Preparation of (Pb, La)(Zr, Sn, Ti)O3 antiferroelectric ceramics
- 格式:pdf
- 大小:390.37 KB
- 文档页数:6
几种常见的功能陶瓷内容摘要功能陶瓷是一类在光、电、力、声、化学、生物等方面具有特殊功能性质的材料,由于其众多方面的功能,故功能陶瓷种类繁多,应用广泛。
本文首先详细的对两种常见的功能陶瓷---压电陶瓷、生物陶瓷作了介绍,总结分析了他们的发展历史和现状并预测了他们未来的发展趋势。
随着压电陶瓷组分的改变,机电耦合系数、机械品质因数、弹性系数、压电常数等一系列参数有了重大改善,未来压电陶瓷将朝着复合型、高居里、无铅化几个方向发展,势必成为一种具备优良性能且环保的优秀功能材料。
生物陶瓷具有良好的生物可容性、无毒性、且性能稳定,广泛应用在医学治疗的许多环节,举例介绍了三大类生物惰性、活性、可降解陶瓷,其未来发展趋势是“活的”、复合型、多孔的、纳米级的等等,是绝对优于金属及有机材料的无毒害的功能材料。
之后对其他功能陶瓷的功能与应用做了简要介绍,如超导陶瓷、磁性陶瓷、敏感陶瓷、化学陶瓷。
【关键词】功能陶瓷压电陶瓷生物陶瓷发展历史及现状未来趋势Several Common Functional CeramicsAbstractFunctional ceramics is a kind of material, which has optical,electrical, mechanical, acoustic, chemical and biological propeties. Because of it’s various function, functional ceramics is classified into many categories. This paper firstly introuduces two common functional ceramics-piezoceramics and bioceramics, mainly summrizes their development and research status, then outlines the development prospects. With the change of piezoceramics’ composition, a series of parameters such as electro-mechanical coupling factor, mechanical quality factor, coefficent of elasticity and piezoelectric constant have been significantly improved. The future trend of piezoceramics is composite, high T c and lead-free. The biological ceramics has good biological adaptability, avirulence, and stable property ,so it has widespread application in medical treament, the paper simply introduces three kinds—inert ceramics,active ceramics and degradable ceramics. Bioceramics’ future development trend is “live”, composite, porous, nano-level etc.It is a kind of material without posion, which is much better than metals and organic materials. At last, the article gives a brief introduction of other functional ceramics such as superconducting cramics, magnetic ceramics, sensitive ceramics and chemical ceramics.【Key words】Functional ceramics Piezoelectric ceramics Biological ceramics Development and research status Prospects目录一、前言 (1)二、正文 (1)(一)压电陶瓷 (1)(二)生物陶瓷.....................................................(错误!未定义书签。
第10卷 第4期2002年12月材 料 科 学 与 工 艺MATERIALS SCIENCE &TEC HNOLOGY Vol.10 No.4Dec.2002纳米复合材料的研究进展孔晓丽,刘勇兵,杨 波(吉林大学南岭校区材料科学与工程学院,吉林长春130025)摘 要:研制开发具有特殊性质的新型纳米复合材料具有广阔的发展前景.本文对近几年来纳米复合材料的最新研究进展进行了综合论述.按照复合方式的不同,分别对4种复合体系的纳米复合材料进行了系统介绍,包括材料的结构组成,制备技术,功能特性以及研究进展状况等.并对纳米复合材料的应用与发展前景进行了展望.关键词:纳米复合材料;纳米颗粒增强复合材料;纳米复合薄膜;纳米多层膜中图分类号:TL627 文献标识码:A 文章编号:1005-0299(2002)04-0436-06Research progress in nanocomposite materialsKONG Xiao -li,LI U Yong -bing,YANG bo(College of Materials Science and Engineering,Jilin University,Changchun 130025,China)Abstract:The nanocomposite materials with e xcellent performance have broad application prospects.In this paper,new research progress on nanocomposite ma terials in the last few years is revie wed.According to the c omposite mode,the nanocomposite materials are classified into four kinds.The compositions,preparation technologies,char -ac teristics and development of four kinds of nanocomposite materials are comprehensively introduced,respectively.The applica tion and development prospects of nanoc omposite materials are discussed.Key words:nanocomposite materials;nanodispersed granular materials;nanocomposite thin films;nanometer mult-ilayered films收稿日期:2001-09-05作者简介:孔晓丽(1974-),女,博士研究生.纳米材料由于具有其独特的结构特征(纳米晶粒及高浓度界面),以及表现出的一系列与常规材料有着本质差异的理化及力学性能,使得纳米材料的研究成为目前材料科学研究的热点.纳米材料科学的发展也为复合材料的研究开辟了新的领域)纳米复合材料,开发具有特殊性质的新型纳米复合材料具有广阔的应用前景.有关纳米复合材料的发展迅速,目前已取得了引人注目的进展.关于纳米材料的制备技术,结构特性,研究现状等已有多篇综述性论文[1-3],而专门对纳米复合材料的介绍则较少.本文则试图仅就近几年来纳米复合材料的最新研究进展进行综述,系统介绍各类纳米复合材料的结构组成,制备,功能特性及其应用等.1 纳米复合材料[4]纳米复合材料涉及范围较宽,种类繁多.按照复合方式不同,我们现把其主要分为四大类:一种是0-0复合,即不同成分,不同相或者不同种类的纳米粒子复合而成的纳米固体,这种复合体的纳米粒子可以是金属与金属,金属与陶瓷,金属与高分子,陶瓷与陶瓷,陶瓷和高分子等构成纳米复合体;第二种是0-3复合,即把纳米粒子分散到常规的三维固体中,例如把金属纳米粒子弥散到另一种金属或合金中,或者放入常规的陶瓷材料或高分子中,纳米陶瓷粒子(氧化物、氮化物)放入常规的金属,高分子及陶瓷中;第三种是0-2复合,即把纳米粒子分散到二维的薄膜材料中,这种0-2复合材料又可分为均匀弥散和非均匀弥散两大类,均匀弥散是指纳米粒子在薄膜中均匀分布,人们可根据需要控制纳米粒子的粒径及粒间距,非均匀分布是指纳米粒子随机地混乱地分散在薄膜基体中;第四种是纳米层状复合,即由不同材质交替形成的组分或结构交替变化的多层膜,各层膜的厚度均为纳米级,如Ni/C u多层膜, Al/Al2O3纳米多层膜等.其中第三种与第四种可统称为纳米复合薄膜材料.2纳米复合材料研究现状2.10-0复合体系纳米尺度复合为发展高性能的新材料和改善现有材料性能提供了新的途径.根据纳米结构的特点,可以把在传统理论中难以实现的异质,异相,不同有序度的材料在纳米尺度下进行合成,获得新型的具有特殊性能的纳米复合材料.惰性气体凝聚原位加压成形法,机械合金化,非晶晶化法,溶胶-凝胶等诸多纳米固体制备方法都可以用于合成纳米复合材料.如纳米复合陶瓷的制备,德国斯图加特金属研究所等5个研究单位联合攻关,成功制备了Si3N4/SiC纳米复合材料,这种材料具有高强,高韧,优良的热和化学稳定性.在ZrO2中加入Y2O3稳定剂(粒径小于300 nm),观察到了超塑性,甚至可达800%[4].新原皓一[5]应用化学气相沉积复合粉末法制备了Si3N4/ SiC纳米级复相陶瓷.我国在制备纳米复合陶瓷微粒已取得了很大的进展,上海硅酸盐研究所采用化学气相合成法制备了Si3N4/SiC纳米复相纳粉体[6],施利毅等[7]高温氧化合成纳米TiO2-Al2O3复合粒子,以及采用溶胶-凝胶法合成得纳米复合体系,如SiC/AlN,Al2O3-Zr O2等.纳米复合陶瓷的研究,已成为各国纳米材料研究的一个重要课题,有关报导日益增加.中国科学技术大学材料系与中国科学院固体物理研究所合作发现[8]:纯的Al2O3和纯的Fe2O3纳米材料在可见光范围是不发光的,而如果把纳米Al2O3和纳米Fe2O3掺和到一起,所获得的纳米粉体或块体在可见光范围的蓝绿光波段出现一个较宽的光致发光带,发光原因是Fe3+离子在纳米复合材料所提供的庞大体积百分数低有序度的界面内所致,部分过渡族离子在弱晶场下形成的杂质能级对由此形成的纳米复合材料的发光起着主要作用.意大利Trento大学在纳米Al2O3与纳米Cr2O3复合材料中观察到由于Cr3+离子诱导的发光带,该发光带的波长范围为650~750nm[9].由纳米尺寸的软磁相A-Fe与硬磁相Nd2Fe14B组成的纳米复合磁体,由于软磁相与硬磁相的交换耦合而阻碍了软磁相的磁化反转,因而可发挥如同单一硬磁体同样的效果,材料具有高的矫顽力和高残余磁化.获得这种纳米复合磁体所特有的纳米晶粒组织,典型的制造方法有熔体急冷法获得非晶薄带,然后经热处理晶化,另一种是利用机械合金化法首先获得非晶相与微晶混合组织,然后再经热处理来制取.目前已获得的此类纳米复合磁体包括,Fe3B/Nd2Fe14B,A-Fe/ Nd2Fe14B,A-Fe/SmFe7N x等.2.20-3复合体系2.2.1材料特性如果复合材料中增强体的尺寸降到纳米数量级,必将会给复合材料引入新的性能.首先是引入的纳米粒子本身由于具有量子尺寸效应,小尺寸效应,表面界面效应和宏观量子隧道效应而呈现出的磁、光、电、声、热、力学等奇异特性,而其具有的特殊结构,高浓度界面,特殊界面结构,巨大的表面能必然会大大影响复合材料的宏观性能.如Al2O3基体中含有纳米级SiC晶粒的陶瓷基复合材料,其强度可高达1500MPa,最高使用温度也可从原基体的800e提高到1200e;把金属纳米粒子放入常规陶瓷中可以大大改善材料的力学性质;纳米Al2O3弥散到透明的玻璃中既不影响透明度又提高了高温冲击韧性,放到金属中或合金中可以使晶粒细化,改善材料力学性质;极性纳米PbTiO3粒子放到环氧树脂中出现了双折射效应;纳米Al2O3与橡胶的复合材料与常规橡胶相比耐磨性大大提高,介电常数提高了一倍;纳米氧化物粒子与高聚物或其他材料复合具有良好的微波吸收系数;半导体微粒(Ga As,GeSi)放入玻璃中或有机高聚物中提高了三阶非线性系数;纳米微粒Al2O3放入有机玻璃(PmmA)中表现良好的宽频带红外吸收性能;将纳米TiO2,Cr2O3,Fe2O3, ZnO等掺入到树脂中有良好的静电屏蔽性能;把Ag的纳米粒子分散到玻璃、陶瓷的界面中,可以得到介电常数和介电损耗大大优于常规材料的复合材料.日本松下电器公司科学研究所已研制成功树脂基纳米氧化物复合材料,初步试验表明这类复合材料静电屏蔽性能优于常规树脂基与碳黑的复合材料,同时可以根据纳米氧化物的类型来改变这种树脂基纳米氧化物复合材料的颜色,在电器外壳涂料方面有着广阔的应用前景.美国标准技术研究所制备出了钇镓石榴石(GGIG)纳米复合材料,在基体中形成了纳米尺度铁磁性相,使GGIG纳米复合材料的熵变比常规提高了3.24#437#第4期孔晓丽,等:纳米复合材料的研究进展倍,磁致冷温度提高到40K [10].用纳米粒子填充改性聚合物,是形成高性能高分子复合材料的重要手段[11,12].中国科学技术大学试制的纳米A -Al 2O 3与环氧树脂的复合材料,当粒径为27nm,添加1%~5(A -Al 2O 3)%时,提高了环氧树脂的玻璃转化温度,模量增加到极大值,含量超过10%时模量下降[13].纳米陶瓷微粒能显著改善其填充聚醚醚酮(PEEK)的摩擦学性能,王齐华等制备了纳米ZrO 2填充PEE K 材料,并探讨了纳米陶瓷粒子填充的减摩抗磨机理[14,15].董树荣等利用纳米碳管的强度高,比表面积大,高温稳定以及优良的减摩耐磨特性,制备了纳米碳管增强铜基复合材料[16].纳米陶瓷也可以改善炭材料的高温抗氧化性能,实现自愈合抗氧化[17].V.Provenzano 等从事金属基纳米复合材料在高温领域的研究,采用惰性气体凝聚-物理气相沉积方法制备了Cu-Nb,Ag-Ni 纳米复合材料,Nb (Ni)含量在60%-65%时显微硬度提高到最高值,复合材料稳定,高温(甚至在接近基体的熔化温度)未发现晶粒长大[18][.J.Naser 等也通过对纳米陶瓷(Al 2O 3)增强铜基复合材料进行了热稳定性的研究[19].研究表明,纳米颗粒增强金属基复合材料具有高的高温强度.2.2.2 材料制备纳米颗粒增强复合材料的制备方法有机械合金化,非平衡合金固态分解,溶胶-凝胶法,气相沉积法,快速凝固法,非晶晶化法,深度塑性变形法等.日本国防学院采用高能球磨法把纳米粉Y 2O 3复合到Co-Ni-Zr 合金,Y 2O 3仅占1%~5%,他们在合金中呈弥散分布,使得Co-Ni-Zr 合金的矫顽力提高约两个数量级.用高能球磨方法得到的Cu-纳米MgO 或Cu-纳米CaO 复合材料,氧化物微粒均匀分布在Cu 基体中,复合材料的电导率与Cu 基本一样,但强度大大提高[4].机械合金化方法工艺简单,成本低,基体成分不受限制,但易产生杂质,氧化及应力.许多工作者也尝试用传统的复合材料加工方法,将纳米增强颗粒与普通粗粉或亚微米粉体混合,而后进行冷压-烧结或采用热(温)压,以及热等静压等方法,来获得纳米颗粒增强复合材料[16,18,19].研究证明,尽管这些方法经过各种改进(如保护气氛和颗粒表面镀层等),但都会不可避免遇到纳米微粒的氧化,热稳定性以及材料致密化问题.而且由于纳米微粒的小尺寸晶粒和高浓度界面,性质活泼,更易于形成氧化物或其他复合物,尤其在材料需高温处理时.夹杂物的存在会弱化增强相和基体的界面结合,阻碍材料的致密化,对材料的性能提高不利.各种制备技术有各自的优缺点,但在制备过程中由原位生成纳米增强相的工艺则更具有吸引力,如快速凝固工艺、非晶晶化法等,不仅避免了污染问题,而且基体与增强相界面结合牢固.快速凝固技术[20]通过实现大的热力学过冷度,控制成核和长大动力学,直接从液态获得纳米相弥散分布的复合组织.弥散相优先成核形成并且长大迟缓,而基体相随后形成并具有高的界面长大速率,以获得具有纳米尺寸的弥散相.通过这种方法已经在Ti-50%Ni 合金成功地形成Ti 2Ni 相分布在TiNi 基体的金属间纳米复合材料,通过快速凝固抑制TiNi 形成,导致在过冷温度形成Ti 2Ni.研究表明这一过程只有在合金中加入少量Si 促进Ti 2Ni 的形核才能得以实现[21].采用同一快速凝固原理,K.Chattopadhyay 等成功制备了在铝基金属玻璃基体上弥散Bi 的纳米复合材料,以及Zn-Bi,Al-Pb,Cu-Pb 等复合材料[20],Akihisa 等[22]研制了在Al 基体上均匀分布纳米级准晶颗粒,获得优于传统合金各种类型具有高强度,高塑性,高高温强度的铝合金.深过冷快速凝固在特殊情况下可以完全抑制相分离,形成亚稳定(或不稳定)的过饱和固溶体或玻璃态组织,这些亚稳固溶体的分解则经常可以形成分布更为均匀的纳米分散体.非晶晶化法可以通过非晶态固体的晶化动力学过程来获得纳米晶合金,也可以获得纳米复合材料:纳米级颗粒或晶须弥散分布在另一粗晶或纳米级亚晶粒组成的粗晶基体内.平德海等[23]报导了加入Nd 后Ti 80Si 20非晶态合金的晶化初期析出相,以及完全晶化后,A -Ti 颗粒弥散分布于Ti 3Si 基体相中所形成的纳米复合材料的微观结构和形成机制.用非晶晶化法在原非晶基体上析出大量纳米尺度磁性粒子,提高材料磁导率也是磁性纳米复合材料制备的一个重要方法. 采用溶胶-凝胶法合成纳米复合材料近年来发展迅速[24-25],如CdS-玻璃,Ag -SiO 2复合材料等.Nogami 等人在SiO 2玻璃中原位析出CdS x Se 1-x 纳米粒子.西安交大电子材料研究所采用溶胶-凝胶工艺制备了大量多组分铁电相凝胶玻璃,成功地在凝胶玻璃中生长出PbTiO 3,Pb (Zr,Ti)O 3,BaTiO 3,KTiPO 4等铁电微晶.此外,用深度塑性变形法来制备纳米陶瓷颗粒增强铝基或铜基纳米复合材料也有报导[26].2.3 纳米复合薄膜#438#材 料 科 学 与 工 艺 第10卷2.3.10-2复合体系纳米薄膜0-2复合体系纳米薄膜是指纳米粒子镶嵌在另一种基体材料中的纳米复合膜,可以是两组分也可以是多组分复合膜.由于在材料表面改性与防护,摩擦学,光学,电学,催化等方面有着广阔的应用前景,已越来越引起人们的广泛兴趣,有关的制备研究工作很多.一般说来,可以通过两种途径来制备此类复合薄膜,一是通过沉积形成的各组分非晶混合组织的后续热处理,在热处理过程中各组分再进行热力学分离或形成化合物.二是通过各组分的直接共同沉积(或活性沉积)形成.直接共沉积法可以包括多种形式,如采用磁控共溅射法可以把金属纳米粒子镶嵌在高聚物的基体中,采用辉光放电等离子体溅射Au,Co,Ni等靶,可获得不同含量纳米金属粒子与碳的复合膜.Barna等采用共沉积法制备了Al-SiOx,Au-C60,Cu-C60复合膜,金属纳米Al,Au,Cu分别弥散在SiO x和C60的基体上,并系统研究了纳米复合薄膜材料的形成机理[27].K.Symiyama等在聚酰亚胺的基板上通过共沉积法直接将Fe粒子束直接沉积在Cu和Ag 的基体上[28-29].近年来,这种在顺磁基体(Cu, Au,Ag等)中弥散着磁性纳米粒子(Fe,C o,Ni等)的颗粒膜,由于其产生的巨磁阻效应(GMR),已经成为巨磁阻材料的重要组成部分.镶嵌在介质中纳米半导体颗粒的光学特性在光学器件上具有良好的应用前景.研究表明:弥散分布在有色玻璃中的纳米CdS颗粒具有准零维量子点特征,材料的三阶光学非线性增强效应强,可观测到响应时间为皮秒量级的光双稳现象[30].纳米Ge在SiO2中的镶嵌复合薄膜已经研制成功.石旺舟等采用射频磁控共溅射法制备了GaAs平均粒径为3~10nm的GaAs-SiO2镶嵌复合薄膜[31].LB膜技术可以组装分子取向和膜厚可控的有机超薄膜,厚度可达纳米量级.近年来,该技术已用于薄膜复合材料的制作研究,如在花生酸LB 膜内的得到粒径2.0~ 3.0nm稳定的PbS微粒[32].纳米薄膜材料用于金属表面上的复合镀层,可获得超强的耐磨性,自润滑性,热稳定性和耐腐蚀性.TiN/MoS2,TiB2/MoS2,ZnO/WS2等一系列纳米复合膜已经研制成功[33-35].最近有报导,设计了新型TiC/DLC,WC/DLC,WC/DLC/WS2涂层[36-38].DLC为类金刚石碳(Dia mand-like Car-bon)膜,具有高硬度,低摩擦系数和高耐磨性.在DLC膜上添加纳米WC,TiC,WS2粒子,可以综合利用硬质纳米WC(TiC)的耐磨性和力学性能稳定性,非晶DLC在环境条件下的低摩擦系数和磨损,而WS2提供在真空条件下的润滑性,材料可适应各种特殊条件(如真空,潮湿等),摩擦系数达到0.02~0.05.因此此类材料将在航空航天领域显示巨大的应用潜力.2.3.2纳米多层膜层状结构复合材料,即由不同材质交替形成的组分或结构交替变化的多层膜,当各层膜的厚度减少到纳米级时,会显示出比单一膜更为优异的特殊性能.纳米多层膜的研究已成为当前材料学和物理学的热门课题.如果两种软金属(如Cu/Ni[39],Cu/Ag[40]等)层状交替复合成层厚为纳米级的多层结构时,材料表现出优异的机械性能,如高的屈服强度和高的弹性模量.许多工作者进行了实验与理论研究,对于纳米多层膜的增强机理,给与不同的解释[40,41],如Hall-Petc h关系的邻层界面以及晶界处的位错塞积理论,基于位错象力的Koehler模型以及层间位错弯曲理论的Orowan模型等.单晶(外延)多层膜和多晶体多层膜的强化机理也不尽相同.对于当层的厚度小于某一特定值时,材料的强度将不符合Hall-Petch关系,目前尚无统一的解释.纳米多层膜的机械性能取决于,材料剪切模量的错配程度,层内晶粒尺寸,层间界面处结构不连续性以及界面本身的结构复杂性等多种复杂因素.Yiop-Wah Chung等人采用磁控管喷镀技术,在钢基体上交替地喷镀上TiN和CNx纳米层,得到的膜层硬度为45~55GPa,已接近金刚石的最低硬度[42].王静等用离子束辅助沉积技术(Ion Beam Assisted Deposition)制成C N x/NbN纳米多层膜,多层膜内的NbN为多晶结构,多层膜的显微硬度最大可达41.81GPa[43].瑞士洛桑粉末技术实验室等单位合作研制成功氢化非晶硅(厚度为2 ~4nm)与氮化硅(厚度为6nm)的多层复合膜,经激光处理在可见光范围内出现荧光,这种多层膜放在导电胶和晶体硅基片上还可测得电光效应.对于纳米多层膜的摩擦磨损性能的研究也有报导[44-46].纳米级多层材料一般通过气相沉积,溅射法,电沉积法等结晶成长技术制备.据报道[41,47],可以将原数十微米厚的金属箔(如Fe和Cu)相互叠加后通过机械加工(如重复压缩和轧制)方法制备成纳米级金属多层体.这种通过简单机械加工法#439#第4期孔晓丽,等:纳米复合材料的研究进展来制备大量的层厚如此小的多层复合材料,对于推广纳米多层材料很有意义.3 结束语纳米复合材料发展迅速,由于篇幅有限,本文侧重报导了纳米复合材料中具有新意的最新研究成果.开发与研究新型的纳米复合材料,依赖于制备技术的发展与完善,以及对其结构性能进一步深入的认识和探索,这需要材料,物理,化学,工程等多学科的密切配合与协作.相信随着人们认知手段的不断改进,会有更多的纳米复合材料问世,并产生巨大的社会和经济效益.参考文献:[1]卢 柯,周 飞.纳米晶体材料的研究现状[J].金属学报,1997,33(1):99-106.[2]王 淼,李振华,鲁 阳,等.纳米技术应用技术的新进展[J].材料科学与工程,2000,18(1):103-105.[3]蒲 健,肖健中.大块纳米晶材料的制备、性能及应用前景[J].金属功能材料,2000,7(1):11-15.[4]张立德,牟季美.纳米材料学[M ].沈阳:辽宁科技出版社,1994.[5]Alkimune Y.High pressure research on nanocrystalline solidmaterials[J].J.Mater.Sci.,1990(25):3439-3445.[6]严冬生.纳米粉体制备新方法[J].无机材料学报,1995,10(1):1-4.[7]施利毅,朱以华,陈爱平,等.高温氧化合成纳米T iO2-Al2O3复合粒子[J].材料研究学报,2000,14增刊:58-62.[8]牟季美,张立德,赵铁男,等.纳米Al2O3块状材料在可见光范围的荧光现象[J].物理学报,1994,43(6):1000-1007.[9]CARTURAN G,MAGGIO R D,MONTAGNA M ,et a l .Kinetic of phase separation and thermal behavi or of gel-de -rived Al2O3doped by Cr2O3:an X -ray diffraction and fluorescence spectroscopy study [J].J.M ater.Sci.1990(25):2705-2710.[10]MC MICHAEL R D,SHULL R D,SWARTZE NDRUBER LJ,et al .Magnetocaloric effect in superparamagnets[J].J.Magnetism and Magnetic M ater.,1992(111):29-33.[11]GRIANNELIS E P.Polymer layered silicate nanocompos -ites[J].Adv.Mater.,1996,8(1):29-35.[12]CARROT E NUTO G,NICOLAIS L,KUANG X,et al .Amethod for the preparation of PMMA -Si O2nanocompos -ites wi th high homogenei ty [J]p.Mater.,1995(2):385-393.[13]ZHANG Lide,XIE Cunji,ZHU Xianfang.A stud y of thein ternal friction and modulus of epoxy -resin -dispersednanometer -sized alumina particles [J].J.Alloys and Compounds,1994(211/212):390-392.[14]WANG Qihua,XUE Qunji,LIU Wei min,et al .The ef -fect of particle size of nanometer ZrO2on the tribological behavior of PEEK[J].Wear,1996(198):216-219.[15]王齐华,薛群基,沈维长,等.纳米ZrO2填充PEEK材料的摩擦表面和转移膜[J].材料研究学报,1999,13(1):107-109.[16]董树荣,徐江平,张孝彬.纳米碳管增强铜基复合材料的力学性能和物理性能[J].材料研究学报,2000,14,增刊:132-136.[17]张伟刚,成会明,周龙江,等.纳米陶瓷/炭复合材料自愈合抗氧化行为[J].材料研究学报,1997,11(5):487-490.[18]PROVENZANO V ,HOLTZ R L.Nanocomposi tes for hi ghtemperature applications[J].Materials Science and Eng-i neering,1995(A204):125-134.[19]NASER J,FERKEL H,RIE HE MANN W.Grain stabilisa -ti on of copper with nanoscaled Al2O3-powder[J].Mater-i als Science and Engineering,1997(A234-236):470-473.[20]CHATTOPADHYAY K.Synthesis and properties of nan -odispersed granular materials [J].M aterials Science and Engineering,1997(A226-228):1012-1018.[21]NAGARAJ AN R,AOKI K,C HATTOPADHYAY K.M-icros tructural development in rapidly solidified Ti-Ni alloys [J]..Mater.Sci.Eng.,1994,A179-180:198-204.[22]Akihisa Inoune,Hisamichi Limura.High-strength alu -minum alloys containing nanoquasicrystalline paticles[J].Materials Science and Engineering,2000(A286):1-10.[23]平德海,李阁平,谢天生,等.Ti-Si-Nd 纳米复合材料的微观结构[J].材料研究学报,1996,10(3):235-240.[24]鲁圣国,韩 玉,张良莹,等.含纳米CdS 玻璃的溶胶-凝胶制备和性质[J].硅酸盐学报,1994,22(1):71-76.[25]孔令兵,张良莹,姚 熹.溶胶-凝胶法制备Ag /SiO 2玻璃初探[J].科学通报,1995,40(8):691-693.[26]ALEXANDROV I V,ZHU Y T,LOWE T C,et al .M-icrostructures and properties of nanocomposites obtai ned through SPTS consolidation of powders[J].Metallurgical and Materials Transactions 1998(29A):2253-2260.[27]B ARNA P B,ADAMIK M ,L B B B R J,et al .Formationof polycrystalline and microcrystalline composite thin films by codeposi tion and surface chemical reaction[J].Surface and Coati ngs Technology,2000(125):147-150.[28]SUM IYAMA K ,HIHARA T,MAKHLOUF S A,et al .Structure difference between Fe/Cu and Fe/Ag granular films produced by a cluster beam method [J].Materias Science and Engineering,1996(A217/217):340-343.#440#材 料 科 学 与 工 艺 第10卷[29]HIHARA T,S UMIYAMA K,ONODERA H,et al.Char-acteristic gian t magnetoresistance of Fe/Cu granular films produced by cluster beam deposition and subseq uent an-nealing[J].Materials Science and Engineering,1996(A217/218):322-325.[30]BELLEGUIE L,B B NYAI L.Third-order nonlinear sus-ceptibili ty of large semiconductor microcrystallines[J].Phys.Rev. B.1993(47):4498-4507.[31]石旺舟,林揆训,林璇英,等.纳米GaAs-Si O2镶嵌复合薄膜的制备[J].材料研究学报,1998,12(5):555 -557.[32]吴玉清,徐蔚青,赵冰,等.用紫外吸收光谱研究花生酸LB膜中PbS超微粒子生成[J].吉林大学自然科学学报,1996,(2):71-74.[33]PRASAD S V,MCDEVITT N T,ZABINSKI J S.Tribologyof tungs ten disufide-nanocrystalline zinc ox ide adaptive lubricant films from ambient to500e[J].Wear,2000,237:186-196.[34]B AE Y W,LEE W Y,YUST C S,et al.Synthesis andfriction behavior of chemically vapour deposi ted composites coatings containing discrete T i N and MoS2phases[J].J.Am.Ceram.Soc.1996(79):819-824.[35]GILMORE R,BAKER M A,GISSLER P N,et a l.Preparation and characterization of low-friction TiB2-based coatings by incorporation of C or MoS2[J].Surf.Coat.Technol.1998(105):45-50.[36]VOE VODIN A A,O.NEILL J P,J.S.Zabinski.Nanocomposites tribological coatings for aerospace applica-tions[J].Surface and Coating Technology,1999,(116-119):36-45.[37]VOE VODIN A A.PRASAD S V,ZABINSKI J S.Nanocrystalline carbine/amorphous carbon composites[J].J.Appl.Phys.1997(82):855-858.[38]VOEVODIN A A,ZABINSKI J S.Load-adaptive crys-talline-amorphous nanocomposites[J].J.Mater.Sci.1998(33):319-327.[39]EBRAHIMI F,KONG D.Effect of microstructure onstrength and fracture of electrodeposited Cu/Ni layerednano-composites[J].Scripta Materialis,1999,40(5):609-616.[40]Fereshteh Ebrahimi,Qing Zhai,Dan Kong.Mechanicalproperties of Cu/Ag multilayered composites[J].Materials Science and Engineering,1998(A255):20-32. [41]Misra A.VERDIER M,LU Y C,et al.Structure andmechanical properties of Cu-X(X=Nb,Cr,Ni) nanolayered composites[J].Scripta Materialis,1998(39): 555-560.[42]Antonio Regalado.Another step toward a diamond beater[J].Science,1995(267):1089.[43]王静,何建立,李文治,等.IBAD合成CNx/NbN纳米多层膜[J].材料研究学报,1998,12(5):543-545.[44]DAIA Ben M.,ABUBERT BDI,S.et al.Me-chanical properties of Al/Al2O3nanolaminated films:cor-relation to microstructure[J].Surface and Coatings T ech-nology,2000(125):196-200.[45]ZHANG Wei,QUNJI Xue.Fretting wear characteristics ofNi/Cu mul tilayers electrodeposited on beryllium bronze substrate[J].Wear,1998(214):23-29.[46]李振明.纳米铜/镍多层膜的耐磨性研究[J].材料开发与应用,1999,14(5):17-19.[47]黄斌,石原庆一,新宫秀夫.高强度Fe/Cu纳米级多层材料的制备[J].新工艺新技术,1998(2):26-27.(编辑:张积滨)#441#第4期孔晓丽,等:纳米复合材料的研究进展。
稀土元素的应用镧的应用非常广泛,应用于各种合金材料、贮氢材料、热电材料、磁阻材料、发光材料、屏蔽涂料、光学玻璃等。
它也应用到制备许多有机化工产品的催化剂中。
在农业上,有科学家把镧对农作物的作用赋与“超级钙”的美称。
1、传统应用(1)钢铁改质剂金属镧加入钢中可脱硫和脱氧,可细化晶粒,形成微合金并改变夹杂物的形态及分布,提高抗氢脆和抗腐蚀能力;加入到铁中可净化铁水,改变石墨形态,防止杂质元素破坏球化作用。
由于钢铁在各个领域应用广泛,金属镧在钢、铸铁等高性能产品发展过程中均扮演着重要的色。
(2)还原剂金属镧与氧在高温下发生还原反应,利用蒸气压差可真空蒸馏分离提纯制备金属钐、金属铥等高蒸气压金属,该工艺简单,污染少。
(3)石油炼制催化剂为了从原油中获得更多的汽油、柴油等轻质油, 必须在石油精炼加工中对重质油采用催化裂化处理, 就必需使用石油裂化催化剂, 稀土分子筛裂化催化剂比不含稀土的催化剂催化活性和热稳定性均有明显提高, 可使轻质油收率提高4%, 使催化剂寿命延长2倍, 炼油成本降低20%, 并使裂化装置生产能力提高30%-50%。
(4)功能陶瓷镧在功能陶瓷材料中具有特别好的应用前景;如在钛酸钡(BaTiO3)电容器陶瓷中加入氧化镧,可明显提高电容器的稳定性和使用寿命,加入1%氧化镧,可延长使用寿命400-500倍。
镧作为固体电解质可用于固体氧化物燃料电池。
他们都具有良好的抗断裂韧性、热稳定性和抗循环疲劳性。
把镧作为主成分加入锆钛酸铅制备(Pb, La)(Zr,Ti)O3, 即电光陶瓷, 可用于强核辐射护目镜、光通讯调制器、全息记录等。
2、应用于新型材料(1)光学玻璃光学玻璃中应用镧既是经典用途,也是目前主要应用领域之一。
镧系光学玻璃具有高折射率和低色散的优良光学特性,可简化光学仪器镜头、消除球差、色差和像质畸变,扩大视场角,提高鉴辨率和成像质量,已广泛用于航空摄像机、高档相机、高档望远镜、高倍显微镜、变焦镜头、广角镜头和潜望镜头等方面,已成为光学精密仪器和设备不可缺少的镜头材料。
材料的铁电性能综述摘要:回顾了铁电现象的发现及发展,简述了铁电性的机理,描述了铁电材料应用现状与前景,并介绍了几类前景很好的铁电材料。
指出目前对于铁电性的还需要进行更多的和更深入全面的研究。
关键词:铁电性,电畴,铁电薄膜,存储器前言:铁电材料,是指具有铁电效应的一类材料,它是热释电材料的一个分支。
铁电材料及其应用研究已成为凝聚态物理、固体电子学领域最热门的研究课题之一。
铁电材料是一类重要的功能材料,是近年来高新技术研究的前沿和热点之一。
在一些电介质晶体中,晶胞的结构使正负电荷重心不重合而出现电偶极矩,产生不等于零的电极化强度,使晶体具有自发极化,晶体的这种性质叫铁电性(ferroelectricity)。
铁电性:铁电性是某些绝缘体材料中在外加电场的作用下自发极化可以被反转的特性。
多数材料的极化是与外加电场线性成正比的,非线性效应是不显著的。
这种极化叫做电介质极化。
有些称作顺电体的材料,线性的极化效应更加显著。
于是与极化曲线斜率相对应的介电常数是以一个外加电场的函数。
除了非线性效应以外,铁电材料中还存在自发极化。
这种材料称作焦电材料。
铁电材料与其不同之处在于它的自发极化可以在外加电场作用下被反转,产生一个电滞归线。
一般来说,材料的铁电性只存在于某一相变温度以下,称为居里温度。
在这个温度以上,材料变为顺电体。
铁磁体中的原子有固定的磁偶极矩,这些磁矩自发排列起来。
自发排列的原因是固体中电子的量子力学效应。
铁磁体的居里温度指向顺磁体转变的温度,同理对铁电体,指材料不再是铁电体的温度。
对于一块未极化铁电晶体,电畴随机排列,净极化强度为零。
当外加一个电场时,电畴同时向电场方向转动,当电场足够强时,全部电畴沿电场方向排列一致,这时晶体变成一个大电畴,处于极化饱和状态。
当扭转电场时,极化反转但不回零,晶体获得一个剩余极化强度PR,当电场被扭转到矫顽场Ec时,剩余极化强度被去除。
铁电相是一个相当严格的状态,大多数材料都是顺电状态,顺电相指即使没有固有电偶极子,电场也可诱发极化。
铁电陶瓷材料院系:材料与冶金专业:金属材料工程班级:10-材料-1 学号:1061107127 姓名:周联邦日期:2012-12-3摘要:本文论述了铁电陶瓷的性质、原理、效应。
着重介绍了几种具有代表性的铁电陶瓷材料的研究现状,以及人们在研究过程中产生的新问题。
这几种材料主要包括层状铁电陶瓷,弛豫型铁电陶瓷,含铅型铁电陶瓷,无铅型铁电陶瓷,以及反铁电陶瓷材料。
最后,对未来的研究与应用前景进行了展望。
关键词:铁电陶瓷;铁电性;性质;效应;钙钛矿;应用;研究铁电陶瓷是指具有铁电性的陶瓷。
材料在一定温度范围内能够自发极化,且自发极化能随外电场取向的性质。
铁电陶瓷特性铁电陶瓷,主晶相为铁电体的陶瓷材料。
它的主要特性为:(1) 在一定温度范围内存在自发极化,当高于某一居里温度时,自发极化消失,铁电相变为顺电相;(2) 存在电畴;(3) 发生极化状态改变时,其介电常数-温度特性发生显著变化,出现峰值,并服从Curie-Weiss 定律;(4) 极化强度随外加电场强度而变化,形成电滞回线;(5) 介电常数随外加电场呈非线性变化;(6) 在电场作用下产生电致伸缩或电致应变。
(7) 电性能:高的抗电压强度和介电常数。
低的老化率。
在一定温度范围内介电常数变化率较小。
介电常数或介质的电容量随交流电场或直流电场的变化率小。
铁电陶瓷原理某些电介质可自发极化,在外电场作用下自发极化能重新取向的现象称铁电效应。
具有这种性能的陶瓷称铁电陶瓷。
铁电陶瓷具有电滞回线和居里温度。
在居里温度点,晶体由铁电相转变为非铁电相,其电学、光学、弹性和热学等性质均出现反常现象,如介电常数出现极大值。
1941 年美国首先制成介电常数高达1100的钛酸钡铁电陶瓷。
主要的铁电陶瓷系统有钛酸钡- 锡酸钙和钛酸钡-锆酸钡系高介电常数铁电陶瓷, 钛酸钡-锡酸铋系介电常数变化率低的铁电陶瓷,钛酸钡-锆酸钙-铌锆酸铋和钛酸钡-锡酸钡系高压铁电陶瓷以及多钛酸铋及其与钛酸锶等组成的固溶体系低损耗铁电陶瓷等。
Preparation of(Pb,La)(Zr,Sn,Ti)O3antiferroelectric ceramics using colloidal processing and the®eld induced strain propertiesMing Chen*,Xi Yao,Liangying ZhangFunctional Material Research Laboratory,Tongji University,Shanghai200092,ChinaReceived15September2000;received in revised form11November2000;accepted18November2000AbstractA two-step wet chemical method using colloidal processing was developed for the preparation of(Pb,La)(Zr,Sn,Ti)O3anti-ferroelectric ceramics.The precursorB site was prepared by coprecipitation and precursor A site was introduced in the form of aqueous solution.Dried gel calcined at600C for2h formed single perovskite phases.Submicron powders were obtained by pla-netary ball milling.Average grain size about4m m and relative density of98%were achieved from disc specimens sintered at 1100 C for2h.An antiferroelectric double polarization hysteresis loop with antiferroelectric to ferroelectric phase revert electric ®eld E AFE-FE=4.3kV/mm and a strain curve with maximum longitude strain of0.30%under6kV/mm electric®eld were measured from composition of(Pb0.97La0.02)(Zr0.65Sn0.25Ti010)O3.#2001Elsevier Science Ltd.All rights reserved.Keywords:Antiferroelectrics;Ferroelectric properties;(Pb,La)(Zr,Sn,Ti)O3;Perovskites;Powders-chemical preparation1.IntroductionThe lead stannate zirconate titanate(PZST)family of ceramics was®rst investigated by Berlincourt1and has been widely studied for applications in energy conver-sion in the60s and70s.2À4From the beginning of the 80s,the research interest to PZST ceramics was shifted to further understanding the phase transformations and exploring new application potentials of their phase transformation related properties.5À13In the PZST family,lead lanthanum stannate zirco-nate titanate(PLZST)and its modi®cations,which electric®eld induced structural changes at antiferro-electric to ferroelectric(FE-AFE)phase transforma-tions(e.g.rhombohedral to tetragonal)lead to a maximum0.85%longitudinal strain,6have been studied for potential actuator applications in recent years.10À13 For the ceramics used in actuators,the purity,stoi-chiometry,second phase content and grain size which are controlled by the processing conditions,a ect markedly the®nal properties and reliability of the devices.14In the previous studies,10À13the PLZST ceramics were mainly prepared by a conventional solid-state reaction method. Having been proved in PZT ceramics,this kind of method often leads to compositional¯uctuation and structural inhomogeneities especially when the compo-sition is near the morphotropic phase boundary.15 Generally,the wet chemical methods have more advantages in compositional and structural control as compared to the solid-state reaction method.But for the sol-gel method,the high cost of starting materials and the di culties in densi®cation caused by a high content of organic materials in the precursors make it more sui-table for thin®lm preparation than for bulk ceramics. As for the PLZST ceramics prepared by coprecipita-tion,13since lead chloride is quite insoluble,it is di cult to dissolve water soluble lead compound(e.g.lead nitrite and lead acetate)together with the only water soluble stannic compound(e.g.stannic chloride).Even so,the di erences of the optimal precipitating condition between A site(Pb and La)and B site(Zr,Sn and Ti) hydroxides tend to result in a stoichiometric problem in the®nal powders.In this work,a wet chemical method ceramics using colloidal processing was developed for the preparation of PLZST.Relative low cost start materials were used,0955-2219/01/$-see front matter#2001Elsevier Science Ltd.All rights reserved. P I I:S0955-2219(00)00336-8Journal of the European Ceramic Society21(2001)1159±1164/locate/jeurceramsoc*Corresponding author.Tel.:+86-21-65980230;fax:+86-21-65 980230.E-mail address:chenming@(M.Chen).which makes this method suitable for bulk ceramics preparation.A two-step procedure was designed,in which the precursor site B was prepared by coprecipita-tion and precursor site A was introduced in the form of an aqueous solution,eliminating the problems in the coprecipitation method as mentioned above.2.Experimental procedure2.1.Powders and disc specimens preparationThe composition of(Pb0.97La0.02)(Zr0.65Sn0.25Ti0.10) O3at the antiferroelectric to ferroelectric phase bound-ary in the PLZST ternary system was chosen for the powder preparation,as shown in Fig.1.The starting reagents were high purity lead acetate Pb(CH3COOH)2.3H2O,lanthanum acetate La(CH3 COOH)3.11/2H2O,zirconium oxychloride ZrOCl2.8H2O, stannic chloride SnC14.5H2O and titanium tetrachloride TiCl4.The¯ow diagram is given in Fig.2.The precursor solution of site B was prepared by®rst dissolving ZrOCl2.8H2O and SnCl4.5H2O in deionized water heated to80 C,and then allowing TiCl4to drip slowly into the hot solution while vigorously stirring.The coprecipitation was achieved by mixing B site precursor solution with an equal volume of aqueous ammonia NH4OH the concentration of which had been adjusted to maintain the end pH of the mixture at8.5.The pre-cipitates were then washed with distilled water with the pH adjusted to8.5with NH4OH until no residual ClÀcould be detected by acidi®ed silver nitrate.The precursor solution of site A,prepared by dissol-ving Pb(CH3COOH)2.3H2O together with La(CH3COOH)3.112H2O in deionized water,was then mixed with as-washed B site precipitates,adequate acetic acid was added as peptizator to achieve an homogeneous mixture.The peptizate obtained was,thereafter,heated at 80 C until geli®cation occurred before being dried at 120 C for6h.The dried gel was ground in a mortar and calcined in air from450to650 C for2h to deter-mine the optimal calcining condition.Twenty hours planetary ball milling with ZrO2media was carried out to reduce the calcined powders to a sub-micron con-sistency.The powders obtained were subjected to axial press-ing at200MPa to form disc specimens of12mm in diameter and0.5mm in thickness.The disc specimens were sintered from1000to1250 C for2h in a lead rich atmosphere.Silver paste was screen printed on the sur-face of the discs,which were then baked at700 C to formelectrodes.Fig.1.Ternary phase diagram of(Pb0.97La0.02)(Zr,Sn,Ti)O3showingcomposition in this work.F T,ferroelectric tetragonal phase;F R(HT),ferroelectric rhombohedral phase(high temperature);F R(LT),ferro-electric rhombohedral phase(low temperature);AFE T,antiferro-electric tetragonal phase;AFE O,antiferroelectric tetragonalphase.Fig.2.Flow chart of chemical preparation of(Pb,La)(Zr,Sn,Ti)O3ceramic powders.1160M.Chen et al./Journal of the European Ceramic Society21(2001)1159±11642.2.Powders and disc specimens characterizationThe thermal behavior of as-dried gel was studied by thermogravimetric analysis(TA instruments,TGA 2050)in the temperature range of30±800 C,using a high resolution dynamic method,and di erential scan-ning calorimetry(TA instruments,DSC2910)in the temperature range of30±600 C at a heating rate of di raction meter(Rigaku,D/max-2400).The stoichio-metry of calcined powder was analyzed by X-ray¯uo-rescence technique(Rigaku,3550Simultaneous X-Ray Spectrometer System).The distribution of the particle size of powders after20h planetary ball milling was measured by a laser particle size analyzer(Cilas,Gran-ulometer1064).Relative density of disc specimens after sintering was determined by the water displacement method,and the grain size was measured by scanning electron micro-graphy(Shimadzu EPMA-8705QH2electron probe microanalyzer)from fractured surfaces.Hysteresis loop and strain curve were measured using a computer con-trolled system comprised of a modi®ed Swayer-Tower circuit and a linear variable displacement transformer (LVDT)at room temperature.3.Results and discussionFig.3shows the TGA and DSC curves of the as-dried gel.The initial weight loss in the temperature range25±150 C is attributed to the liberation of occluded water and the gradual decomposition of acetate group,which is accompanied by an endothermic peak in96.75 C.The minor ednothermic peak in192.67 C is corresponding to the decomposition temperature of lead acetate.The marked weight loss of the powder from200to400 C may be due to the decomposition of hydroxyl group, which resulted in endothermic peaks observed at269.68 and308.57 plete decomposition was observed around600 C.Based on the results of TGA and DSC,a series of calcinations were carried out on the dried gel from 450to650 C for2h.XRD was conducted and the X-ray di raction patterns of the calcined powder are shown in Fig. 4.The crystalline perovskite phase appears after being calcined at450 C for2h and the complete perovskite phase of PLZST was formed at 600 C for2h.The actual composition of the powder calcined at 550 C for2h was analyzed by XRF.The results listed in Table1show that PLZST powders prepared by this method have good stoichiometry.After being ball mil-led,a submicron particle size distribution was achieved as listed in Table2.The relative density of disc specimens sintered from 1000to1250 C for2h was measured and SEM was conducted for the optimization of sintering.As illu-strated in Fig.5,a maximum relative density of98% was achieved from the specimens sintered at1100 C for 2h,and in the temperature range of1100±1200 C,the relative density exceeds97%.Fig.6shows the SEM photographs of the fractured surfaces from specimens sintered at1100 C for2h.It can be seen that the cera-mic body is well densi®ed and average grain size is about4m m.A typical antiferroelectric double hysteresis loop and ®eld-induced strain curve of the specimens sintered at 1100 C for2h are illustrated in Fig.7.Thetransition Fig.3.TGA and DSC curves of(Pb0.97La0.02)(Zr0.65Sn0.25Ti0.10)O3dried gel.M.Chen et al./Journal of the European Ceramic Society21(2001)1159±11641161Fig.4.X-ray di raction patterns of (Pb 0.97La 0.02)(Zr 0.65Sn 0.25Ti 0.10)O 3ceramic powders calcined at (a)450 C,(b)500 C,(c)550 C,(d)600 C,(e)650 C for 2h.Fig.5.Relative density of disc specimens sintered at various tem-peratures for 2h.Table 1XRF analysis of calcined PLZST powder Element Composition Analyzed value Pb 0.970.972La 0.020.018Zr 0.650.643Sn 0.250.262Ti0.100.092Table 2Particle size distribution of PLZST powder after 20h planetary ball milling D 10D 50D 90D mean 0.10m m0.50m m1.0l m m0.8m m1162M.Chen et al./Journal of the European Ceramic Society 21(2001)1159±1164®eld from antiferroelectric to ferroelectric E AFE-FE is 4.3kV/mm and the maximum longitude strain under 6kV/mm electric ®eld is 0.30%,which are approximately equal to the literature value.114.ConclusionsA two-step wet chemical method using colloidal pro-cessing was developed for the preparation of (Pb,La)(Zr,Sn,Ti)O 3antiferroelectric ceramics.The com-plete perovskite phase was formed at 600 C for 2h,and submicron powders were obtained through ball milling.A relative density of 98%was achieved from disc speci-mens sintered at 1100 C for 2h,average grain size mea-sured from fracture surfaces is about 4m m.An antiferroelectric double hysteresis with E AFE-FE =4.3kV/mm and a strain curve with maximum longitude strain of 0.30%under a 6kV/mm electric ®eld were observed from the composition of (Pb 0.97La 0.02)(Zr 0.65Sn 0.25Ti 0.10)O 3.AcknowledgementsOne of the authors (M.C.)would like to thank Ms.He Ling for XRF and particle size analysis and Ms.Wu Xiaoqing for XRD analysis.References1.Berlincourt,D.,Ja e,H.,Krueger,H.H.A.and Ja e,B.,Release of electric energy in PbNb(Zr,Ti,Sn)O 3by temperature and by pressure-enforced phase transitions.Appl.Phys.Lett.,1963,3,90±98.2.Berlincourt,D.,Krueger,H.H.and Ja e,B.,Stability of phase in modi®ed lead zirconate with variation in pressure,electric ®eld,temperature and composition.Phys.Chem.Solids ,1964,25,659±674.3.Ja e,B.,Cooke,W.R.,Jr.and Ja e,H.,Piezoelectric ceramics.In Monographs on Non-metallic Solids .Academic Press,London,1971,pp.135±181.4.Cross,L.E.,Antiferroelectric±ferroelectric switching in simple `Kittle'antiferroelectrics.J.Phys.Soc.Jpn.,1963,23,77±82.5.Uchino,K.and Nomura,S.,Shape memory e ect associated with the forced phase transition in antiferroelectrics.Ferro-electrics ,1983,50,517±521.6.Pan,W.Y.,Zhang,Q.,Bhalla,A.and Cross,L.E.,Field-forced antiferroelectric-to-ferroelectric switching in modi®ed lead zirco-nate titanate stannate ceramics.J.Am.Ceram.Soc.,1989,72(4),571±578.7.Akiyama,T.and Fujisawa,E.,Field-induced antiferroelectric-to-ferroelectric phase transition of lead niobium zirconate titanate stannate ceramics.Jpn.J.Appl.Phys .,1997,36(1),No.9B.8.Nam,Y.-W.and Yoon,K.H.,Phase formation and ®eld-induced strain properties in Y-modi®ed lead zirconate stannate titanate ceramics.Jpn.J.Appl.Phys.,1999,38,5544±5548.9.Yang,P.and Payne,D.A.,Thermal stability of ®eld-forced and ®eld-assisted antiferroelectric±ferroelectric phase transformations in Pb(Zr,Sn,Ti)O 3.J.Appl.Phys.,1992,71(3),1361±1367.10.Yang,T.,Field-induced phase transition of Pb(Zr,Sn,Ti)O 3antiferroelectric ceramics .PhD thesis,Xi'an Jiaotong University,Xi'an,China (in Chinese).11.Markowski,K.,Park,S.-E.,Yoshikawa,S.and Cross,L.E.,Thee ect of compositional variations in the lead lanthanum zirconate stannate titanate system on electrical properties.J.Am.Ceram.Soc.,1996,79(12),3297±3304.12.Park,S.-E.,Markowski,K.,Yoshikawa,S.and Cross,L.E.,E ect on electrical properties of barium and strontiumadditionsFig.7.Antiferroelectric double hysteresis and strain cure of PLZST ceramics with a composition of (Pb 0.97La 0.02)(Zr 0.65Sn 0.25Ti 0.10)O 3..Fig.6.SEM photograph of fractured surface from the PLZST speci-men sintered at 1100 C for 2h.M.Chen et al./Journal of the European Ceramic Society 21(2001)1159±11641163in the lead lanthanum zirconate stannate titanate system.J.Am.Ceram.Soc.,1997,80(2),407±412.13.Lee,J.-H.and Chiang,Y.-M.,Pyrochlore±perovskite phasetransformation in highly homogeneous(Pb,La)(Zr,Sn,Ti)O3 powders.J.Mater.Chem.,1999,9,3107±3111.14.Uchino,K.,Materials update:advances in ceramic actuatormaterials.Materials Letters,1995,22,1±4.15.Kakegawa,K.and Mohri,J.,Preparation of Pb(Zr,Ti)O3through the use of cupferron.J.Am.Ceram.Soc.,1984,67(1), C2±C3.1164M.Chen et al./Journal of the European Ceramic Society21(2001)1159±1164。