第2章 3.圆周运动的实例分析
- 格式:ppt
- 大小:9.25 MB
- 文档页数:31
圆周运动的实例分析圆周运动是指物体在固定圆周上做匀速旋转的运动。
它在生活中有着广泛的应用,例如车轮的旋转、地球绕太阳的公转等。
本文将通过分析两个具体实例来说明圆周运动的特点和应用。
实例一:车轮的旋转当车辆行驶时,车轮就会以一个轴为中心进行匀速旋转,这就是典型的圆周运动。
车轮的旋转不仅能够驱动车辆前进,还可以改变行驶方向。
根据牛顿第一定律,车轮受到的作用力与向心加速度成正比。
当车辆加速时,作用力增加,车轮的旋转速度也会增加,从而使车辆更快地行驶。
相反,当车辆减速或停止时,车轮的旋转速度也会相应减小或停止。
这种以车轮为例的圆周运动,为我们提供了便利的交通工具。
实例二:地球绕太阳的公转地球围绕太阳做匀速的圆周运动,这就是地球的公转。
这种公转使地球维持着相对稳定的轨道,保持了恒定的距离和倾斜角度,从而使我们能够有四季的交替和昼夜的变化。
地球公转的轨迹是一个近似于椭圆的轨道,太阳位于椭圆焦点之一。
地球公转的周期是365.24天,也就是一年的长度。
这个周期的长短决定了季节的变化和地球上生物的繁衍。
除了以上两个实例,圆周运动还广泛应用于其他领域。
例如,在工程中,我们常常需要使用电机来驱动各种设备的旋转,如风扇、洗衣机等。
这些旋转运动都是圆周运动的实例。
在体育竞技中,篮球、足球等球类运动都有着明显的圆周运动特点。
球员的投篮和射门都需要进行准确的角度和力度的控制,以确保球能够按照预定的轨道运动。
总之,圆周运动在我们的生活中随处可见,它是物体在固定圆周上做匀速旋转的运动。
不仅在自然界中存在着典型的实例,如车轮的旋转和地球的公转,而且在我们的日常生活和工程技术中也广泛应用。
圆周运动的特点和应用使得我们的生活更加便利、丰富多样,并为科学研究和技术发展提供了基础。
火车、汽车拐弯的动力学问题一、考点突破:二、重难点提示:重点:1. 掌握火车、汽车拐弯时的向心力来源;2. 会用圆周运动的规律解决实际问题。
难点:能从供需关系理解拐弯减速的原理。
一、火车转弯问题1. 火车在水平路基上的转弯(1)此时火车车轮受三个力:重力、支持力、外轨对轮缘的弹力。
(2)外轨对轮缘的弹力提供向心力。
(3)由于该弹力是由轮缘和外轨的挤压产生的,且由于火车质量很大,故轮缘和外轨间的相互作用力很大,易损害铁轨。
2. 实际弯道处的情况:外轨略高于内轨道(1)对火车进行受力分析:火车受铁轨支持力N的方向不再是竖直向上,而是斜向弯道的内侧,同时还有重力G。
(2)支持力与重力的合力水平指向内侧圆心,成为使火车转弯所需的向心力。
【规律总结】转弯处要选择内外轨适当的高度差,使转弯时所需的向心力完全由重力G和支持力N来提供,这样外轨就不受轮缘的挤压了。
3. 限定速度v分析:火车转弯时需要的向心力由火车重力和轨道对它的支持力的合力提供。
F 合=mgtan α=rv m 2①由于轨道平面和水平面的夹角很小,可以近似地认为 tan α≈sin α=h/d ② ②代入①得:mg dh=r v m 2d rgh v思考:在转弯处:(1)若列车行驶的速率等于规定速度,则两侧轨道是否受车轮对它的侧向压力。
(2)若列车行驶的速率大于规定速度,则___轨必受到车轮对它向___的压力(填“内”或“外”)。
(3)若列车行驶的速率小于规定速度,则___轨必受到车轮对它向___的压力(填“内”或“外”)。
二、汽车转弯中的动力学问题1. 水平路面上的转弯问题:摩擦力充当向心力 umg=mv 2/r 。
由于摩擦力较小,故要求的速度较小,否则就会出现离心现象,发生侧滑,出现危险。
2. 实际的弯道都是外高内底,以限定速度转弯,受力如图。
Mgtanθ=Mv2/r v=θtanrg当v >θtanrg,侧向下摩擦力的水平分力补充不足的合外力;v <θtanrg,侧向上摩擦力的水平分力抵消部分过剩的合外力;v =θtanrg,沿斜面方向的摩擦力为零,重力和支持力的合力提供向心力。
难点之三:圆周运动的实例分析一、难点形成的原因1、对向心力和向心加速度的定义把握不牢固,解题时不能灵活的应用。
2、圆周运动线速度与角速度的关系及速度的合成与分解的综合知识应用不熟练,只是了解大概,在解题过程中不能灵活应用;3、圆周运动有一些要求思维长度较长的题目,受力分析不按照一定的步骤,漏掉重力或其它力,因为一点小失误,导致全盘皆错。
4、圆周运动的周期性把握不准。
5、缺少生活经验,缺少仔细观察事物的经历,很多实例知道大概却不能理解本质,更不能把物理知识与生活实例很好的联系起来。
二、难点突破(1)匀速圆周运动与非匀速圆周运动a.圆周运动是变速运动,因为物体的运动方向(即速度方向)在不断变化。
圆周运动也不可能是匀变速运动,因为即使是匀速圆周运动,其加速度方向也是时刻变化的。
b.最常见的圆周运动有:①天体(包括人造天体)在万有引力作用下的运动;②核外电子在库仑力作用下绕原子核的运动;③带电粒子在垂直匀强磁场的平面里在磁场力作用下的运动;④物体在各种外力(重力、弹力、摩擦力、电场力、磁场力等)作用下的圆周运动。
c.匀速圆周运动只是速度方向改变,而速度大小不变。
做匀速圆周运动的物体,它所受的所有力的合力提供向心力,其方向一定指向圆心。
非匀速圆周运动的物体所受的合外力沿着半径指向圆心的分力,提供向心力,产生向心加速度;合外力沿切线方向的分力,产生切向加速度,其效果是改变速度的大小。
例1:如图3-1所示,两根轻绳同系一个质量m=0.1kg 的小球,两绳的另一端分别固定在轴上的A 、B 两处,上面绳AC 长L=2m ,当两绳都拉直时,与轴的夹角分别为30°和45°,求当小球随轴一起在水平面内做匀速圆周运动角速度为ω=4rad/s 时,上下两轻绳拉力各为多少? 【审题】两绳张紧时,小球受的力由0逐渐增大时,ω可能出现两个临界值。
【解析】如图3-1所示,当BC 刚好被拉直,但其拉力T 2恰为零,设此时角速度为ω1,AC 绳上拉力设为T 1,对小球有:mg T =︒30cos 1 ①30sin L ωm =30sin T AB 211②代入数据得: s rad /4.21=ω,要使BC 绳有拉力,应有ω>ω1,当AC 绳恰被拉直,但其拉力T 1恰为零,设此时角速度为ω2,BC 绳拉力为T 2,则有mg T =︒45cos 2 ③T 2sin45°=m 22ωL AC sin30°④代入数据得:ω2=3.16rad/s 。
2。
3 圆周运动的案例分析直平面内的圆周运动。
一、分析游乐场中的圆周运动 1.受力分析(1)过山车在轨道顶部时要受到重力和轨道对车的弹力作用,这两个力的合力提供过山车做圆周运动的向心力。
(2)当过山车恰好经过轨道顶部时,弹力为零,此时重力提供向心力。
2.临界速度(1)过山车恰好通过轨道顶部时的速度称为临界速度,记作v 临界,v临界=错误!。
(2)当过山车通过轨道最高点的速度v ≥错误!时,过山车就不会脱离轨道;当v >错误!时,过山车对轨道还会产生压力作用。
(3)当过山车通过轨道最高点的速度v <错误!时,过山车就会脱离轨道,不能完成圆周运动. 预习交流1“水流星"是我国传统的杂技节目,演员们把盛有水的容器用绳子拉住在空中如流星般快速舞动,同时表演高难度的动作,容器中的水居然一滴也不掉下来。
“水流星"的运动快慢与绳上的拉力的大小有什么关系?如果绳上的拉力渐渐减小,将会发生什么现象?答案:“水流星”转得越快,绳上的拉力就越大。
若绳上的拉力减小,有可能使水流出来。
二、研究运动物体转弯时的向心力1.自行车转弯时要向转弯处的内侧倾斜,由地面对车的作用力与重力的合力作为转弯所需要的向心力。
2.汽车在水平路面上转弯时由地面的摩擦力提供向心力。
3.火车转弯时的向心力由重力和铁轨对火车的支持力的合力提供,其向心力方向沿水平方向。
预习交流2飞行中的鸟和飞机要改变方向转弯时,鸟的身体或飞机的机身要倾斜,如图所示,这是为什么?答案:鸟或飞机转弯时需要向心力,只有当鸟身或飞机的机身倾斜时,它们所受空气对它们的作用力和重力的合力才能提供它们转弯需要的向心力。
一、竖直面内的圆周运动实例分析1.汽车过拱形桥桥顶时,可认为是圆周运动模型,那么汽车过拱形桥顶时动力学特点有哪些?答案:汽车在桥顶受到重力和支持力作用,如图所示,向心力由两者的合力提供.(1)动力学方程: 由牛顿第二定律2=N v G F m R-解得22=N v v F G m mg m R R=--。
圆周运动实例分析圆周运动是一种物体绕固定轴旋转的运动方式,它在日常生活和科学研究中有着广泛的应用。
下面将以多种实例来分析圆周运动。
实例一:地球公转地球绕着太阳公转是一个经典的圆周运动实例。
地球绕着太阳运动的轨道近似为一个椭圆,但是由于地球到太阳的距离相对较远,可以近似为一个圆周运动。
地球与太阳之间的重力提供了地球公转的向心力,使得地球保持在固定的轨道上。
这个圆周运动的周期为一年,即将地球绕公转一周所需要的时间。
实例二:卫星绕地球运动人造卫星绕地球运动也是一个常见的圆周运动实例。
卫星在地球轨道上运行时,地球的引力提供了卫星运动所需的向心力,使得卫星保持在圆周轨道上。
卫星的圆周运动速度称为轨道速度,是卫星绕地球一周所需的时间和轨道的半径所决定的。
实例三:风车旋转风车旋转也可以看作是一种圆周运动。
当风吹来时,风叶会受到风的力推动,从而开始转动。
风叶的运动轨迹是一个近似于圆周的曲线。
旋转的轴心是固定的,风向则决定了旋转的方向。
风车的旋转速度取决于风的强度和风叶的设计。
实例四:车轮滚动车轮的滚动也可以看作是一种圆周运动。
当车轮开始滚动时,轮胎与地面之间的摩擦力提供了一个向心力,使得车轮保持在一条直线上。
我们可以观察到车轮的外侧速度较大,而内侧速度较小,这是因为车轮在滚动过程中,中心处的点相对于半径较大的外侧点要走更长的路程。
实例五:转盘游乐设备转盘游乐设备也是一个典型的圆周运动实例。
当转盘开始旋转时,内侧的座椅相对于外侧的座椅要经历一个更小的半径,因此内侧的座椅速度较小,而外侧的座椅速度较大。
这种圆周运动会给乘坐者带来旋转的感觉,增加乘坐的刺激性。
总的来说,圆周运动在日常生活和科学研究中非常常见,上述实例仅仅是其中的几个例子。
人们通过对圆周运动的观察和研究,不仅可以深化对运动规律的理解,还可以为工程设计和科学实验提供有价值的参考。
一、考点突破:二、重难点提示:重点:掌握汽车过桥向心力的来源.点:从难供需关系理解过桥时的最大限速。
汽车过桥的动力学问题1。
拱形桥汽车过拱形桥受力如图,重力和支持力合力充当向心力,由向心力公式r v mFG21=-则rv mG F 21-=。
汽车对桥的压力与桥对汽车的支持力是一对作用力和反作用力,故压力F 1′=F 1=G-m 。
规律:①支持力F N 小于重力G.②v 越大,则压力越小,当v=gr 时,压力=0. ③v=gr 是汽车过拱形桥的最大速度。
2. 凹形桥设桥的半径为r ,汽车的质量为m ,车速为v,支持力为F N .由向心力公式可得:rv m mg F N 2=-所以rv m mg F N 2+=。
规律:①支持力F N 大于重力G②v 越大,则压力越大,故过凹形桥时要限速,否则会发生爆胎危险。
思考:从超失重角度怎样理解汽车过桥时压力和重力的关系?例题1 如图所示,在质量为的电动机上,装有质量为的偏心轮,偏心轮的重心距转轴的距离为r。
当偏心轮重心在转轴M m O 'O正上方时,电动机对地面的压力刚好为零。
求电动机转动的角速度ω。
思路分析:偏心轮重心在转轴正上方时,电动机对地面的压力刚好为零,则此时偏心轮对电动机向上的作用力大小等于电动机的重力,即: ①根据牛顿第三定律,此时轴对偏心轮的作用力向下,大小为,其向心力为:②由①②得电动机转动的角速度为:。
答案:例题2 一质量为1600 kg 的汽车行驶到一座半径为40m 的圆弧形拱桥顶端时,汽车运动速度为10m/s ,g=10m/s 2。
求:(1)此时汽车的向心加速度大小; (2)此时汽车对桥面压力的大小;(3)若要安全通过桥面,汽车在最高点的最大速度。
思路分析:(1)a=v 2/r=2。
5m/s 2(2)支持力F N ,mg-F N =ma , F N =12000N 由牛顿第三定律,压力F N ′=12000N(3)mg=mv m 2/r v m =20m/s答案:(1)2.5m/s 2 (2)12000N (3)v m =20m/s知识脉络:F Mg =F Mg '=注:汽车过拱形桥失重速度过大有飞起的危险,过凹形桥超重速度过大有爆胎的危险。