2. 求锥体的体积,要选择适当的底面和高,然后应用公
式v=3 Sh进行计算即可.常用方法为:割补法和等体 积变换法:
(1)割补法:求一个几何体的体积可以将这个几何体分 割成几个柱体、锥体,分别求出锥体和柱体的体积, 从而得出几何体的体积.
(2)等体积变换法:利用三棱锥的任一个面可作为三棱锥 的底面. ① 求体积时,可选择容易计算的方式来计算; ② 利用“等积性”可求"点到面的距离".
5.已知一个几何体的三视图如图所示,则此几何体的体积 是
正视图
侧视图
俯视图
解析: 此几何体为一圆锥与圆柱的组合体. 圆柱底面半径为r=a, 高为h₁=2a, 圆锥底面半径为r=a, 高为h₂=a . 故组合体体积为V=πr²h₁+
答案:
慎
KAODIAN
TUPO
JIEJIE
GAO
考点一
多面体的表面积
则三棱锥D-ABC 的体积为
()
A.
B.
C. a3
D.
解析:设正方形ABCD的对角线AC、BD 相交于点E, 沿AC折起后依题意得,当
BD=a 时,BE⊥DE, 所以DE⊥平面ABC, 于是三棱锥D-ABC 的高为DE=
a, 所以三棱锥D-ABC 的体积
答案: D
4.若棱长为3的正方体的顶点都在同一球面上,则该球 的表面积为 解析: 正方体的体对角线为球的直径. 答案: 27π
2.计算柱体、锥体、台体的体积关键是根据条件找出相应 的底面积和高,要充分利用多面体的截面及旋转体的轴 截面,将空间问题转化为平面问题.
例 3 如图所示,半径为R的半圆 内 的阴影部分以直径AB 所在直线为轴,
旋转一周得到一几何体,求该几何