数码管的动态显示与静态显示
- 格式:pptx
- 大小:570.46 KB
- 文档页数:19
简要描述数码管的静态显示方式和动态显示方式数码管是一种常见的数字显示器件,它由多个发光二极管组成。
数码管广泛应用于各种仪器、仪表以及数码钟表等领域,方便人们对数字进行直观的观察。
数码管的显示方式可以分为静态显示和动态显示两种。
一、静态显示方式:静态显示方式是指在任意时刻,只有某一个数码管被点亮,显示对应的数字。
在静态显示模式下,每个数码管都有一个对应的驱动电路,通过给驱动电路加电来点亮相应的数码管。
这种方式显示的数字清晰、稳定,但相对来说比较耗能。
静态显示常用于对显示要求较高、静止不动的场合。
二、动态显示方式:动态显示方式是指通过快速切换多个数码管的点亮状态来显示一个完整的数字。
通常一次只有一个数码管被点亮,然后迅速关闭,接着点亮下一个数码管,如此循环往复,以达到显示多个数字的目的。
动态显示通过控制每个数码管点亮的时间片段,用肉眼看到的是所有数字都在不断刷新,形成一个连续的显示效果。
动态显示方式能够节省能源,适用于显示频繁切换的场合。
动态显示方式还可以分为多路复用和直接显示两种。
1. 多路复用动态显示方式:多路复用动态显示方式是指通过在每一个时间片段内,依次对每个数码管进行点亮,以形成数字的显示效果。
在每个时间片段内,通过给对应的驱动电路加电,在该时间段内点亮对应的数字。
通过快速地在不同的时间片段内切换数码管的点亮状态,人眼可以看到所有数字的完整显示。
这种方式能够降低驱动电路的复杂度,适用于需要显示较多位数的场合。
2. 直接显示动态显示方式:直接显示动态显示方式是指通过在每一个时间片段内,同时点亮多个数码管,以形成数字的显示效果。
在每个时间片段内,通过给对应的驱动电路加电,在该时间段内点亮多个数码管。
通过快速地在不同的时间片段内切换多个数码管的点亮状态,人眼可以看到所有数字的完整显示。
这种方式增加了驱动电路的复杂度,但能够提高数字的亮度,适用于需要显示较亮的数字的场合。
总结:数码管的静态显示方式和动态显示方式各有特点,适用于不同的场合。
动态数码管功率和静态数码管功率数码管是一种常见的显示元件,在各种电子设备中广泛应用。
根据数码管的工作原理和显示方式的不同,可以将数码管分为动态数码管和静态数码管。
本文将重点讨论动态数码管和静态数码管的功率消耗。
首先,我们来了解一下动态数码管。
动态数码管也被称为多路复用的数码管,它通过不断地刷新数码管的显示内容,从而实现多个数码管共用少量的引脚,减少了引脚数量的占用。
动态数码管的每个数码管段都有一个独立的控制信号,通过控制信号的切换,实现不同数码管段的显示。
由于动态数码管需要不断地刷新,所以它的功耗较高。
动态数码管的功耗主要来自两个方面:控制电路的功耗和数码管段的功耗。
首先是控制电路的功耗。
动态数码管的控制电路需要进行不断的刷新操作,因此控制电路的功耗较高。
控制电路主要包括时序产生器和驱动电路等,这些电路在工作时会消耗一定的功率。
其次是数码管段的功耗。
不同的数码管段使用不同的发光二极管来实现,每个数码管段所使用的发光二极管的功耗也不相同。
常见的数码管段有共阳极和共阴极两种类型,它们的亮度和功耗也有所差异。
一般来说,共阳极数码管的功耗较高,因为它需要提供较高的电流来驱动发光二极管。
接下来,我们来了解一下静态数码管。
静态数码管也被称为直接驱动的数码管,每个数码管段都有独立的引脚控制,不需要进行复用。
相比于动态数码管,静态数码管的功耗较低。
静态数码管的功耗主要来自两个方面:控制电路的功耗和数码管段的功耗。
控制电路的功耗与动态数码管基本相同,都需要进行相应的时序和驱动控制。
数码管段的功耗和动态数码管不同,静态数码管不需要进行刷新操作,只需要提供恒定的电流来驱动发光二极管即可。
因此,静态数码管的功耗较低。
另外,不同的发光二极管也会有一定的功耗差异。
总体来说,动态数码管的功耗较高,主要是因为需要不断地刷新操作。
而静态数码管的功耗较低,因为它只需要提供恒定的电流来驱动发光二极管。
值得注意的是,数码管的功耗还会受到工作电压和亮度的影响。
FPGA实验三七段数码管静态与动态显示实验报告实验目的:通过FPGA实现七段数码管的静态与动态显示,在FPGA上可实现对任意数字的显示和计数功能。
实验原理:七段数码管是一种能够显示数字的晶体管数字显示器件,它由七个LED数码管组成,每个数码管分别由a、b、c、d、e、f、g七个LED组成。
通过控制每个LED的亮灭情况,可以对任意数字进行显示。
七段数码管的静态显示是指每个数字的显示都是固定的,而动态显示则是通过快速地刷新七段数码管的显示,使得数字像是在变化。
在FPGA 中,可以通过时钟信号和计数器实现刷新,从而实现数字的动态显示。
实验过程:首先,将FPGA和七段数码管连接,在FPGA上选择适当的引脚连接到a、b、c、d、e、f、g七个数码管。
在FPGA中创建工程,并添加适当的引脚约束,以实现与七段数码管的连接。
然后,根据需要选择静态或动态显示。
静态显示:静态显示的原理是通过直接控制每个LED的亮灭情况,使得每个数字都可以被显示出来。
首先,需要定义每个数字对应的LED的状态(亮灭),例如数字0对应的LED状态可能为(1,1,1,1,1,1,0)等。
然后,通过FPGA的逻辑电路实现对应数字的显示。
动态显示:动态显示的原理是通过快速地刷新显示,使得数字在若干个数码管中切换,从而造成数字变化的视觉效果。
这里需要使用时钟信号和计数器来控制刷新。
首先,需要设计一个计数器,它的计数范围应该与显示数字的个数相同。
然后,通过时钟信号让计数器开始计数,并根据计数器的值选择对应的数字显示在七段数码管上。
通过控制计数器的计数速度和刷新频率,可以实现数字的动态显示。
实验结果:经过实验,我们成功地实现了七段数码管的静态显示和动态显示。
在静态显示中,我们可以通过FPGA的逻辑电路对七段数码管的每个LED进行控制,从而实现任意数字的显示。
在动态显示中,我们通过时钟信号和计数器实现了刷新功能,使得数字在七段数码管中快速地切换,从而呈现出动态的显示效果。
数码管静态显示和动态显示原理数码管是一种常见的显示设备,它由多个发光二极管(LED)组成,通过控制每个LED的点亮与否,可以显示数字、字母、符号等。
数码管的显示方式主要分为静态显示和动态显示两种。
静态显示即直接将需要显示的数字发送给数码管进行显示。
实现静态显示的原理是通过控制LED的正向电流,使其发光。
1.显示单个数码管静态显示一位数码管时,需要将需要显示的数字转换为对应的二进制编码,并通过控制数码管的引脚,将对应的编码信号送到数码管,从而点亮对应的LED。
LED管的引脚包括共阳(正)端和共阴(负)端,需要根据具体的数码管类型,将对应的编码信号送到相应的引脚上。
例如,常见的共阳数码管,其引脚对应的编码信号如下表所示:数码管编码,a,b,c,d,e,f,g,DOT二进制值,1,2,4,8,16,32,64,128我们可以选择使用并口或者串口的方式,将对应的编码信号通过控制引脚进行发送,从而实现对数码管的显示。
2.显示多位数码管如果需要显示多位数码管,可以依次控制每个数码管的引脚,逐个显示数字。
例如,如果需要显示一个四位的数字,可以选择多个数码管,然后依次对每个数码管进行静态显示。
对于多位数码管,如果静态刷新频率较低,人眼会觉得显示闪烁。
因此,在静态显示中,通常需要使用较高的刷新频率,以使得显示效果更加稳定。
动态显示是指通过间歇性显示不同的位数,从而实现连续显示的效果。
动态显示的原理是通过快速的切换不同的位数,让人眼产生连续显示的错觉。
1.时分复用最常见的动态显示原理是时分复用技术,即通过快速的切换不同的位数,以使得数码管在较短的时间内完成多个位数的显示。
例如,对于一个四位数码管的显示,可以快速切换每个数码管的引脚,使得数码管按照一定的频率逐个显示不同的数字。
实现时分复用的关键是要保证刷新频率足够高,以至于人眼无法察觉到刷新的效果。
2.位数切换在时分复用中,需要对每个数码管进行位数的切换,以显示对应的数字。
33第2卷 第22期产业科技创新 2020,2(22):33~34Industrial Technology Innovation 基于51单片机实现LED数码管静态与动态显示的设计浅析龙 志(广州大学松田学院,广州 增城 511370)摘要:随着社会的发展,在我们日常的生活中,数码管的应用随处可见,尤其是在电子应用设计显示等方面常常发挥着非常重要的作用,因此研究数码管的显示有非常重要的现实意义。
数码管我们可以分为静态显示和动态显示,这两种显示有着本质的区别,静态显示的特点是占用CPU 时间少,显示便于监测和控制,显示字形稳定,而动态数码管的显示,效果相对静态显示亮度差少许,但成本较低。
本设计主要是基于51单片机,先通过结合集成芯片74HC573对LED 数码管静态显示的硬件电路设计与分析,进一步拓展到采用芯片74HC138与LED 数码管动态显示的硬件电路设计与分析,最终实现两种不同的电路设计显示的方法。
关键词:LED 数码管;静态显示;动态显示;51单片机中图分类号:TP368.12 文献标识码:A 文章编号:2096-6164(2020)22-0033-02随着电子应用技术的不断发展,显示电路在电子设计应用方面更加广泛,尤其是LED 数码管显示在各行各业中的应用更加重要,如红绿交通灯显示,电子时钟显示,家电产品功能显示等方面都需要用到LED 数码管作为显示。
因此,对LED 数码管的显示控制有着非常重要的现实意义。
因此我们要实现LED 数码管的熟练显示控制,我们必须要根据数码管的特点来进行分析和设计,数码管有静态显示和动态显示的两种方法,接下对这两种电路作详细的分析与设计,最终实现对LED 数码管静态与动态的两种不同显示设计方法。
1 数码管静态显示电路设计数码管静态显示设计是利用MCS-51单片机结合两片集成芯片74HC573,实现对4个LED 数码管的显示控制。
具体设计如图1所示:图1 数码管静态显示设计电路图本电路设计主要是利用单片机的P0口来实现对数码管的位选控制与段选的控制,P0口之所以能够正确的对数码管进行位选与段选的控制,关键是在于设计中使用了芯片74HC573。
微机实验报告书学号:姓名:班级:同组名单:实验日期: 2012.12.21实验题目:七段数码管的静态显示实验目标:掌握数码管显示数字的原理(功能:键盘输入一位十进制数字(0~9),用七段数码管显示。
)解题思路:1.静态显示:按图 10(a)连接好电路,将8255的A口PA0-PA6分别与七段数码管的断码驱动输入端a-g项链,位码驱动输入端S1接+5V,S0、dp接地。
编程从键盘输入一位十进制数字,在七段数码管上显示出来。
2.动态显示:按图10(b)连接好电路,七段数码管段码连接不变,位码驱动输入端S1,S0接8255C口的PC1,PC0。
编程在两个数码管上显示“56”。
程序框图:静态显示见图11(a),动态显示见图11(b)。
关键问题分析(静态显示):1、按键判断和程序结束判断按键来说,由于程序中必须输入数字,所以没有必要对是否按键进行判断,只需要判断按键是否在0-9之间即可。
用以下程序即可:cmp al,'0'jl exit ; jl,条件转移指令,即在小于时转移cmp al,'9'jg exit ;jg, 条件转移指令,即在大于时转移程序中还要用到“cmp”即比较指令,用来比较输入数与0、9的大小关系。
程序结束:如若输入的数字小于0或者大于9,必须直接跳出程序,即结束指令必须单独占用一个程序段,这样,程序顺序执行完毕也可以顺利返回DOS。
2、七段码显示。
实验指导书中给出了七段码的字型代码。
这样一来,七段码的显示只需要用换码指令“XLAT”便可以轻松实现。
前提是必须将七段码字型编成数码表以字符串的形式写进程序中。
3、数字键ASCII码与数值间的转换。
因为0的ASCII码为30H,所以数字键ASCII码与数值间的转换时只需减去30H即可,可用下列语句实现:sub al,30h程序清单:静态显示:data segmentioport equ 0c800h-0280hio8255a equ ioport+288hio8255b equ ioport+28bhled db 3fh,06h,5bh,4fh,66h,6dh,7dh,07h,7fh,6fhmesg1 db 0dh,0ah,'Input a num (0--9h):',0dh,0ah,'$'data endscode segmentassume cs:code,ds:datastart: mov ax,datamov ds,axmov dx,io8255b ;使8255的A口为输出方式mov al,80h ;10000000B,控制字PA以方式0输出out dx,alzby: mov dx,offset mesg1 ;显示提示信息mov ah,09hint 21hmov ah,01 ;从键盘接收字符int 21hcmp al,'0' ;是否小于0jl exit ;如若小于0,则跳转到exit退出程序cmp al,'9' ;是否大于9jg exit ; 如若大于9,则跳转到exit退出程序sub al,30h ;将所得字符的ASCII码减30H,数字键ascii码同数值转换mov bx,offset led ;bx为数码表的起始地址xlat ;求出相应的段码mov dx,io8255a ;从8255的A口输出out dx,aljmp zby ;转zbyexit: mov ah,4ch ;返回DOSint 21hcode endsend start动态显示:data segmentioport equ 0c800h-0280hio8255a equ ioport+28ahio8255b equ ioport+28bhio8255c equ ioport+288hled db 3fh,06h,5bh,4fh,66h,6dh,7dh,07h,7fh,6fh ;段码buffer1 db 5,6 ;存放要显示的个位和十位bz dw ? ;位码data endscode segmentassume cs:code,ds:datastart: mov ax,datamov ds,axmov dx,io8255b ;将8255设为A口输出mov al,80h ;10000000B,控制字PA以方式0输出out dx,almov di,offset buffer1 ;设di为显示缓冲区loop2: mov bh,02zby: mov byte ptr bz,bhpush didec diadd di, bzmov bl,[di] ;bl为要显示的数pop dimov al,0mov dx,io8255aout dx,almov bh,0mov si,offset led ;置led数码表偏移地址为SIadd si,bx ;求出对应的led数码mov al,byte ptr [si]mov dx,io8255c ;自8255A的口输出out dx,almov al,byte ptr bz ;使相应的数码管亮mov dx,io8255aout dx,almov cx,3000delay: loop delay ;延时mov bh,byte ptr bzshr bh,1jnz zbymov dx,0ffhmov ah,06int 21hje loop2 ;有键按下则退出mov dx,io8255amov al,0 ;关掉数码管显示out dx,almov ah,4ch ;返回int 21hcode endsend start运行结果:静态显示:在键盘上输入一个0-9的任意数字,会显示在数码管上。
数码管的显示方式有两种:静态显示和动态显示。
1.静态显示方式。
所谓静态显示就是指无论是多少位数码管,同时处于显示状态。
如图2.19所示。
图2.19 4个共阳极数数码管静态显示时的连接方式与显示状态当单片机系统中使用静态数码管显示时,需要在每一个数码管上添加一个锁存器,当需要某个数码管显示其他内容时,只需要修改与其相连的锁存器的值即可。
由图2.19中可以看出,当数码管处于静态显示方式时,所有位选线(数码管的公共端)连接在一起,而各个数码管的段选线(数码管上各笔段的引出线)是相互分离的。
静态显示的优点是:数码管显示无闪烁,亮度高,软件控制比较容易;缺点是:需要的硬件电路较多(每一个数码管都需要一个锁存器),如果在全国大学生电子设计竞赛中使用,将造成很大的不便,同时由于所有数码管都处于被点亮状态,所以需要的电流很大,当数码管的数量增多时,对电源的要求也就随之增高。
所以,在大部分的硬件电路设计中,很少采用静态显示方式。
2.动态显示方式。
所谓动态显示,是指无论在任何时刻只有一个数码管处于显示状态,每个数码管轮流显示。
如图2.20所示。
图2.20 4个共阴极数码管动态显示时的连接方式与显示状态由图2.20中可以看出,当数码管处于动态显示时,所有位选线分离,而每个数码管的各条段选线相连。
当需要显示数字或字符时,需要将所有数码管轮流点亮,这时对每个数码管的点亮周期有了一个较严格的要求:由于发光体从通入电流开始点亮到完全发光需要一定的时间,叫做响应时间,这个时间对于不同的发光材质是不同的,通常情况下为几百微秒,所以数码管的刷新周期(所有数码管被轮流点亮一次的时间)不要过短,这也与数码管的数量有关,一般的数码管的刷新周期应控制在5ms~10ms,即刷新率为200Hz~100Hz,这样既保证了数码管每一次刷新都被完全点亮,同时又不会产生闪烁现象。
动态显示的优点是:硬件电路简单(数码管越多,这个优势越明显),由于每个时刻只有一个数码管被点亮,所以所有数码管消耗的电流较小;缺点是:数码管亮度不如静态显示时的亮度高,例如有8个数码管,以1秒为单位,每个数码管点亮的时间只有1/8秒,所以亮度较低;如果刷新率较低,会出现闪烁现象;如果数码管直接与单片机连接,软件控制上会比较麻烦等。