匀速圆周运动实例分析
- 格式:ppt
- 大小:1.70 MB
- 文档页数:31
匀速圆周运动的实例分析典型例题1——关于汽车通过不同曲面的问题分析1.一辆质量t的小轿车,驶过半径m的一段圆弧形桥面,求:(重力加速度)(1)若桥面为凹形,汽车以20m/s的速度通过桥面最低点时,对桥面压力是多大?(2)若桥面为凸形,汽车以10m/s的速度通过桥面最高点时,对桥面压力是多大?(3)汽车以多大速度通过凸形桥面顶点时,对桥面刚好没有压力?解:典型例题2——细绳牵引物体做圆周运动的系列问题1.一根长的细绳,一端拴一质量的小球,使其在竖直平面内绕绳的另一端做圆周运动,求:(1)小球通过最高点时的最小速度?(2)若小球以速度通过周围最高点时,绳对小球的拉力多大?若此时绳突然断了,小球将如何运动.典型例题3——转动系统中的惯性力1.一辆质量为的汽车以速度在半径为的水平弯道上做匀速圆周运动.汽车左、右轮相距为,重心离地高度为,车轮与路面之间的静摩擦因数为.求:(1)汽车内外轮各承受多少支持力;(2)汽车能安全行驶的最大速度是多少?2、关于地球的圆周运动例1:把地球看成一个球体,在地球表面上赤道某一点A,北纬60°一点B,在地球自转时,A与B两点角速度之比为多大?线速度之比为多大?3、关于皮带传送装置的圆周运动特点例2:如图所示,皮带传送装置A、B为边缘上两点,O1A=2O2B,C为O1A中点,皮带不打滑.求:(1)νA:νB:νC=(2)ωA:ωB:ωC=4、如图5-26所示,O1皮带传动装置的主动轮的轴心,轮的半径为r1;O2为从动轮的轴心,轮的半径为r2;r3为与从动轮固定在一起的大轮的半径.已知r2=1.5r1,r3=2r1.A、B、C分别是三个轮边缘上的点,那么质点A、B、C的线速度之比是_________ ,角速度之比是_________ ,向心加速度之比是__________ ,周期之比是_________.关于汽车通过不同曲面的问题分析例1:一辆质量m=2.0t的小轿车,驶过半径R=90m的一段圆弧形桥面,求:(重力加速度g=10m/s2)(1)若桥面为凹形,汽车以20m/s的速度通过桥面最低点时,对桥面压力是多大?(2)若桥面为凸形,汽车以10m/s的速度通过桥面最高点时,对桥面压力是多大?(3)汽车以多大速度通过凸形桥面顶点时,对桥面刚好没有压力?2、当小汽车以10m/s的速度通过一座拱桥的最高点,拱桥半径50m,求此车里的一名质量为60kg的乘客对座椅的压力4、关于光滑水平面上物体的圆周运动如图所示,长0.40m的细绳,一端拴一质量为0.2kg的小球,在光滑水平面上绕绳的另一端做匀速圆周运动,若运动的角速度为5.0rad/s,求绳对小球需施多大拉力?5、关于静摩擦力提供向心力的问题如图所示,小物体A与圆盘保持相对静止,跟着圆盘一起作匀速圆周运动,则A的受力情况是()A、受重力、支持力B、受重力、支持力和指向圆心的摩擦力C、重力、支持力、向心力、摩擦力D、以上均不正确6、明确向心力的来源如图所示,半径为R的半球形碗内,有一个具有一定质量的物体A,A与碗壁间的动摩擦因数为,当碗绕竖直轴匀速转动时,物体A刚好能紧贴在碗口附近随碗一起匀速转动而不发生相对滑动,求碗转动的角速度.一圆筒绕其中心轴OO1匀速转动,筒内壁上紧挨着一个物体与筒一起运动相对筒无滑动,如图2所示,物体所受向心力是()A.物体的重力B.筒壁对物体的静摩擦力C.筒壁对物体的弹力D.物体所受重力与弹力的合力7、关于绕同轴转动物体的圆周运动如图所示,两个质量分别为m1=50g和m2=100g的光滑小球套在水平光滑杆上.两球相距21cm,并用细线连接,欲使两球绕轴以600r/min的转速在水平面内转动而光滑动,两球离转动中心各为多少厘米?绳上拉力是多少?8、细绳牵引物体做圆周运动的系列问题一根长的细绳,一端拴一质量的小球,使其在竖直平面内绕绳的另一端做圆周运动,求:(1)小球通过最高点时的最小速度?(2)若小球以速度通过周围最高点时,绳对小球的拉力多大?若此时绳突然断了,小球将如何运动.。
圆周运动的实例分析圆周运动是指物体在固定圆周上做匀速旋转的运动。
它在生活中有着广泛的应用,例如车轮的旋转、地球绕太阳的公转等。
本文将通过分析两个具体实例来说明圆周运动的特点和应用。
实例一:车轮的旋转当车辆行驶时,车轮就会以一个轴为中心进行匀速旋转,这就是典型的圆周运动。
车轮的旋转不仅能够驱动车辆前进,还可以改变行驶方向。
根据牛顿第一定律,车轮受到的作用力与向心加速度成正比。
当车辆加速时,作用力增加,车轮的旋转速度也会增加,从而使车辆更快地行驶。
相反,当车辆减速或停止时,车轮的旋转速度也会相应减小或停止。
这种以车轮为例的圆周运动,为我们提供了便利的交通工具。
实例二:地球绕太阳的公转地球围绕太阳做匀速的圆周运动,这就是地球的公转。
这种公转使地球维持着相对稳定的轨道,保持了恒定的距离和倾斜角度,从而使我们能够有四季的交替和昼夜的变化。
地球公转的轨迹是一个近似于椭圆的轨道,太阳位于椭圆焦点之一。
地球公转的周期是365.24天,也就是一年的长度。
这个周期的长短决定了季节的变化和地球上生物的繁衍。
除了以上两个实例,圆周运动还广泛应用于其他领域。
例如,在工程中,我们常常需要使用电机来驱动各种设备的旋转,如风扇、洗衣机等。
这些旋转运动都是圆周运动的实例。
在体育竞技中,篮球、足球等球类运动都有着明显的圆周运动特点。
球员的投篮和射门都需要进行准确的角度和力度的控制,以确保球能够按照预定的轨道运动。
总之,圆周运动在我们的生活中随处可见,它是物体在固定圆周上做匀速旋转的运动。
不仅在自然界中存在着典型的实例,如车轮的旋转和地球的公转,而且在我们的日常生活和工程技术中也广泛应用。
圆周运动的特点和应用使得我们的生活更加便利、丰富多样,并为科学研究和技术发展提供了基础。
匀速圆周运动 典型例题【例1】如图所示的传动装置中,A 、B 两轮同轴转动.A 、B 、C 三轮的半径大小的关系是RA=RC=2RB.当皮带不打滑时,三轮的角速度之比、三轮边缘的线速度大小之比、三轮边缘的向心加速度大小之比分别为多少?【例2】一圆盘可绕一通过圆盘中心O 且垂直于盘面的竖直轴转动.在圆盘上放置一木块,当圆盘匀速转动时,木块随圆盘一起运动(见图),那么()A.木块受到圆盘对它的摩擦力,方向背离圆盘中心B.木块受到圆盘对它的摩擦力,方向指向圆盘中心C.因为木块随圆盘一起运动,所以木块受到圆盘对它的摩擦力,方向与木块的运动方向相同D.因为摩擦力总是阻碍物体运动,所以木块所受圆盘对它的摩擦力的方向与木块的运动方向相反【例3】在一个水平转台上放有A 、B 、C 三个物体,它们跟台面间的摩擦因数相同.A 的质量为2m ,B 、C 各为m.A 、B 离转轴均为r,C 为2r.则()A.若A 、B 、C 三物体随转台一起转动未发生滑动,A 、C 的向心加速度比B 大B.若A 、B 、C 三物体随转台一起转动未发生滑动,B 所受的静摩擦力最小C.当转台转速增加时,C 最先发生滑动D.当转台转速继续增加时,A 比B 先滑动【例4】如图,光滑的水平桌面上钉有两枚铁钉A 、B ,相距L0=0.1m.长L=1m 的柔软细线一端拴在A 上,另一端拴住一个质量为500g 的小球.小球的初始位置在AB 连线上A 的一侧.把细线拉直,给小球以2m/s的垂直细线方向的水平速度,使它做圆周运动.由于钉子B的存在,使细线逐步缠在A、B上.若细线能承受的最大张力Tm=7N,则从开始运动到细线断裂历时多长?【例5】如图(a)所示,在光滑的圆锥顶用长为L的细线悬挂一质量为m的小球,圆锥顶角为2θ,当圆锥和球一起以角速度ω匀速转动时,球压紧锥面.此时绳的张力是多少?若要小球离开锥面,则小球的角速度至少为多少?【例6】杂技节目中的“水流星”表演,用一根绳子两端各拴一个盛水的杯子,演员抡起杯子在竖直面上做圆周运动,在最高点杯口朝下,但水不会流下,如下图所示,这是为什么?【例7】用长L1=4m和长为L2=3m的两根细线,拴一质量m=2kg的小球A,L1和L2的另两端点分别系在一竖直杆的O1,O2处,已知O1O2=5m如下图(g=10m⋯−2)(1)当竖直杆以的角速度ω匀速转动时,O2A线刚好伸直且不受拉力.求此时角速度ω1.(2)当O1A线所受力为100N时,求此时的角速度ω2.。
从动力学角度分析匀速圆周运动根据牛顿第二定律,物体的加速度方向和大小都由物体所受到的合外力来决定。
我们来看一个具体的例子。
细绳拴着一个小球在光滑水平面上做匀速圆周运动。
分析小球的受力。
由于竖直方向上小球始终静止,处于平衡状态,因此重力和支持力合力为0。
小球受到的合外力就等于绳子的拉力,沿着绳子指向圆心,由牛顿第二定律可知向心加速度的方向也是指向圆心。
从这个例子,我们看出做匀速圆运动的物体受到的合外力一定是沿着半径指向圆心的,因此称为向心力。
1.向心力:做匀速圆周运动的物体受到的合外力又称为向心力。
以前,我们经常是对物体受力分析,得到合外力的方向,进而确定加速度的方向。
现在,对于做圆周运动的物体,我们更经常的是反过来。
如果已经知道一个物体在做匀速圆周运动,那么,那么它的加速度一定是指向圆心的,因此合外力的方向(对匀速圆周运动来说也就是向心力的方向)也就是指向圆心的。
需要注意的是,虽然我们从向心加速度反推物体合外力的方向,但是要清楚:力是产生加速度的原因,力决定了加速度的方向,而不是加速度决定了力的方向。
2.向心力的大小:根据牛顿第二定律,3.向心力是效果力受力分析时不应画在受力图示中。
受力图中出现的应该是性质力。
【引入】:小球在光滑的圆锥桶内做匀速圆周运动,分析其受力情况。
【提问】:下图中的受力分析正确吗?从上面向心力的定义知道,向心力是做匀速圆周运动的物体受到的各个外力的合力,因此在上面受力分析图中不应该与重力、支持力同时画在一起。
从另外一个角度看,上面受力分析图中,重力的施力物体是地球,支持力的施力物体是圆锥桶壁,那么所画的向心力的施力物体是谁呢?不能明确的说出来。
受力分析时,找不出明确的施力物体的那个力,是不存在的,不应该出现在受力分析图中。
其实,像重力、支持力、摩擦力等,是按照力的性质来命名的,称为性质力。
像在光滑斜面上的物体,我们所说的下滑力是按照作用效果——使物体沿斜面下滑,来命名的,其实它是重力沿斜面的分力,在受力分析图中不应该单独出现。