8=3. 6.4【详细分析】由题意得⎩⎨⎧k (k +4)(23)k ≥(k +1)(k +5)(23)k +1,k (k +4)(23)k≥(k -1)(k +3)(23)k -1,所以⎩⎪⎨⎪⎧k 2≥10,k 2-2k -9≤0,由k ∈N *可得k =4.7.-1n【详细分析】由题意,得S 1=a 1=-1,又由a n +1=S n S n +1,得S n +1-S n =S n S n +1,所以S n ≠0,所以S n +1-S n S n S n +1=1,即1S n +1-1S n =-1,故数列⎩⎨⎧⎭⎬⎫1S n 是以1S 1=-1为首项,-1为公差的等差数列,得1S n =-1-(n -1)=-n ,所以S n =-1n .8.2×⎝⎛⎭⎫32n -1 ⎩⎪⎨⎪⎧2 (n =1),⎝⎛⎭⎫32n -2 (n ≥2)【详细分析】由a n +1=12(a 1+a 2+…+a n ) (n ∈N *),可得a n +1=12S n ,所以S n +1-S n =12S n ,即S n +1=32S n ,由此可知数列{S n }是一个等比数列,其中首项S 1=a 1=2,公比为32,所以S n =2×⎝⎛⎭⎫32n -1,由此得a n =⎩⎪⎨⎪⎧2 (n =1),⎝⎛⎭⎫32n -2 (n ≥2).9.(1)解 设成等差数列的三个正数分别为a -d ,a ,a +d . 依题意,得a -d +a +a +d =15. 解得a =5.所以{b n }中的b 3,b 4,b 5依次为7-d,10,18+d . 依题意,有(7-d )(18+d )=100, 解得d =2或d =-13(舍去).故{b n }的第3项为5,公比为2. 由b 3=b 1·22,即5=b 1·22, 解得b 1=54.所以b n =b 1·q n -1=54·2n -1=5·2n -3,即数列{b n }的通项公式为b n =5·2n -3.(2)证明 由(1)得数列{b n }的前n 项和 S n =54(1-2n )1-2=5·2n -2-54,即S n +54=5·2n -2.所以S 1+54=52,S n +1+54S n +54=5·2n -15·2n -2=2.因此{S n +54}是以52为首项,2为公比的等比数列.10.(1)解 当n =2时,4S 4+5S 2=8S 3+S 1, 即4⎝⎛⎭⎫1+32+54+a 4+5⎝⎛⎭⎫1+32 =8⎝⎛⎭⎫1+32+54+1, 解得:a 4=78.(2)证明 因为4S n +2+5S n =8S n +1+S n -1(n ≥2),所以4S n +2-4S n +1+S n -S n -1=4S n +1-4S n (n ≥2),即4a n +2+a n =4a n +1(n ≥2),因为4a 3+a 1=4×54+1=6=4a 2,所以4a n +2+a n =4a n +1,因为a n +2-12a n +1a n +1-12a n=4a n +2-2a n +14a n +1-2a n=4a n +1-a n -2a n +14a n +1-2a n =2a n +1-a n 2(2a n +1-a n )=12,所以数列⎩⎨⎧⎭⎬⎫a n +1-12a n 是以a 2-12a 1=1为首项,公比为12的等比数列. (3)解 由(2)知,数列⎩⎨⎧⎭⎬⎫a n +1-12a n 是以a 2-12a 1=1为首项,公比为12的等比数列,所以a n +1-12a n =⎝⎛⎭⎫12n -1,即a n +1⎝⎛⎭⎫12n +1-a n ⎝⎛⎭⎫12n =4,所以数列⎩⎨⎧⎭⎬⎫a n ⎝⎛⎭⎫12n 是以a 112=2为首项,公差为4的等差数列, 所以a n⎝⎛⎭⎫12n =2+(n -1)×4=4n -2, 即a n =(4n -2)×⎝⎛⎭⎫12n=(2n -1)×⎝⎛⎭⎫12n -1, 所以数列{a n }的通项公式是a n =(2n -1)×⎝⎛⎭⎫12n -1. 11.2 011【详细分析】由S 21=S 4 000得a 22+a 23+…+a 4 000=0, 由于a 22+a 4 000=a 23+a 3 999=…=2a 2 011, 所以a 22+a 23+…+a 4 000=3 979a 2 011=0, 从而a 2 011=0,而OP →·OQ →=2 011+a 2 011a n =2 011. 12.9【详细分析】由题意知:a +b =p ,ab =q ,∵p >0,q >0,∴a >0,b >0.在a ,b ,-2这三个数的6种排序中,成等差数列的情况有a ,b ,-2;b ,a ,-2;-2,a ,b ;-2,b ,a ;成等比数列的情况有:a ,-2,b ;b ,-2,a .∴⎩⎪⎨⎪⎧ ab =4,2b =a -2或⎩⎪⎨⎪⎧ ab =4,2a =b -2解之得:⎩⎪⎨⎪⎧ a =4,b =1或⎩⎪⎨⎪⎧a =1,b =4.∴p =5,q =4,∴p +q =9. 13.14【详细分析】令m =1,可得a n +1=15a n ,所以{a n }是首项为15,公比为15的等比数列,所以S n=15[1-(15)n ]1-15=14[1-(15)n ]<14,故实数t 的最小值为14. 14.解 (1)设等比数列{a n }的公比为q , 则a 1≠0,q ≠0.由题意得⎩⎪⎨⎪⎧S 2-S 4=S 3-S 2,a 2+a 3+a 4=-18. 即⎩⎪⎨⎪⎧ -a 1q 2-a 1q 3=a 1q 2,a 1q (1+q +q 2)=-18,解得⎩⎪⎨⎪⎧a 1=3,q =-2.故数列{a n }的通项公式为a n =3×(-2)n -1.(2)由(1)有S n =3[1-(-2)n ]1-(-2)=1-(-2)n .假设存在n ,使得S n ≥2 013, 则1-(-2)n ≥2 013, 即(-2)n ≤-2 012.当n 为偶数时,(-2)n >0,上式不成立; 当n 为奇数时,(-2)n =-2n ≤-2 012, 即2n ≥2 012,得n ≥11.综上,存在符合条件的正整数n ,且所有这样的n 的集合为 {n |n =2k +1,k ∈N ,k ≥5}.第2讲 数列的求和问题1.(2015·福建)在等差数列{a n }中,a 2=4,a 4+a 7=15. (1)求数列{a n }的通项公式;(2)设b n =2a n -2+n ,求b 1+b 2+b 3+…+b 10的值.2.(2014·课标全国Ⅰ)已知{a n }是递增的等差数列,a 2,a 4是方程x 2-5x +6=0的根. (1)求{a n }的通项公式; (2)求数列{a n2n }的前n 项和.高考对数列求和的考查主要以解答题的形式出现,通过分组转化、错位相减、裂项相消等方法求一般数列的和,体现转化与化归的思想.热点一 分组转化求和有些数列,既不是等差数列,也不是等比数列,若将数列通项拆开或变形,可转化为几个等差、等比数列或常见的数列,即先分别求和,然后再合并.例1 等比数列{a n }中,a 1,a 2,a 3分别是下表第一、二、三行中的某一个数,且a 1,a 2,a 3中的任何两个数不在下表的同一列.(1)求数列{a n}的通项公式;(2)若数列{b n}满足:b n=a n+(-1)n ln a n,求数列{b n}的前n项和S n.思维升华在处理一般数列求和时,一定要注意使用转化思想.把一般的数列求和转化为等差数列或等比数列进行求和,在求和时要分析清楚哪些项构成等差数列,哪些项构成等比数列,清晰正确地求解.在利用分组求和法求和时,由于数列的各项是正负交替的,所以一般需要对项数n进行讨论,最后再验证是否可以合并为一个公式.跟踪演练1在等差数列{a n}中,a3+a4+a5=84,a9=73.(1)求数列{a n}的通项公式;(2)对任意m∈N*,将数列{a n}中落入区间(9m,92m)内的项的个数记为b m,求数列{b m}的前m 项和S m.热点二错位相减法求和错位相减法是在推导等比数列的前n项和公式时所用的方法,这种方法主要用于求数列{a n·b n}的前n项和,其中{a n},{b n}分别是等差数列和等比数列.例2(2015·苏州联考)已知数列{a n}的前n项和为S n,且有a1=2,3S n=5a n-a n-1+3S n-(n≥2).1(1)求数列{a n}的通项公式;(2)若b n=(2n-1)a n,求数列{b n}的前n项和T n.思维升华(1)错位相减法适用于求数列{a n·b n}的前n项和,其中{a n}为等差数列,{b n}为等比数列;(2)所谓“错位”,就是要找“同类项”相减.要注意的是相减后得到部分,求等比数列的和,此时一定要查清其项数.(3)为保证结果正确,可对得到的和取n=1,2进行验证.跟踪演练2设数列{a n}的前n项和为S n,已知a1=1,S n+1=2S n+n+1(n∈N*),(1)求数列{a n}的通项公式;(2)若b n=na n+1-a n,求数列{b n}的前n项和T n. 热点三裂项相消法求和裂项相消法是指把数列和式中的各项分别裂开后,某些项可以相互抵消从而求和的方法,主要适用于{1a n a n +1}或{1a n a n +2}(其中{a n }为等差数列)等形式的数列求和. 例3 (2015·盐城模拟)已知在数列{a n }中,a 1=1,当n ≥2时,其前n 项和S n 满足S 2n =a n (S n-12). (1)求S n 的表达式;(2)设b n =S n 2n +1,数列{b n }的前n 项和为T n ,证明T n <12.思维升华 (1)裂项相消法的基本思想就是把通项a n 分拆成a n =b n +k -b n (k ≥1,k ∈N *)的形式,从而达到在求和时某些项相消的目的,在解题时要善于根据这个基本思想变换数列{a n }的通项公式,使之符合裂项相消的条件.(2)常化的裂项公式①1n (n +k )=1k (1n -1n +k ); ②1(2n -1)(2n +1)=12(12n -1-12n +1); ③1n +n +k =1k(n +k -n ). 跟踪演练3 (1)已知数列{a n },a n =1n +1+n,其前n 项和S n =9,则n =________. (2)(2015·江苏)设数列{a n }满足a 1=1,且a n +1-a n =n +1(n ∈N *),则数列⎩⎨⎧⎭⎬⎫1a n 前10项的和为________.1.已知数列{a n }的通项公式为a n =n +22n n (n +1),其前n 项和为S n ,若存在实数M ,满足对任意的n ∈N *,都有S n <M 恒成立,则M 的最小值为________.2.已知数列{a n }的前n 项和S n 满足S n =a (S n -a n +1)(a 为常数,且a >0),且4a 3是a 1与2a 2的等差中项.(1)求{a n }的通项公式;(2)设b n =2n +1a n,求数列{b n }的前n 项和T n .提醒:完成作业 专题四 第2讲二轮专题强化练第2讲 数列的求和问题A 组 专题通关1.已知数列112,314,518,7116,…,则其前n 项和S n =________. 2.已知在数列{a n }中,a 1=-60,a n +1=a n +3,则|a 1|+|a 2|+|a 3|+…+|a 30|=________.3.在等差数列{a n }中,a 1=-2 012,其前n 项和为S n ,若S 2 0122 012-S 1010=2 002,则S 2 014=________.4.已知数列{a n }满足a 1=1,a 2=3,a n +1a n -1=a n (n ≥2),则数列{a n }的前40项和S 40=________.5.(2015·常州一模)122-1+132-1+142-1+…+1(n +1)2-1的值为________. 6.设f (x )=4x 4x +2,若S =f (12 015)+f (22 015)+…+f (2 0142 015),则S =________. 7.(2015·南通模拟)在数列{a n }中,a 1=1,a n +2+(-1)n a n =1,记S n 是数列{a n }的前n 项和,则S 60=________.8.设S n 为数列{a n }的前n 项和,若S 2n S n(n ∈N *)是非零常数,则称该数列为“和等比数列”;若数列{c n }是首项为2,公差为d (d ≠0)的等差数列,且数列{c n }是“和等比数列”,则d =________.9.(2014·北京)已知{a n }是等差数列,满足a 1=3, a 4=12,数列{b n }满足b 1=4,b 4=20,且{b n -a n }为等比数列.(1)求数列{a n }和{b n }的通项公式;(2)求数列{b n }的前n 项和.10.(2015·山东)设数列{a n }的前n 项和为S n .已知2S n =3n +3.(1)求数列{a n }的通项公式;(2)若数列{b n }满足a n b n =log 3a n ,求{b n }的前n 项和T n .B 组 能力提高11.数列{a n }满足a 1=2,a n =a n +1-1a n +1+1,其前n 项积为T n ,则T 2 016=________. 12.已知数列{a n }满足a n +1=12+a n -a 2n ,且a 1=12,则该数列的前 2 016项的和等于________.13.已知lg x +lg y =1,且S n =lg x n +lg(x n -1y )+lg(x n -2y 2)+…+lg y n ,则S n =________. 14.(2015·湖南)设数列{a n }的前n 项和为S n ,已知a 1=1,a 2=2,且a n +2=3S n -S n +1+3, n ∈N *.(1)证明:a n +2=3a n ;(2)求S n .学生用书答案精析第2讲 数列的求和问题高考真题体验1.解 (1)设等差数列{a n }的公差为d ,由已知得⎩⎪⎨⎪⎧ a 1+d =4,(a 1+3d )+(a 1+6d )=15, 解得⎩⎪⎨⎪⎧a 1=3,d =1. 所以a n =a 1+(n -1)d =n +2.(2)由(1)可得b n =2n +n ,所以b 1+b 2+b 3+…+b 10=(2+1)+(22+2)+(23+3)+…+(210+10) =(2+22+23+…+210)+(1+2+3+…+10) =2(1-210)1-2+(1+10)×102 =(211-2)+55=211+53=2 101.2.解 (1)方程x 2-5x +6=0的两根为2,3, 由题意得a 2=2,a 4=3.设数列{a n }的公差为d ,则a 4-a 2=2d ,故d =12,从而a 1=32.所以{a n }的通项公式为a n =12n +1. (2)设{a n 2n }的前n 项和为S n . 由(1)知a n 2n =n +22n +1,则 S n =322+423+…+n +12n +n +22n +1, 12S n =323+424+…+n +12n +1+n +22n +2. 两式相减得12S n =34+(123+…+12n +1)-n +22n +2 =34+14(1-12n -1)-n +22n +2. 所以S n =2-n +42n +1. 热点分类突破例1 解 (1)当a 1=3时,不合题意;当a 1=2时,当且仅当a 2=6,a 3=18时,符合题意; 当a 1=10时,不合题意.因此a 1=2,a 2=6,a 3=18,所以公比q =3.故a n =2·3n -1 (n ∈N *). (2)因为b n =a n +(-1)n ln a n=2·3n -1+(-1)n ln(2·3n -1) =2·3n -1+(-1)n [ln 2+(n -1)ln 3] =2·3n -1+(-1)n (ln 2-ln 3)+(-1)n n ln 3, 所以S n =2(1+3+…+3n -1)+[-1+1-1+…+(-1)n ]·(ln 2-ln 3)+[-1+2-3+… +(-1)n n ]ln 3.当n 为偶数时,S n =2×1-3n 1-3+n 2ln 3 =3n +n 2ln 3-1; 当n 为奇数时,S n =2×1-3n 1-3-(ln 2-ln 3)+⎝⎛⎭⎫n -12-n ln 3 =3n -n -12ln 3-ln 2-1. 综上所述,S n=⎩⎨⎧3n +n 2ln 3-1, n 为偶数,3n -n -12ln 3-ln 2-1, n 为奇数.跟踪演练1 解 (1)因为{a n }是一个等差数列, 所以a 3+a 4+a 5=3a 4=84,所以a 4=28.设数列{a n }的公差为d ,则5d =a 9-a 4=73-28=45,故d =9.由a 4=a 1+3d 得28=a 1+3×9,即a 1=1,所以a n =a 1+(n -1)d =1+9(n -1)=9n -8(n ∈N *).(2)对m ∈N *,若9m <a n <92m ,则9m +8<9n <92m +8,因此9m -1+1≤n ≤92m -1, 故得b m =92m -1-9m -1. 于是S m =b 1+b 2+b 3+…+b m=(9+93+…+92m -1)-(1+9+…+9m -1) =9×(1-81m )1-81-1-9m1-9=92m +1-10×9m +180. 例2 解 (1)3S n -3S n -1=5a n -a n -1(n ≥2),∴2a n =a n -1,a n a n -1=12, 又∵a 1=2,∴{a n }是以2为首项,12为公比的等比数列,∴a n =2×(12)n -1=(12)n -2=22-n . (2)b n =(2n -1)22-n , T n =1×21+3×20+5×2-1+… +(2n -1)·22-n , 12T n =1×20+3×2-1+…+(2n -3)·22-n +(2n -1)·21-n , ∴12T n =2+2(20+2-1+…+22-n )-(2n -1)·21-n =2+2[1-(2-1)n -1]1-2-1-(2n -1)21-n =6-(2n +3)×21-n , ∴T n =12-(2n +3)×22-n . 跟踪演练2 解 (1)∵S n +1=2S n +n +1,当n ≥2时,S n =2S n -1+n , ∴a n +1=2a n +1,∴a n +1+1=2(a n +1),即a n +1+1a n +1=2(n ≥2),① 又S 2=2S 1+2,a 1=S 1=1,∴a 2=3,∴a 2+1a 1+1=2,∴当n =1时,①式也成立,∴a n +1=2n , 即a n =2n -1(n ∈N *).(2)∵a n =2n -1,∴b n =n (2n +1-1)-(2n -1)=n 2n +1-2n =n 2n , ∴T n =12+222+323+…+n 2n , 12T n =122+223+…+n -12n +n 2n +1, ∴T n =2(12+122+123+…+12n -n 2n +1) =2-12n -1-n 2n =2-n +22n . 例3 (1)解 当n ≥2时,a n =S n -S n -1代入S 2n =a n (S n -12),得2S n S n -1+S n -S n -1=0,由于S n ≠0,所以1S n -1S n -1=2,所以{1S n}是首项为1,公差为2的等差数列, 从而1S n=1+(n -1)×2=2n -1, 所以S n =12n -1. (2)证明 因为b n =S n 2n +1=1(2n -1)(2n +1)=12(12n -1-12n +1), 所以T n =12[(1-13)+(13-15)+…+(12n -1-12n +1)] =12(1-12n +1)<12,所以T n <12. 跟踪演练3 (1)99 (2)2011【详细分析】(1)因为a n =1n +1+n=n +1-n , 所以S n =a 1+a 2+a 3+…+a n -1+a n=(2-1)+(3-2)+(4-3)+…+(n -n -1)+(n +1-n )=n +1-1.由n +1-1=9,解得n =99.(2)∵a 1=1,a n +1-a n =n +1,∴a 2-a 1=2,a 3-a 2=3,…,a n -a n -1=n ,将以上n -1个式子相加得a n -a 1=2+3+…+n =(2+n )(n -1)2,即a n =n (n +1)2, 令b n =1a n, 故b n =2n (n +1)=2⎣⎡⎦⎤1n -1n +1, 故S 10=b 1+b 2+…+b 10=2⎣⎡⎦⎤1-12+12-13+…+110-111 =2011. 高考押题精练1.1【详细分析】因为a n =n +22n n (n +1)=2(n +1)-n 2n n (n +1)=12n -1n -12n (n +1), 所以S n =(120×1-121×2)+(121×2-122×3)+…+[12n -1n -12n (n +1)]=1-12n (n +1), 由于1-12n (n +1)<1,所以M 的最小值为1.2.解 (1)当n =1时,S 1=a (S 1-a 1+1),所以a 1=a ,当n ≥2时,S n =a (S n -a n +1),①S n -1=a (S n -1-a n -1+1),②由①-②,得a n =a ×a n -1,即a n a n -1=a , 故{a n }是首项a 1=a ,公比等于a 的等比数列,所以a n =a ×a n -1=a n . 故a 2=a 2,a 3=a 3.由4a 3是a 1与2a 2的等差中项,可得8a 3=a 1+2a 2,即8a 3=a +2a 2,因为a ≠0,整理得8a 2-2a -1=0,即(2a -1)(4a +1)=0,解得a =12或a =-14(舍去), 故a n =(12)n =12n . (2)由(1),得b n =2n +1a n=(2n +1)×2n , 所以T n =3×2+5×22+7×23+…+(2n -1)×2n -1+(2n +1)×2n ,① 2T n =3×22+5×23+7×24+…+(2n -1)×2n +(2n +1)×2n +1,② 由①-②,得-T n =3×2+2(22+23+…+2n )-(2n +1)×2n +1 =6+2×22-2n +11-2-(2n +1)·2n +1 =-2+2n +2-(2n +1)·2n +1 =-2-(2n -1)·2n +1, 所以T n =2+(2n -1)·2n +1. 二轮专题强化练答案精析第2讲 数列的求和问题1.n 2+1-12n【详细分析】因为a n =2n -1+12n , 所以S n =n (1+2n -1)2+(1-12n )·121-12=n 2+1-12n . 2.765【详细分析】∵a n +1=a n +3,∴a n +1-a n =3.∴{a n }是以-60为首项,3为公差的等差数列.∴a n =-60+3(n -1)=3n -63.令a n ≤0,得n ≤21.∴前20项都为负值.∴|a 1|+|a 2|+|a 3|+…+|a 30|=-(a 1+a 2+…+a 20)+a 21+…+a 30=-2S 20+S 30.∵S n =a 1+a n 2n =-123+3n 2×n , ∴|a 1|+|a 2|+|a 3|+…+|a 30|=765.3.2 014【详细分析】等差数列中,S n =na 1+n (n -1)2d ,S n n =a 1+(n -1)d 2,即数列{S n n}是首项为a 1=-2 012,公差为d 2的等差数列;因为S 2 0122 012-S 1010=2 002,所以,(2 012-10)d 2=2 002,d 2=1,所以,S 2 014=2 014[(-2 012)+(2 014-1)×1]=2 014.4.60【详细分析】由a n +1=a n a n -1(n ≥2),a 1=1,a 2=3,可得a 3=3,a 4=1,a 5=13,a 6=13,a 7=1,a 8=3,…,这是一个周期为6的数列,一个周期内的6项之和为263, 又40=6×6+4,所以S 40=6×263+1+3+3+1=60.5.34-12(1n +1+1n +2) 【详细分析】∵1(n +1)2-1=1n 2+2n =1n (n +2)=12(1n -1n +2), ∴122-1+132-1+142-1+…+1(n +1)2-1=12(1-13+12-14+13-15+…+1n -1n +2) =12(32-1n +1-1n +2) =34-12(1n +1+1n +2). 6.1 007【详细分析】∵f (x )=4x4x +2, ∴f (1-x )=41-x 41-x +2=22+4x, ∴f (x )+f (1-x )=4x 4x +2+22+4x=1. S =f (12 015)+f (22 015)+…+f (2 0142 015),① S =f (2 0142 015)+f (2 0132 015)+…+f (12 015),② ①+②得,2S =[f (12 015)+f (2 0142 015)]+[f (22 015)+f (2 0132 015)]+…+[f (2 0142 015)+f (12 015)]=2 014, ∴S =2 0142=1 007. 7.480【详细分析】方法一 依题意得,当n 是奇数时,a n +2-a n =1,即数列{a n }中的奇数项依次形成首项为1、公差为1的等差数列,a 1+a 3+a 5+…+a 59=30×1+30×292×1=465; 当n 是偶数时,a n +2+a n =1,即数列{a n }中的相邻的两个偶数项之和均等于1,a 2+a 4+a 6+a 8+…+a 58+a 60=(a 2+a 4)+(a 6+a 8)+…+(a 58+a 60)=15.因此,该数列的前60项和S 60=465+15=480.方法二 ∵a n +2+(-1)n a n =1,∴a 3-a 1=1,a 5-a 3=1,a 7-a 5=1,…,且a 4+a 2=1,a 6+a 4=1,a 8+a 6=1,…,∴{a 2n -1}为等差数列,且a 2n -1=1+(n -1)×1=n ,即a 1=1,a 3=2,a 5=3,a 7=4,∴S 4=a 1+a 2+a 3+a 4=1+1+2=4,S 8-S 4=a 5+a 6+a 7+a 8=3+4+1=8,S 12-S 8=a 9+a 10+a 11+a 12=5+6+1=12,…,∴S 60=4×15+15×142×4=480. 8.2【详细分析】由题意可知,数列{c n }的前n 项和为S n =n (c 1+c n )2,前2n 项和为S 2n =2n (c 1+c 2n )2,所以S 2n S n =2n (c 1+c 2n )2n (c 1+c n )2=2+2nd 2+nd -d =2+21+2-d nd.因为数列{c n }是“和等比数列”,即S 2nS n为非零常数, 所以d =2.9.解 (1)设等差数列{a n }的公差为d ,由题意得d =a 4-a 13=12-33=3,所以a n =a 1+(n -1)d =3n (n =1,2,…).设等比数列{b n -a n }的公比为q ,由题意得q 3=b 4-a 4b 1-a 1=20-124-3=8,解得q =2.所以b n -a n =(b 1-a 1)q n -1=2n -1.从而b n =3n +2n -1(n =1,2,…).(2)由(1)知b n =3n +2n -1(n =1,2,…).数列{3n }的前n 项和为32n (n +1),数列{2n -1}的前n 项和为1-2n1-2=2n -1.所以,数列{b n }的前n 项和为32n (n +1)+2n -1.10.解 (1)因为2S n =3n +3,所以2a 1=3+3,故a 1=3,当n >1时,2S n -1=3n -1+3,此时2a n =2S n -2S n -1=3n -3n -1=2×3n -1,即a n =3n -1,所以a n =⎩⎪⎨⎪⎧ 3,n =1,3n -1,n >1.(2)因为a n b n =log 3a n ,所以b 1=13,当n >1时,b n =31-n log 33n -1=(n -1)·31-n . 所以T 1=b 1=13; 当n >1时,T n =b 1+b 2+b 3+…+b n =13+(1×3-1+2×3-2+…+(n -1)×31-n ), 所以3T n =1+(1×30+2×3-1+…+(n -1)×32-n ), 两式相减,得2T n =23+(30+3-1+3-2+…+32-n )-(n -1)×31-n =23+1-31-n 1-3-1-(n -1)×31-n =136-6n +32×3n, 所以T n =1312-6n +34×3n, 经检验,n =1时也适合.综上可得T n =1312-6n +34×3n. 11.1【详细分析】由a n =a n +1-1a n +1+1,得a n +1=1+a n 1-a n. ∵a 1=2,∴a 2=-3,a 3=-12,a 4=13,a 5=2,a 6=-3. 故数列{a n }具有周期性,周期为4,∵a 1a 2a 3a 4=1,∴T 2 016=T 4=1.12.1 512【详细分析】因为a 1=12, 又a n +1=12+a n -a 2n , 所以a 2=1,从而a 3=12,a 4=1, 即得a n =⎩⎪⎨⎪⎧12,n =2k -1(k ∈N *),1,n =2k (k ∈N *),故数列的前2 016项的和等于S 2 016=1 008×(1+12)=1 512.13.12n 2 【详细分析】因为lg x +lg y =1,所以lg(xy )=1.因为S n =lg x n +lg(x n -1y )+lg(x n -2y 2)+…+lg(xy n -1)+lg y n , 所以S n =lg y n +lg(xy n -1)+…+lg(x n -2y 2)+lg(x n -1y )+lg x n , 两式相加,得2S n =(lg x n +lg y n )+[lg(x n -1y )+lg(xy n -1)]+…+(lg y n +lg x n ) =lg(x n ·y n )+lg(x n -1y ·xy n -1)+…+lg(y n ·x n )=n [lg(xy )+lg(xy )+…+lg(xy )]=n 2lg(xy )=n 2, 所以S n =12n 2. 14.(1)证明 由条件,对任意n ∈N *,有a n +2=3S n -S n +1+3,因而对任意n ∈N *,n ≥2,有a n +1=3S n -1-S n +3.两式相减,得a n +2-a n +1=3a n -a n +1,即a n +2=3a n ,n ≥2.又a 1=1,a 2=2,所以a 3=3S 1-S 2+3=3a 1-(a 1+a 2)+3=3a 1,故对一切n ∈N *,a n +2=3a n .(2)解 由(1)知,a n ≠0,所以a n +2a n=3.于是数列{a 2n -1}是首项a 1=1,公比为3等比数列;数列{a 2n }是首项a 2=2,公比为3的等比数列.因此a 2n -1=3n -1,a 2n =2×3n -1. 于是S 2n =a 1+a 2+…+a 2n=(a 1+a 3+…+a 2n -1)+(a 2+a 4+…+a 2n )=(1+3+…+3n -1)+2(1+3+…+3n -1) =3(1+3+…+3n -1) =3(3n -1)2. 从而S 2n -1=S 2n -a 2n =3(3n -1)2-2×3n -1 =32(5×3n -2-1). 综上所述,S n =⎩⎪⎨⎪⎧ 32(5×332n --1),n 是奇数,32(32n-1),n 是偶数.第3讲 数列的综合问题1.(2015·湖南)已知a >0,函数f (x )=e ax sin x (x ∈[0,+∞)).记x n 为f (x )的从小到大的第n (n ∈N *)个极值点,证明:数列{f (x n )}是等比数列.2.(2014·课标全国Ⅱ)已知数列{a n }满足a 1=1,a n +1=3a n +1.(1)证明{a n +12}是等比数列,并求{a n }的通项公式;(2)证明1a 1+1a 2+…+1a n <32.1.数列的综合问题,往往将数列与函数、不等式结合,探求数列中的最值或证明不等式.2.以等差数列、等比数列为背景,利用函数观点探求参数的值或范围.3.将数列与实际应用问题相结合,考查数学建模和数学应用.热点一 利用S n ,a n 的关系式求a n1.数列{a n }中,a n 与S n 的关系:a n =⎩⎪⎨⎪⎧S 1 (n =1)S n -S n -1 (n ≥2). 2.求数列通项的常用方法(1)公式法:利用等差(比)数列求通项公式.(2)在已知数列{a n }中,满足a n +1-a n =f (n ),且f (1)+f (2)+…+f (n )可求,则可用累加法求数列的通项a n .(3)在已知数列{a n }中,满足a n +1a n=f (n ),且f (1)·f (2)·…·f (n )可求,则可用累积法求数列的通项a n .(4)将递推关系进行变换,转化为常见数列(等差、等比数列).例1 数列{a n }中,a 1=1,S n 为数列{a n }的前n 项和,且满足2a n a n S n -S 2n =1(n ≥2).求数列{a n }的通项公式.思维升华 给出S n 与a n 的递推关系,求a n ,常用思路:一是利用S n -S n -1=a n (n ≥2)转化为a n 的递推关系,再求其通项公式;二是转化为S n 的递推关系,先求出S n 与n 之间的关系,再求a n .跟踪演练1 已知正项数列{a n }的前n 项和为S n ,且S n =a n (a n +2)4,则数列{a n }的通项公式是________.热点二 数列与函数、不等式的综合问题数列与函数的综合问题一般是利用函数作为背景,给出数列所满足的条件,通常利用点在曲线上给出S n 的表达式,还有以曲线上的切点为背景的问题,解决这类问题的关键在于利用数列与函数的对应关系,将条件进行准确的转化.数列与不等式的综合问题一般以数列为载体,考查最值问题,不等关系或恒成立问题.例2 已知二次函数y =f (x )的图象经过坐标原点,其导函数为f ′(x )=6x -2,数列{a n }的前n 项和为S n ,点(n ,S n )(n ∈N *)均在函数y =f (x )的图象上.(1)求数列{a n }的通项公式;(2)设b n =3a n a n +1,T n 是数列{b n }的前n 项和,求使得T n <m 20对所有n ∈N *都成立的最小正整数m .思维升华解决数列与函数、不等式的综合问题要注意以下几点:(1)数列是一类特殊的函数,函数定义域是正整数,在求数列最值或不等关系时要特别重视;(2)解题时准确构造函数,利用函数性质时注意限制条件;(3)不等关系证明中进行适当的放缩.跟踪演练2(2015·安徽)设n∈N*,x n是曲线y=x2n+2+1在点(1,2)处的切线与x轴交点的横坐标.(1)求数列{x n}的通项公式;(2)记T n=x21x23…x22n-1,证明:T n≥1 4n.热点三数列的实际应用用数列知识解相关的实际问题,关键是合理建立数学模型——数列模型,弄清所构造的数列是等差模型还是等比模型,它的首项是什么,项数是多少,然后转化为解数列问题.求解时,要明确目标,即搞清是求和,还是求通项,还是解递推关系问题,所求结论对应的是解方程问题,还是解不等式问题,还是最值问题,然后进行合理推算,得出实际问题的结果.例3 自从祖国大陆允许台湾农民到大陆创业以来,在11个省区设立了海峡两岸农业合作试验区和台湾农民创业园,台湾农民在那里申办个体工商户可以享受“绿色通道”的申请、受理、审批一站式服务,某台商第一年年初到大陆就创办了一座120万元的蔬菜加工厂M ,M 的价值在使用过程中逐年减少,从第二年到第六年,每年年初M 的价值比上年年初减少10万元,从第七年开始,每年年初M 的价值为上年年初的75%.(1)求第n 年年初M 的价值a n 的表达式;(2)设A n =a 1+a 2+…+a n n,若A n 大于80万元,则M 继续使用,否则须在第n 年年初对M 更新,证明:必须在第九年年初对M 更新.思维升华 常见数列应用题模型的求解方法(1)产值模型:原来产值的基础数为N ,平均增长率为p ,对于时间n 的总产值y =N (1+p )n .(2)银行储蓄复利公式:按复利计算利息的一种储蓄,本金为a 元,每期的利率为r ,存期为n ,则本利和y =a (1+r )n .(3)银行储蓄单利公式:利息按单利计算,本金为a 元,每期的利率为r ,存期为n ,则本利和y =a (1+nr ).(4)分期付款模型:a 为贷款总额,r 为年利率,b 为等额还款数,则b =r (1+r )n a (1+r )n -1. 跟踪演练3 某年“十一”期间,北京十家重点公园举行免费游园活动,北海公园免费开放一天,早晨6时30分有2人进入公园,接下来的第一个30分钟内有4人进去1人出来,第二个30分钟内有8人进去2人出来,第三个30分钟内有16人进去3人出来,第四个30。
2016年高考数学复习参考题8、推理与证明一、选择题:1、甲、乙、丙三位同学被问到是否去过A ,B ,C 三个城市时,甲说:我去过的城市比乙多,但没去过B 城市; 乙说:我没去过C 城市; 丙说:我们三人去过同一个城市. 由此可判断乙去过的城市为( )A .AB .BC .CD .不能判断【试题解析】选A 由甲、丙的回答易知甲去过A 城市和C 城市,乙去过A 城市或C 城市,结合乙的回答可得乙去过A 城市.【选题意图】本小题主要考查逻辑推理. 在近年全国新课标高考中有涉及到推理与证明的试题. 2、由代数式的乘法法则类比推导向量的数量积的运算法则:①“mn nm =”类比得到“=a b b a ”; ②“()m n t mt nt +=+”类比得到“(+)+=a b c a c b c ”; ③“()()mn t m nt =”类比得到“()()=a b c a b c ”; ④“0,t mt xt m x ≠=⇒=”类比得到“0,≠=⇒= p a p x p a x ”; ⑤“m n m n = ”类比得到“= a b a b ”; ⑥“ac a bc b =”类比得到“= a c ab c b”. 以上的式子中,类比得到的结论正确的个数是( )A .1B .2C .3D .4【试题解析】选B ①②正确,③④⑤⑥错误.【选题意图】本小题主要考查类比推理. 在近年全国新课标高考中有涉及到类比推理的试题. 3、在平面几何中有如下结论:正三角形ABC 的内切圆面积为1S ,外接圆面积为2S ,则1214S S =,推广到空间可以得到类似结论;已知正四面体P ABC -的内切球体积为1V ,外接球体积为2V ,则12V V =( ) A.18 B.19 C.164D.127【试题解析】选D 正四面体的内切球与外接球的半径之比为1∶3,故12127V V =. 【选题意图】本小题主要考查类比推理. 在近年全国新课标高考中有涉及到类比推理的试题. 4、下列推理中属于归纳推理且结论正确的是( )A .设数列{}n a 的前n 项和为n S .由21n a n =-,求出2221231,2,3,S S S === ,推断:2n S n =B .由()cos f x x x =满足()()f x f x -=-对x ∀∈R 都成立,推断:()cos f x x x =为奇函数C .由圆222x y r +=的面积2S r π=,推断:椭圆22221(0)x y a b a b+=>>的面积S ab π=D .由212223(11)2,(21)2,(31)2,+>+>+> ,推断:对*2,(1)2n n n ∀∈+>N【试题解析】选A 选项A 由一些特殊事例得出一般性结论,且注意到数列{}n a 是等差数列,其前n 项和等于2(121)2n n n S n +-==,选项D 中的推理属于归纳推理,但结论不正确.【选题意图】本小题主要考查类比推理. 在近年全国新课标高考中有涉及到以数列、三角、解析几何为知识载体的类比推理的试题.5、将正奇数按如图所示的规律排列,则第21行从左向右的第5个数为( )13 5 79 11 13 15 1719 21 23 25 27 29 31… … …A .809B .852C .786D .893【试题解析】选A 前20行共有正奇数1+3+5+…+39=220=400个,则第21行从左向右的第5个数是第405个正奇数,所以这个数是2×405-1=809.【选题意图】本小题主要考查归纳推理. 在近年全国新课标高考中有涉及到三角数阵的归纳推理的试题.6.凸n 多边形有()f n 条对角线,则凸1n +边形的对角线的条数(1)f n +为( ) A .()1f n n ++ B .()f n n + C .()1f n n +-D .()2f n n +-【试题解析】选C 边数增加1,顶点也相应增加1个,它与和它不相邻的2n -个顶点连接成对角线,原来的一条边也成为对角线,因此,对角线增加1n -条.【选题意图】本小题主要考查归纳推理. 在近年全国新课标高考中有涉及到以多边形的对角线的归纳推理的试题.7、利用数学归纳法证明“*(1)(2)()213(21),nn n n n n n +++=⨯⨯⨯⨯-∈N ”时,从“n k =”变到“1n k =+”时,左边应增乘的因式是( )A .21k +B .2(21)k + C.211k k ++ D. 231k k ++ 【试题解析】选B 当*()n k k =∈N 时,左式为(1)(2)()k k k k +++ ;当1n k =+时,左式为(11)(12)(11)(1)(11)k k k k k k k k ++++++-+++++,则左边应增乘的式子是(21)(22)2(21)1k k k k ++=++.【选题意图】本小题主要考查数学归纳法. 数学归纳法中的归纳递推从“n k =”变到“1n k =+”时是一个难点.8、设,a b 是两个实数,给出下列条件:①1a b +>;②2a b +=;③2a b +>;④222a b +>;⑤1ab >. 其中能推出:“,a b 中至少有一个大于1”的条件是( ) A .②③ B .①②③ C .③D .③④⑤【试题解析】选C 若12a =,23b =,则1a b +>,但1,1a b <<,故①推不出; 若1a b ==,则2a b +=,故②推不出;若2,3a b =-=-,则222a b +>,故④推不出;若2,3a b =-=-,则1ab >,故⑤推不出; 对于③,即2a b +>,则,a b 中至少有一个大于1, 反证法:假设1a ≤且1b ≤,则2a b +≤与2a b +>矛盾, 因此假设不成立,,a b 中至少有一个大于1.【选题意图】本小题主要考查反证法. 正难则反,举反例验证、反证法是间接证明的一个数学问题的好办法.9、观察下列算式:311=,3235=+, 337911=++, 3413151719=+++,……若某数3m 按上述规律展开后,发现等式右边含有“2016”这个数,则m =( ) A .43 B .44 C .45D .46【试题解析】选C 某数3m 按上述规律展开后,等式右边为m 个连续奇数的和,观察可知每行的最后一个数为2222110,521,1132,1943,=+=+=+=+ ,所以第m 行的最后一个数为2(1)m m +-.因为当44m =时,2(1)1979m m +-=,当45m =时,2(1)2069m m +-=,所以要使等式右边含有“2016”这个数,则45m =.【选题意图】本小题主要考查归纳推理. 在近年全国新课标高考中有涉及到三角数阵的归纳推理的试题.10.分析法又称执果索因法,若用分析法证明“设a b c >>,且0a b c ++=,求证:< ”索的因应是( )A .0a b ->B .0a c ->C .()()0a b a c -->D .()()0a b a c --<【试题解析】选C223b ac a ⇔-< 22()3a c ac a ⇔+-<2220a ac c ⇔-++< 2220a ac c ⇔-->()(2)0()()0a c a c a c a b ⇔-+>⇔-->.【选题意图】本小题主要考查分析法. 分析法是证明方法中的重要方法.11、已知“整数对”按如下规律排成一列:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),…,则第60个“整数对”是( )A .(7,5)B .(5,7)C .(2,10)D .(10,1)【试题解析】选B 依题意,把“整数对”的和相同的分为一组,不难得知第n 组中每个“整数对”的和均为1n +,且第n 组共有n 个“整数对”,这样的前n 组一共有(1)2n n +个“整数对”,注意到10(101)11(111)6022⨯+⨯+<<,因此第60个“整数对”处于第11组(每个“整数对”的和为12的组)的第5个位置,结合题意可知每个“整数对”的和为12的组中的各对数依次为:(1,11),(2,10),(3,9),(4,8),(5,7),…,因此第60个“整数对”是(5,7).【选题意图】本小题主要考查归纳推理. 在近年全国新课标高考中常常涉及到以其他知识为载体的归纳推理的试题,解题的关键是根据所给的条件寻找规律.12设平面上*(1,)n n n ≥∈N 个圆周最多把平面分成()f n 片(平面区域),则()f n =( )A .2nB .22n n -+C .2nD .2244n n -+【试题解析】选B 易知2个圆周最多把平面分成4片;n 个圆周最多把平面分成()f n 片,再放入第1n +个圆周,为使得到尽可能多的平面区域,第1n +个应与前面n 个都相交且交点均不同,有n 条公共弦,其端点把第1n +个圆周分成2n 段,每段都把已知的某一片划分成2片,即(1)()2(1)f n f n n n +=+≥,所以()(1)(1)f n f n n -=-,而(1)2f =,从而2()2f n n n =-+.【选题意图】本小题主要考查归纳推理. 在近年全国新课标高考中有涉及到以平面图形被分成多少区域的归纳推理的试题.二、填空题:13、在平面上,我们如果用一条直线去截正方形的一个角,那么截下的一个直角三角形,按下图所标边长,由勾股定理有:222c a b =+.设想正方形换成正方体,把截线换成如图的截面,这时从正方体上截下三条侧棱两两垂直的三棱锥O LMN -,如果用123,,S S S 表示三个侧面面积,4S 表示截面面积,那么类比得到的结论是________.【试题解析】将侧面面积类比为直角三角形的直角边,截面面积类比为直角三角形的斜边,可得22221234S S S S ++=.【选题意图】本小题主要考查类比推理. 在近年全国新课标高考中常常考查涉及到从平面几何的性质类比到立体几何的性质的类比推理的试题.14、若{}n a 是等差数列,,,m n p 是互不相等的正整数,则有:()()()0p m n m n a n p a p m a -+-+-= ,类比上述性质,相应地,对等比数列{}n b ,有_____________________________.【试题解析】设{}n b 的首项为1b ,公比为q ,则111111()()()m n n p p m p m n m n p n p m p m n b b b b q b q b q ---------=0011b q ==.所以填1m n n p p m p m n b b b ---=. 【选题意图】本小题主要考查类比推理. 在近年全国新课标高考中常常考查涉及到从等差数列的性质类比到等比数列的性质的类比推理的试题.15猜想一般凸多面体中,,F V E 所满足的等式是___________________________.【试题解析】三棱柱中5+6-9=2;五棱锥中6+6-10=2;立方体中6+8-12=2,由此归纳可得2F V E +-=. 答案:2F V E +-=【选题意图】本小题主要考查归纳推理. 在近年全国新课标高考中常常考查涉及到立体几何经典结论的试题.16、古希腊毕达哥拉斯学派的数学家研究过各种多边形数.如三角形数1,3,6,10, ,第n 个三角形数为2(1)11222n n n n +=+.记第n 个k 边形数为(,)(3)N n k k ≥,以下列出了部分k 边形数中第n 个数的表达式:三角形数 211(,3)22N n n n =+, 正方形数 2(,4)N n n =,五边形数 231(,5)22N n n n =-, 六边形数 2(,6)2N n n n=-, ……可以推测(,)N n k 的表达式,由此计算(10,24)N =________. 【试题解析】由211(,3)22N n n n =+, 220(,4)22N n n n =+, 231(,5)22N n n n -=+, 242(,6)22N n n n -=+, 推测224(,),322k k N n k n n k --=+≥.从而(10,24)1000N =. 【选题意图】本小题主要考查归纳推理. 在近年全国新课标高考中常常考查涉及到经典结论的试题.。