【精选】浙江省宁波市镇海区高中数学竞赛模拟试题四
- 格式:docx
- 大小:481.68 KB
- 文档页数:14
2017年镇海中学数学竞赛模拟试卷(2)姓名_______1.若集合:小-% 12 _ O , E - {工,[-0} , 7 .二工J 三:,则集合:()A. -3.-1 1.4|B. -3.-1| I. 1.4|C. -3-1 '■ I 1.4|D. -3,-1| I. | 1.4|【答案】D【解析】依题意,几一 {" 一工-丄2 • 0} - I 一三」,F, _」;_ _、0} - i 1.1:'-由x 2.,知「x - 4; x f巳,知八1或x ■ 1 .所以,巳- X -丄或丄* —4,即「一二[| .故选D;2.若函数俶)=g】2]:,;「:爲(a a 0,且a h 1)的值域为卩、+ B),则实数a的取值范围为()A. l.SB. 1.3C. 3 -D. [3.-丿【答案】A【解析】当兰•己时,函数f疋_才八• j _ x 「• .1的值域为[-■■ I当x - 2时,2 — gx - E,即工■■■巳时,1盟卫-丄;i • 1 ,且疋■-丄时工-门恒成立.•••「,「巳,J的取值范围为「和.故选A;3.如图,在四面体P心巳匚中,已知P心卩巳卩匚两两互相垂直,且F:A - FT'- - F:C.-.则在该四面体表面上与点&距离为2 2的点形成的曲线段的总长度为()A.海B. bC.冷D. ;.【答案】B如图,设AE - AF - AG - 2 3 (二在AE 上, 1=在PF 上,D 在P 匸上). 由 PA PE.PA n 匚 PBP 匸,P£ — PF : - P 匸-,知F - _ PG --丄皿卜:,丄匕A 卜:] r••••在面P.i,E 内与点A 距离为2的点形成的曲线段(图中弧FF )长为于:乙. 同理,在面PAC 内与点&距离为2己的点形成的曲线段长为'■>. 同理,在面代二内与点2距离为的点形成的曲线段长为_同理,在面PF ;匚内与点2距离为2己的点形成的曲线段长为-3 -.所以,该四面体表面上与点 2距离为1 - ■■的点形成的曲线段的总长度为 —故选B .点睛:想象出在每个截面上的弧线是一个个圆弧,找到相应的圆弧的圆心角,和半径,弧长就求出来了;4. △ ABC 中,“AwBcC ”是“ cos2A > cos2B > cos2C ^ 的() A.充分不必要条件 B. 必要不充分条件 C.充分必要条件D.既不充分也不必要条件【答案】C【解析】试题分析:由正弦定理可得,在 空m 中,'卜、二."则sinA ■- siriB -。
一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求2023-2024学年浙江省宁波市镇海中学高三统一测试数学试题的。
1.已知集合,,则( )A. B. SC. TD. Z 2.已知是互相垂直的单位向量,若,则( )A. B.C. 0D. 23.已知是定义在上的函数,那么“函数在上单调递增”是“函数在上的最大值为”的( )A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件4.已知,均为锐角,且,则的最大值是( )A. 4B. 2C.D.5.如图是古筝鸣箱俯视图,鸣箱有多根弦,每根弦下有一只弦码,弦码又叫雁柱,用于调节音高和传振.图2是根据图1绘制的古筝弦及其弦码简易直观图.在直观图中,每根弦都垂直于x 轴,左边第一根弦在y 轴上,相邻两根弦间的距离为1,弦码所在的曲线又称为雁柱曲线方程为,第第0根弦表示与y 轴重合的弦根弦分别与雁柱曲线和直线l :交于点和,则( )参考数据:A. 814B. 900C. 914D. 10006.数列满足,,且其前n 项和为若,则正整数( )A. 99B. 103C. 107D. 1987.已知函数,,若,,,则a 、b 、c 的大小关系为( )A. B. C. D.8.已知定点,动点Q在圆O:上,PQ的垂直平分线交直线OQ于M点,若动点M 的轨迹是双曲线,则m的值可以是( )A. 2B. 3C. 4D. 5二、多选题:本题共4小题,共20分。
在每小题给出的选项中,有多项符合题目要求。
全部选对的得5分,部分选对的得2分,有选错的得0分。
9.下列命题中正确的有( )A. 若复数z满足,则;B. 若复数z满足,则;C.若复数满足,则;D. 若复数,则10.将函数的图象向左平移个单位,得到函数的图象,若在上为增函数,则的值可能为( )A. B. 1 C. 2 D. 311.在正三棱柱中,,点P满足,其中,,则( )A. 当时,的周长为定值B. 当时,三棱锥的体积为定值C. 当时,有且仅有一个点P,使得D. 当时,有且仅有一个点P,使得平面12.已知函数,函数有两个不等实根,则下列选项正确的是( )A. 点是函数的零点B. ,,使C. 是的极大值点D. a的取值范围是三、填空题:本题共4小题,每小题5分,共20分。
浙江省宁波市镇海区2017年高中数学竞赛模拟试题(三)一、填空题,每题8分1.设,则2.设为虚数单位,化简3.已知等差数列的前100项之和为100,最后100项之和为1000,则4. 集合共有个元素,其中表示不超过x的最大整数。
5.若关于的方程有三个不同的实根,则实数的取值范围是6.在如图所示的单位正方体中,设为正方体的中心,点分别在棱上,,则四面体的体积等于7.已知抛物线以椭圆的中心为焦点,经过的两个焦点,并且与恰有三个交点,则得离心率等于二、简答题8.已知数列满足,。
用数学归纳法证明:9.证明:对任意的实数都有并求等号成立的充分必要条件。
10.求满足的所有正整数对2017年高中数学竞赛模拟试卷(3)答案三、填空题,每题8分1.设,则解答:由,可得,故,从而2.设为虚数单位,化简解答:由,可得,同理可得故3.已知等差数列的前100项之和为100,最后100项之和为1000,则解答:设等差数列的公差为d,则有,解得4. 集合共有个元素,其中表示不超过x的最大整数。
解答:设则有,当时,的所有可能值为0,1,2,3.由此得值域,个元素。
5.若关于的方程有三个不同的实根,则实数的取值范围是解答:设,则当时,单调递减,当时,单调递增,当时,单调递减,,,当时因此,有三个不同的实根当且仅当6.在如图所示的单位正方体中,设为正方体的中心,点分别在棱上,,则四面体的体积等于解答:以为原点,为轴建立空间直角坐标系,则有由此四面体的体积7.已知抛物线以椭圆的中心为焦点,经过的两个焦点,并且与恰有三个交点,则得离心率等于解答:不妨设椭圆的方程为,经过的两个焦点,,与恰有三个交点,所以,则得离心率等于四、简答题8.已知数列满足,。
用数学归纳法证明:证明:从而对成立。
当时假设,由递推公式可得由此,对一切成立。
9.证明:对任意的实数都有并求等号成立的充分必要条件。
证明方法一:两边平方移项合并两边平方展开可得移项合并不等式成立的必要是当不等式等号成立等价于,当时不等式等号成立。
2024学年其次学期镇海中学5月校模拟考高三年级 数学学科留意事项:1.本科目考试分试题卷和答题卷,考生必需在答题卷上作答.答题前,请在答题卷的密封线内填写学校、班级、学号、姓名;2.本试卷分第Ⅰ卷选择题和第Ⅱ卷非选择题两部分。
满分150分, 考试时间120分钟。
参考公式:假如事务A , B 互斥, 那么 柱体的体积公式 P (A +B )=P (A )+P (B )V =Sh假如事务A , B 相互独立, 那么 其中S 表示柱体的底面积,h 表示柱体的高 P (A ·B )=P (A )·P (B )锥体的体积公式 假如事务A 在一次试验中发生的概率是p , 那么n V =13Sh 次独立重复试验中事务A 恰好发生k 次的概率 其中S 表示锥体的底面积,h 表示锥体的高 P n (k )=C kn p k (1-p )n -k (k = 0,1,2,…, n ) 球的表面积公式 台体的体积公式S = 4πR 2 1()11223V h S S S S =+球的体积公式 其中S 1, S 2分别表示台体的上、下底面积, V =43πR 3h 表示台体的高 其中R 表示球的半径第Ⅰ卷(选择题,共40分)一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中, 只有一项是符合题目要求的.1.已知全集=R U ,集合{}0|>=x x A ,{}10|<<=x x B ,则()=B A C U ( ▲ ) A .{}1|<x x B . {}10|<<x x C .{}0|≤x x D .R 2.已知i 是虚数单位,复数2z i =-,则(12)z i ⋅+的共轭复数为( ▲ ) A .2i + B .43i + C .43i - D .43i -- 3.已知直线,,a b m ,其中,a b 在平面α内.则“,m a m b ⊥⊥”是“m α⊥”的( ▲ )A . 充分而不必要条件B . 必要而不充分条件C . 充要条件D . 既不充分也不必要条件 4.某几何体的三视图如图所示,则该几何体的体积是( ▲ )A . 3πB .83π C . 103π D . 113π 5.记()()()77017211x a a x a x -=+++++,则0126a a a a +++的值为( ▲ )A . 1B . 2C . 129D . 21886.已知不等式组210,2,10,x y x x y -+≥⎧⎪≤⎨⎪+-≥⎩表示的平面区域为D ,若函数|1|y x m =-+的图象上存在区域D 上的点,则实数m 的取值范围是( ▲ )A . [2,1]-B . 1[2,]2-C . 1[0,]2D . 3[1,]2-7.甲、乙、丙、丁四个人到A ,B ,C 三个景点旅游,每个人只去一个景点,每个景点至少有一个人去,则甲不到A 景点的方案有( ▲ ) A . 18种 B . 12种 C . 36种 D . 24种8.设椭圆2222:1(0)x y C a b a b+=>> 的右焦点为F ,椭圆C 上的两点,A B 关于原点对称,且满意0,||||2||FA FB FB FA FB ⋅=≤≤,则椭圆C 的离心率的取值范围是( ▲ )1]1,1)A B C D9.已知函数()()1ln 1,1{21,1x x x f x x -->=+≤,则方程()()()3204f f x f x ⎡⎤-+=⎢⎥⎣⎦的实根个数为( ▲ )A . 3B . 4C . 5D . 610.已知直三棱柱111ABC A B C -的侧棱长为6,且底面是边长为2的正三角形,用一平面截此棱柱,与侧棱1AA , 1BB , 1CC 分别交于三点M , N , Q ,若MNQ ∆为直角三角形,则该直角三角形斜边长的最小值为( ▲ )A . 2B . 4C .D .第Ⅱ卷(非选择题 共110分)二、填空题:本大题共7小题, 多空题每小题6分,单空题每小题4分, 共36分.11.双曲线:C 2214x y -=的渐近线方程为___▲__,设双曲线过点(4,1),且与C 具有相同渐近线,则C 的方程为 ▲ .MA BCQD12. 设数列{}n a 满意123(21)2n a a n a n +++-=.{}n a 的通项n a = ▲ ,数列的21n a n ⎧⎫⎨⎬+⎩⎭前n 项和是 ▲ . 13.随机变量X 的分布列如下:X -10 1 Pabc其中a ,b ,c 成等差数列,则P (|X |=1)= ▲ ,方差的最大值是 ▲ .14. 函数()()sin f x A x ωϕ=+ (0,0,π0)A ωϕ>>-<<的部分图像如图所示,则ϕ= ▲ ,为了得到()cos g x A x ω=的图像,需将函数()y f x =的图象最少向左平移 ▲ 个单位. 15.若实数,x y 满意114422xy xy ,则22xy S的取值范围是 ▲ .16.已知24y x =抛物线,焦点记为F ,过点F 作直线l 交抛物线于,A B 两点,则2AF BF-的最小值为 ▲ . 17.如图,在四边形ABCD 中, 1AB CD ==,点,M N 分别是边,AD BC 的中点,延长BA 和CD 交NM 的延长线于不同..的两点,P Q ,则()·PQ AB DC -的值为 ▲ .三、解答题:本大题共5小题, 共74分。
2020年浙江省宁波市镇海中学高考数学模拟试卷(5月份)一、选择题(本大题共10小题,共40.0分)1. 已知集合A ={3,2,1,0},B ={−1,0,1},则A ∩B =( )A. {1,0}B. {2,1,0}C. {3,2,1}D. {2,1}2. 已知函数f(x)=axsinx +xcosx(a ∈R)为奇函数,则f(−π3)=( )A. −π6B. −√3π6C. π6D. √3π63. 已知x ,y 满足{x ≥1x +y ≤4ax +by +c ≤0且目标函数z =2x +y 的最大值为7,最小值为1,则a+b+ca = ( )A. 2B. 1C. −1D. −24. 如图,网格纸上每个小正方形的边长均为1,粗线画出的是某棱锥的三视图,则该棱锥的体积为( )A. 32B. 3C. 23D. 435. 函数f(x)=xx 2+1的图象大致是( ).A.B.C.D.6. 将函数f (x )=cos (4x −π3)的图像上各点的横坐标伸长到原来的2倍,纵坐标不变,得到函数y =g(x)的图像,则g(x)的最小正周期是( )A. π2 B. π C. 2π D. 4π7. 在△ABC 中,已知|AB⃗⃗⃗⃗⃗ |=|BC ⃗⃗⃗⃗⃗ |=|CA ⃗⃗⃗⃗⃗ |=2,则向量AB ⃗⃗⃗⃗⃗ ⋅BC ⃗⃗⃗⃗⃗ =( ) A. 2B. −2C. 2√3D. −2√38. 已知双曲线C :x 2a 2−y 2b 2=1(a >0,b >0)的右焦点为F ,P 是第一象限C 上的点,Q 为第二象限C 上的点,O 是坐标原点,若OF ⃗⃗⃗⃗⃗ +OQ ⃗⃗⃗⃗⃗⃗ =OP ⃗⃗⃗⃗⃗ ,则双曲线C 的离心率e 的取值范围是( )A. (1,+∞)B. (2,+∞)C. [2,2√3)D. (√3,2)9. 函数f(x)=e x sin x 在区间[0,π2]上的值域为( )A. [0,e π2]B. (0,e π2) C. [0,e π2) D. (0,e π2] 10. 设数列{a n }的通项公式为a n =2n −7(n ∈N ∗)则|a 1|+|a 2|+⋯+|a 7|=( )A. 7B. 0C. 18D. 25二、填空题(本大题共7小题,共21.0分)11. 已知复数z 满足(1+2i )z =3−4i ,i 为虚数单位,则z 的虚部是________,|z |=________. 12. 已知随机变量X 的分布列如表:若EX =2,则a =_____.13. 已知ab >0 , a +b =5,则2a+1+1b+1的最小值为__________.14. 若(2x +1x )n 的二项展开式中的所有二项式系数之和等于256,则该展开式中常数项的值为______.15. 已知椭圆C :x 216+y 2b 2=1(4>b >0)的左右焦点为F 1,F 2,离心率为√32,若P 为椭圆上一点,且∠F 1PF 2=90°,则△F 1PF 2面积为______16. 2019年国际篮联篮球世界杯于8月31日到9月15日在8个城市的场馆举行,甲、乙、丙、丁四位同事拟购票去看比赛,该比赛的某购票点为他们提供四种结账方式:现金、支付宝、微信、银联卡.若甲没有银联卡,乙只带了现金,丙、丁用哪种方式结账都可以,甲、乙、丙、丁购票后,恰好用了其中的三种结账方式,那么他们结账方式的可能情况有________种.17.在四面体P−ABC中,若PA=3,PB=4,PC=5,底面△ABC是边长为2√3的正三角形,O为△ABC的中心,则∠PAO的余弦值为______.三、解答题(本大题共5小题,共74.0分)18.在△ABC中,C−A=π2,sinB=13.(1)求sin A的值;(2)设AC=√6,求△ABC的面积.19.如图,平面ABCD⊥平面CDEF,且四边形ABCD是梯形,四边形CDEF是矩形,∠BAD=∠CDA=90∘,AB=AD=DE=12CD,M是线段DE上的点,满足DM=2ME.(1)证明:BE//平面MAC;(2)求直线BF与平面MAC所成角的正弦值.20.已知数列{a n}为等差数列,a2=5,a6=13,{b n}为等比数列,b2=a4,b n+1=3b n.(1)求通项公式a n,b n;(2)求{a n⋅b n}前n项和S n.21.在平面直角坐标系xOy中,P(x0,y0)(y0≠0)是椭圆C:x22λ2+y2λ2=1(λ>0)上的点,过点P的直线l的方程为x0x2λ2+y0yλ2=1.(Ⅰ)求椭圆C的离心率;(Ⅱ)当λ=1时,设直线l与x轴、y轴分别相交于A,B两点,求△OAB面积的最小值;(Ⅲ)设椭圆C的左、右焦点分别为F1,F2,点Q与点F1关于直线l对称,求证:点Q,P,F2三点共线.22.已知函数f(x)=(ax+1)lnx−x2+1.(1)令g(x)=f′(x),判断g(x)的单调性;(2)当x>1时,f(x)<0,求a的取值范围.-------- 答案与解析 --------1.答案:A解析:【分析】本题考查了集合的交集运算,根据集合A,B,得到其交集,属于基础题.【解答】解:由题意可得:A∩B={0,1}.故选A.2.答案:A解析:【分析】本题考查了正弦、余弦函数,函数的奇偶性,属于基础题.利用函数的奇偶性可求出a的值,进而可得答案.【解答】解:因为f(x)=axsinx+xcosx(a∈R)为奇函数,所以,即,所以a=0,所以,所以.故选A.3.答案:D解析:【分析】先根据约束条件画出可行域,再利用几何意义求最值,z=2x+y表示直线在y轴上的截距,只需求出可行域直线在y轴上的截距最大最小值时所在的顶点即可.本题主要考查了简单的线性规划,以及利用几何意义求最值的方法,属于基础题.【解答】解:由题意得:目标函数z=2x+y在点B取得最大值为7,在点A处取得最小值为1,∴A(1,−1),B(3,1),∴直线AB的方程是:x−y−2=0,∴则a+b+ca=−2.故选D.4.答案:A解析:【分析】本题考查了空间几何体的三视图以及三棱锥的体积公式,属于基础题.如图所示:三棱锥N−B1MB即为所求三棱锥,根据三棱锥的体积公式即可求得其值.【解答】解:如图所示:正方体ABCD−A1B1C1D1的边长为3,M,N分别为AB,DD1的三等分点,且BM=D1N=1.三棱锥N−B1MB即为所求三棱锥,V=13×(12×1×3)×3=32,故选A.5.答案:A解析:【分析】本题考查由解析式选择函数的图象,解题关键是研究函数的性质,如单调性、奇偶性等,研究图象的特殊点,函数的值正负及变化趋势.【解答】解:由f(x)=xx2+1,当x >0时,f(x)>0,x <0时,f(x)<0,只有A 符合. 故选A .6.答案:B解析:【分析】本题考查三角函数图像的伸缩变换. 【解答】解:由题意得g (x )=cos (12×4x −π3)=cos (2x −π3),∴T =2π2=π.故选B .7.答案:B解析:解:AB ⃗⃗⃗⃗⃗⋅BC ⃗⃗⃗⃗⃗ =|AB ⃗⃗⃗⃗⃗ |⋅|BC ⃗⃗⃗⃗⃗ |cos(π−π3)=2×2×(−12)=−2 故选B直接利用向量的数量积的定义即可求解本题主要考查了向量的数量积的定义的简单应用,属于基础试题8.答案:B解析: 【分析】本题考查向量加法的平行四边形法则,以及双曲线的性质. 【解答】解:由已知F (c,0),P (x 1,y 1),因为OF ⃗⃗⃗⃗⃗ +OQ ⃗⃗⃗⃗⃗⃗ =OP ⃗⃗⃗⃗⃗ ,由向量加法的平行四边形法则,QP ⃗⃗⃗⃗⃗ =0F ⃗⃗⃗⃗⃗ ,所以Q (−x 1,y 1) 所以(2x 1,0)=(c,0),2x 1=c,x 1=c2,因为P 是第一象限C 上的点,所以x 1>a, 即c2>a,所以e =ca >2. 故选B .9.答案:A解析:【分析】利用导数判断函数f(x)在[0,π2]上是增函数,由此能求出函数f(x)=e x sinx在区间[0,π2]上的值域.【解答】解:∵f(x)=e x sinx,∴f′(x)=e x(sinx+cosx),∵x∈[0,π2],∴f′(x)>0,∴f(x)在[0,π2]上是增函数,∴f(x)min=f(0)=0,f(x)max=f(π2)=eπ2.∴函数f(x)=e x sinx在区间[0,π2]上的值域为[0,eπ2].故选A.10.答案:D解析:解:∵数列{a n}的通项公式为a n=2n−7(n∈N∗),∴由a n=2n−7≥0,得n≥72,∴|a1|+|a2|+⋯+|a7|=−a1−a2−a3+a4+a5+a6+a7=−(2×1−7)−(2×2−7)−(2×3−7)+2×4−7+2×5−7+2×6−7+2×7−7=25.故选:D.|a1|+|a2|+⋯+|a7|=−a1−a2−a3+a4+a5+a6+a7,由此能求出结果.本题考查数列的前7项的绝对值的求法,是基础题,解题时要认真审题,注意数列的通项公式的合理运用.11.答案:−2;√5解析:【分析】本题考查复数代数形式的乘除运算,考查复数的基本概念及复数模的求法,是基础题.把已知等式变形,利用复数代数形式的乘除运算化简求得z的虚部,再由复数模的公式求|z|.【解答】解:由(1+2i)z=3−4i,得z=3−4i1+2i =(3−4i)(1−2i)(1+2i)(1−2i)=−1−2i,∴z的虚部是−2,|z|=√5.故答案为−2;√5.12.答案:0解析:【分析】本题主要考查了离散型随机变量的分布列、数学期望等知识,属于基础题,先根据概率和=1求出b,然后根据EX=2,可求出a.【解答】解:根据题意可知13+b+16+14=1,解得b=14,所以EX=13a+14×2+16×3+14×4=2,解得a=0,故答案为0.13.答案:3+2√27解析:【分析】本题考查利用基本不等式求最值,属于一般题.由已知得a+1+b+1=7,然后利用基本不等式求解即可.【解答】解:因为ab>0 , a+b=5,所以a+1+b+1=7,a>0,b>0所以2a+1+1b+1=17(a+1+b+1)(2a+1+1b+1)=1(3+2(b+1)+a+1)≥17(3+2√2(b+1)a+1×a+1b+1)=3+2√27,当且仅当a+1=√2(b+1)时取等号,所以2a+1+1b+1的最小值为3+2√27.故答案为3+2√27.14.答案:1120 解析:【分析】本题考查二项式系数的性质,熟练掌握二项展开式的通项是关键,是基础题.由已知求得n值,写出二项展开式的通项,由x的指数为0求得r值,则答案可求.【解答】解:由题意可知,2n=256,解得n=8.∴(2x+1x )n=(2x+1x)8,其展开式的通项T r+1=C8r⋅(2x)8−r⋅(1x)r=28−r⋅C8r⋅x8−2r,令8−2r=0,得r=4.∴该展开式中常数项的值为T5=24⋅C84=1120.故答案为1120.15.答案:4解析:【分析】本题考查了椭圆的定义、勾股定理、三角形的面积计算公式,属于中档题.先根据离心率求出b,c,设|PF1|=m,|PF2|=n.在Rt△PF1F2中,由勾股定理可得m2+n2=(2c)2,利用椭圆的定义可得m+n=2a,联立解得mn即可.【解答】解:椭圆C:x216+y2b2=1(4>b>0)的左右焦点为F1,F2,离心率为√32,∴e2=c2a2=1−b2a2=1−b216=(√32)2,∴b2=4,∴c=2√3,∴|F1F2|=2c=4√3,设|PF1|=m,|PF2|=n.在Rt△PF1F2中,由勾股定理可得m2+n2=(2c)2=48,又|PF1|+|PF2|=2a,∴m+n=8.则mn=(m+n)2−(m2+n2)2=8.∴△F1PF2的面积S=12mn=4.故答案为:4.16.答案:26解析:【分析】本题主要考查分类计数原理,考查排列与组合的应用,属于中档题.根据题意结账方式可分为三3类:第一类,当甲、丙、丁都不选微信时,则甲有2种选择,当甲选择现金,其余2人有A22=2(种)结账方式,当甲选择支付宝时,丙、丁可以银联卡,或者其中一人选择银联卡,另一人只能选支付宝或现金,故有1+C21C21=5(种)结账方式,即2+5=7(种)结账方式;第二类,当甲、丙、丁都不选支付宝时,则甲有2种选择,当甲选择现时,其余2人有A22=2(种)结账方式,当甲选择微信时,丙、丁可以是银联卡,或者其中一人选择银联卡,另一人只能选微信或现金,故有1+C21C21=5(种)结账方式,即2+5=7(种)结账方式;第三类,当甲、丙、丁都不选银联卡时,若有人使用现金,则有C31A22′=6(种)结账方式;若没有人使用现金,则有C32A22=6(种)结账方式,故有6+6=12(种)结账方式,再根据分类计数原理相加即可得结果.【解答】解:甲没有银联卡,乙只带了现金,丙、丁用哪种方式结账都可以,可分为三3类,第一类,当甲、丙、丁都不选微信时,则甲有2种选择: ①当甲选择现金,其余2人有A22=2(种)结账方式; ②当甲选择支付宝时,丙、丁可以银联卡,或者其中一人选择银联卡,另一人只能选支付宝或现金,故有1+C21C21=5(种)结账方式.综上,有2+5=7(种)结账方式,第二类,当甲、丙、丁都不选支付宝时,则甲有2种选择: ①当甲选择现时,其余2人有A22=2(种)结账方式; ②当甲选择微信时,丙、丁可以是银联卡,或者其中一人选择银联卡,另一人只能选微信或现金,故有1+C21C21=5(种)结账方式.综上,有2+5=7(种)结账方式.第三类,当甲、丙、丁都不选银联卡时,若有人使用现金,则有C31A22′=6(种)结账方式;若没有人使用现金,则有C32A22=6(种)结账方式,故有6+6=12(种)结账方式,根据分类计数原理可得共有7+7+12=26(种)结账方式.17.答案:136解析:【分析】本题考查了空间线线角的计算,重点考查了余弦定理的应用,属于中档题.【解答】解:如图:在△ABC中,连接AO并延长交BC于D,∵O为△ABC的中心,∴AD为BC边上的中线,又AB=BC=AC=2√3,∴AD=3.在△PBC中,∵PB=4,PC=5,BC=2√3,由余弦定理,在△PDC中,由余弦定理=52+(√3)2−2×5×√3×2120√3=352,在△PAD中,由余弦定理,故答案为136.18.答案:解:(1)因为C−A=π2且C+A=π−B,所以A=π4−B2,所以,即,又sinA>0,所以sinA=√33;(2)由题意可知A为锐角,故,又,∴A>B,则B为锐角,,由正弦定理得ACsinB =BCsinA,所以BC=AC·sinAsinB=3√2,又因为sinC=sin(A+B)=sinAcosB+cosAsinB=√33×2√23+√63×13=√63,所以.解析: 【分析】本题考查了正弦定理、三角形面积公式和两角和与差的三角函数公式,是中档题.(1)要求sin A 的值,应该用题目中的已知条件,将A 表示出来,可以得到A =π4−B2,进一步可以求出sin A ;(2)已知AC 的长度,可以根据正弦定理求出BC 的长度,再根据三角形面积公式,即可求得答案.19.答案:解:(1)连接BD ,交AC 于N ,连接MN ,由于AB =12CD ,所以DNNB =2,所以MN//BE ,由于MN ⊂平面MAC ,BE ⊄平面MAC , 所以BE//平面MAC.(2)因为平面ABCD ⊥平面CDEF ,DE ⊥CD ,所以DE ⊥平面ABCD ,可知AD,CD,DE 两两垂直,分别以DA ⃗⃗⃗⃗⃗ ,DC ⃗⃗⃗⃗⃗ ,CE⃗⃗⃗⃗⃗ 的方向为x,y,z 轴,建立空间直角坐标系D −xyz . 设AB =1则C (0,2,0),M (0,0,23),F (0,2,1),B (1,1,0),A (1,0,0),MA ⃗⃗⃗⃗⃗⃗ =(1,0,−23),AC ⃗⃗⃗⃗⃗ =(−1,2,0).设平面MAC 的法向量n ⃗ =(x,y,z ),则{n ⃗ ·MA ⃗⃗⃗⃗⃗⃗ =x −23z =0n ⃗ ·AC ⃗⃗⃗⃗⃗ =−x +2y =0,令z =3,得平面MAC 的一个法向量n⃗ =(2,1,3),而BF ⃗⃗⃗⃗⃗ =(−1,1,1),设所求角为θ,则sinθ=|cos⟨n ⃗ ,BF ⃗⃗⃗⃗⃗ ⟩|=√4221, 故直线BF 与平面MAC 所成的角的正弦值为√4221.解析:本题考查线面平行的证明,考查线面角的正弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查空间想象能力与思维能力,考查运算求解能力,是中档题. (1)连结BD ,交AC 于N ,连结MN ,推导出MN//BE ,由此能证明BE//平面MAC ;(2)推导出DE ⊥平面ABCD ,从而AD ,CD ,DE 两两垂直,以D 为原点建立空间直角坐标系D −xyz ,利用向量法能求出直线BF 与平面MAC 所成角的正弦值.20.答案:解:(1)∵数列{a n }为等差数列,a 2=5,a 6=13,设公差为d ,∴{a 1+d =5a 1+5d =13, 解得a 1=3,d =2,∴a n =3+(n −1)×2=2n +1. ∵{b n }为等比数列,b 2=a 4,b n+1=3b n . ∴b 2=2×4+1=9,q =b n+1b n=3,∴b 1=3,∴b n =3n . (2)a n ⋅b n =(2n +1)·3n ,S n =3·3+5·32+7·33+⋯+3n ·(2n +1)①3S n =3⋅32+5⋅33+7⋅34+⋯+(2n +1)⋅3n+1,② ①−②,得:−2S n =9+2(32+33+⋯+3n )−(2n +1)·3n+1=9+2×9×(1−3n−1)1−3−(2n +1)·3n+1=3n+1−(2n +1)·3n+1, ∴S n =n ·3n+1.解析:(1)由已知条件利用等差数列的通项公式,求出a 1=3,d =2,从而a n =2n +1.由{b n }为等比数列,结合已知条件求得b n =3n .(2)由a n ⋅b n =(2n +1)⋅3n ,利用错位相减法能求出{a n ⋅b n }前n 项和S n .本题考查数列的通项公式的求法,考查数列的前n 项和的求法,解题时要认真审题,注意错位相减法的合理运用.21.答案:(本小题满分14分)解:(Ⅰ)依题a =√2λ,c =√2λ2−λ2=λ, 所以椭圆C 离心率为e =√2λ=√22.…(3分) (Ⅱ)依题意x 0≠0,令y =0,由x 0x 2+y 0y =1,得x =2x 0,则A(2x 0,0).令x =0,由x 0x 2+y 0y =1,得y =1y 0,则B(0,1y 0).则△OAB 的面积S △OAB =12|OA||OB|=12|2x 0y 0|=1|x0y 0|.因为P(x 0,y 0)在椭圆C :x 22+y 2=1上,所以x 022+y 02=1. 所以1=x 022+y 02≥00√2,即|x 0y 0|≤√22,则1|x 0y 0|≥√2.所以S △OAB =12|OA||OB|=1|x0y 0|≥√2.当且仅当x 022=y 02,即x 0=±1,y 0=±√22时,△OAB 面积的最小值为√2. …(8分)(Ⅲ)由y 02λ2=1−x 022λ2>0,解得−√2λ<x 0<√2λ. ①当x 0=0时,P(0,λ),Q(−λ,2λ),此时k F 2P =−1,k F 2Q =−1. 因为k F 2Q =k F 2P ,所以三点Q ,P ,F 2共线. 当P(0,−λ)时,也满足.②当x 0≠0时,设Q(m,n),m ≠−λ,F 1Q 的中点为M ,则M(m−λ2,n 2),代入直线l 的方程,得:x 0m +2y 0n −x 0λ−4λ2=0.设直线F 1Q 的斜率为k ,则k =nm+λ=2y 0x 0,所以2y 0m −x 0n +2y 0λ=0.由{x 0m +2y 0n −x 0λ−4λ2=02y 0m −x 0n +2y 0λ=0,解得m =2x 02λ+4x 0λ24y 02+x 02−λ,n =4x 0y 0λ+8y 0λ24y 02+x 02.所以Q(2x 02λ+4x 0λ24y 02+x 02−λ,4x 0y 0λ+8y 0λ24y 02+x 02).当点P 的横坐标与点F 2的横坐标相等时,把x 0=λ,y 02=λ22代入m =2x 02λ+4x 0λ24y 02+x 02−λ,得m =λ,则P ,Q ,F 2三点共线.当点P 的横坐标与点F 2的横坐标不相等时,直线F 2P 的斜率为k F 2P =yx 0−λ.由−√2λ≤x 0≤√2λ,x 0≠−2λ. 所以直线F 2Q 的斜率为k F 2Q =4x 0y 0λ+8y 0λ24y 02+x 022x 02λ+4x 0λ24y 02+x 02−2λ=4x 0y 0λ+8y 0λ22x 02λ+4x 0λ2−8y 02λ−2x 02λ=4x 0y 0λ+8y 0λ24x 0λ2−8y 02λ=x 0y 0+2y 0λx 0λ−2y 02=y 0(x 0+2λ)x 02+λx 0−2λ2=y 0(x 0+2λ)(x 0−λ)(x 0+2λ)=y 0x 0−λ.因为k F 2Q =k F 2P ,所以Q ,P ,F 2三点共线. 综上所述Q ,P ,F 2三点共线.…(14分)解析:(Ⅰ)利用椭圆方程,求出a ,c ,即可求椭圆C 的离心率; (Ⅱ)由x 0x 2+y 0y =1,求出A 的坐标,然后求解B 的坐标,表示三角形的面积,通过P(x 0,y 0)在椭圆C 上,利用基本不等式求解三角形OAB 面积的最小值. (Ⅲ)由x 22λ2+y 2λ2=1,求出−√2λ<x 0<√2λ.①当x 0=0时,求出P(0,λ),Q(−λ,2λ),证明三点Q ,P ,F 2共线.②当x 0≠0时,设Q(m,n),m ≠−λ,F 1Q 的中点为M ,则M(m−λ2,n 2),代入直线l 的方程,求出Q 坐标,通过点P 的横坐标与点F 2的横坐标相等时,说明P ,Q ,F 2三点共线.点P 的横坐标与点F2的横坐标不相等时,证明k F2Q =k F2P,说明Q,P,F2三点共线.本题考查直线与椭圆的综合应用,椭圆的简单性质的应用,考查转化思想以及分类讨论思想的应用,考查计算能力.22.答案:解:(1)由f(x)=(ax+1)lnx−x2+1,则g(x)=f′(x)=alnx+1x−2x+a,所以g′(x)=−2x2+ax−1x(x>0).①当a≤0时,g′(x)<0,g(x)为(0,+∞)上的减函数;②当a>0时,若a2−8≤0,即0<a≤2√2时,g′(x)≤0,g(x)为(0,+∞)上的减函数;若a2−8>0,即a>2√2时,由g′(x)=0有两根,得x1=a−√a2−84>0,x2=a+√a2−84>0,∴在x∈(0,x1)上,g′(x)<0,g(x)为减函数;在x∈(x1,x2)上g′(x)>0,g(x)为增函数;在x∈(x2,+∞)上,g′(x)<0,g(x)为减函数.综上:当a≤2√2时,g(x)为(0,+∞)上的减函数;当a>2√2时,g(x)在(0,x1)和(x2,+∞)为减函数,在(x1,x2)上为增函数;(2)由(1)知,对a讨论如下,①当a≤0时,g′(x)<0,则f′(x)为(1,+∞)上的减函数,则f′(x)<f′(1)=−1+a<0,故f(x)为(1,+∞)上的减函数,由于f(1)=0,所以f(x)<f(1)=0,即a≤0时满足题意.②当a>0时,由于f′(1)=−1+a,对其讨论如下:(A)若f′(1)=−1+a≤0,即a≤1,则由(1)知,f′(x)为(1,+∞)上的减函数,则f′(x)<f′(1)=−1+a<0,所以f(x)为(1,+∞)的减函数,由于f(1)=0,所以f(x)<f(1)=0,即0<a≤1时满足题意.(B)若f′(1)=−1+a>0,即a>1,则由(1)知,当1<a≤2√2时,f′(x)为(1,+∞)上的减函数,<0,又f′(e a)=−2e a+a+a2+1e a所以存在x0∈(1,e a),使得在x∈(1,x0)时,f′(x)>0,于是f(x)为(1,x0)上的增函数,因为f(1)=(a+1)ln1−12+1=0,所以f(x)>f(1)=0,即1<a≤2√2时不满足题意.当a>2√2时,由于x1<1,所以对x2与1的大小关系讨论如下,1)如果x2≤1,即2√2<a≤3时,由(1)知,f′(x)为(1,+∞)上的减函数,<0,又f′(e a)=−2e a+a+a2+1e则存在x0∈(1,e a),使得在x∈(1,x0)时,f′(x)>0,于是f(x)为(1,x0)上的增函数,又f(1)=0,则f(x)>f(1)=0,即2√2<a≤3时不满足题意.2)如果x2>1,即a>3,那么由(1)知,f′(x)为(1,x2)上的增函数,则当x∈(1,x2)时,f′(x)>0,于是f(x)为(1,x2)上的增函数,又f(1)=0,则f(x)>f(1)=0,即a>3时不满足题意.综上所述,a的取值范围为(−∞,1].解析:本题考查了利用导数研究函数的单调性,考查导数中的函数不等式问题,考查导数的应用以及分类讨论思想,属于难题.(1)求出函数的导数,通过讨论a的范围,求出函数的单调区间即可;(2)通过讨论a的范围,结合函数的单调性确定a的范围即可.。
浙江省宁波市高考数学四模试卷(理科)姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)在复平面内,复数对应的点位于()A . 第一象限B . 第二象限C . 第三象限D . 第四象限2. (2分)集合可以表示为()A .B .C .D .3. (2分) (2017高二下·辽宁期末) 王安石在《游褒禅山记》中写道“世之奇伟、瑰怪,非常之观,常在于险远,而人之所罕至焉,故非有志者不能至也”,请问“有志”是到达“奇伟、瑰怪,非常之观”的()A . 充要条件B . 既不充分也不必要条件C . 充分不必要条件D . 必要不充分条件4. (2分)某单位在月份用电量(单位:千度)的数据如表:月份x2356用电量3 4.5 5.57已知用电量y与月份x之间有较好的线性相关关系,其回归方程 = x+1,由此可预测7月份用电量(单位:千度)约为()A . 6B . 7C . 8D . 95. (2分) (2016高一上·温州期末) 已知a=log32,b=log2 ,c=2 ,则()A . c>a>bB . c>b>aC . a>c>bD . a>b>c6. (2分) (2016高三上·金山期中) 已知某几何体的三视图如图表所示,则该几何体的体积为()A .B .C .D .7. (2分)若满足条件的点P(x,y)构成三角形区域,则实数k取值范围是()A . (﹣∞,﹣1)B . (1,+∞)C . (0,1)D . (﹣∞,﹣1)∪(1,+∞)8. (2分)(2017·太原模拟) 我们可以用随机模拟的方法估计π的值,如图程序框图表示其基本步骤(函数RAND是产生随机数的函数,它能随机产生(0,1)内的任何一个实数).若输出的结果为521,则由此可估计π的近似值为()A . 3.119B . 3.126C . 3.132D . 3.1519. (2分)已知函数f(x)=sin(ωx+φ)(ω>0)的图象如图所示,则f()=()A . -B .C .D . -10. (2分)设F1F2是双曲线的两个焦点, P是C上一点,若且的最小内角为,则C的离心率为()A .B .C .D .11. (2分)已知双曲线的左、右焦点分别为,过作双曲线的一条渐近线的垂线,垂足为,若的中点在双曲线上,则双曲线的离心率为()A .B .C . 2D . 312. (2分)(2018高二下·重庆期中) 已知函数对任意都存在使得则的最大值为()A .B .C .D .二、填空题 (共4题;共5分)13. (1分) (2018高二下·重庆期中) 的展开式中的常数项是________14. (1分) (2017高二上·南通期中) 已知F是抛物线C:y2=12x的焦点,M是C上一点,FM的延长线交y 轴于点N,若M是FN的中点,则FN的长度为________.15. (2分)正方体的全面积为a,它的顶点都在球面上,则这个球的表面积是________,体积是________.16. (1分)(2017·石嘴山模拟) 已知向量,的夹角为60°,| |=1,| |=3,则|5 ﹣|=________.三、解答题 (共7题;共65分)17. (10分) (2016高一下·天津期中) 已知数列{an}的前n项和为Sn ,若4Sn=(2n﹣1)an+1+1,且a1=1.(1)求数列{an}的通项公式;(2)设cn= ,数列{cn}的前n项和为Tn.①求Tn;②对于任意的n∈N*及x∈R,不等式kx2﹣6kx+k+7+3Tn>0恒成立,求实数k的取值范围.18. (15分) (2018高二上·沈阳期末) 高二某班共有20名男生,在一次体验中这20名男生被平均分成两个小组,第一组和第二组男生的身高(单位:)的茎叶图如下:(1)根据茎叶图,分别写出两组学生身高的中位数;(2)从该班身高超过的7名男生中随机选出2名男生参加校篮球队集训,求这2名男生至少有1人来自第二组的概率;(3)在两组身高位于(单位:)的男生中各随机选出2人,设这4人中身高位于(单位:)的人数为,求随机变量的分布列和数学期望.19. (10分)(2017·晋中模拟) 如图,在四棱锥P﹣ABCD中,E是PC的中点,底面ABCD为矩形,AB=4,AD=2,PA=PD,且平面PAD⊥平面ABCD,平面ABE与棱PD交于点F,平面PCD与平面PAB交于直线l.(1)求证:l∥EF;(2)求PB与平面ABCD所成角的正弦值为,求二面角P﹣AE﹣B的余弦值.20. (5分) (2017·黑龙江模拟) 已知F1 , F2分别是椭圆C: =1(a>b>0)的左,右焦点,D,E分别是椭圆C的上顶点和右顶点,且S = ,离心率e=(Ⅰ)求椭圆C的方程;(Ⅱ)设经过F2的直线l与椭圆C相交于A,B两点,求的最小值.21. (15分)(2018·百色模拟) 设函数(,为自然对数的底数).(1)证明:当时,;(2)讨论的单调性;(3)若不等式对恒成立,求实数的取值范围.22. (5分)(2017·衡水模拟) 已知在平面直角坐标系中,椭圆C的参数方程为(θ为参数).(I)以原点为极点,x轴的正半轴为极轴建立极坐标系,求椭圆C的极坐标方程;(Ⅱ)设M(x,y)为椭圆C上任意一点,求x+2y的取值范围.23. (5分)已知定义域在R上的函数f(x)=|x+1|+|x﹣2|的最小值为a.(1)求a的值;(2)若p,q,r为正实数,且p+q+r=a,求证:p2+q2+r2≥3.参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共4题;共5分)13-1、14-1、15-1、16-1、三、解答题 (共7题;共65分) 17-1、17-2、18-1、18-2、18-3、19-1、20-1、21-1、21-2、21-3、22-1、23-1、。
浙江省宁波市高考数学四模试卷(理科)姓名:________班级:________成绩:________一、 选择题: (共 12 题;共 24 分)1. (2 分) (2018·商丘模拟) 已知集合 值范围是( )A.,若,则实数 的取B.C.D.2. (2 分) (2017·蚌埠模拟) 已知复数 z 满足 iz=1﹣i,则 =( ) A . ﹣1﹣i B . 1﹣i C . ﹣1+i D . 1+i 3. (2 分) 等差数列{an}的前 n 项和为 Sn , 且 S3=6,a3=0,则公差 d 等于( )A . -1B.1C . -2D.24. (2 分) 某初级中学领导采用系统抽样方法,从该校 800 名学生中抽 50 名学生做牙齿健康检查.现将 800名学生从 1 到 800 进行编号,求得间隔数 k=16,即每 16 人抽取一个人.在 1~16 中随机抽取一个数,如果抽到的是 7,则从 65~80 这 16 个数中应取的数是()第 1 页 共 15 页A . 71 B . 68 C . 69 D . 70 5. (2 分) (2017 高二上·石家庄期末) 执行如图所示的程序框图,则输出结果 s 的值为( )A.﹣ B . ﹣1C. D.07. (2 分) 将函数 y=sin2x 的图象先向左平行移动 函数解析式是( )个单位长度,再向上平行移动 1 个单位长度,得到的A . y=sin(2x﹣ )+1B . y=sin(2x+ )+1C . y=sin(2x+ )+1D . y=sin(2x﹣ )+1第 2 页 共 15 页8. (2 分) (2017·新课标Ⅱ卷理) 设 x,y 满足约束条件 A . ﹣15,则 z=2x+y 的最小值是( )B . ﹣9C.1D.99. (2 分) (2016 高一下·湖北期中) 不等式 f(x)=ax2﹣x﹣c>0 的解集为{x|﹣2<x<1},则函数 y=f(﹣ x)的图象为( )A.B.C.D.10. (2 分) (2020·厦门模拟) 已知正四棱柱的底面边长为 1,高为 2, 为的中点,过 作平面 平行平面,若平面 把该正四棱柱分成两个几何体,则体积较小的几何体的体积为( )A.B.C.第 3 页 共 15 页D. 11. (2 分) (2016 高二上·集宁期中) 过双曲线的一个焦点 F2 作垂直于实轴的直线,交双曲线于 P、Q,F1 是另一焦点,若∠PF1Q= ,则双曲线的离心率 e 等于( )A.B.C.D.12. (2 分) 方程所表示的图形是( )A . 一条直线及一个圆B . 两个点C . 一条射线及一个圆D . 两条射线及一个圆二、 填空题: (共 4 题;共 4 分)13. (1 分) (2019 高三上·深州月考) 在直角 ________.中,点 是斜边的中点,且14. (1 分) (2016 高二下·黄骅期中) 下列各小题中,P 是 q 的充要条件的是________(1)p:m<﹣2 或 m>6;q:y=x2+mx+m+3 有两个不同的零点.,则(2)p:=1,q:y=f(x)是偶函数.(3)p:cosα=cosβ,q:tanα=tanβ. (4)p:A∩B=A,q:CUB⊆ CUA.第 4 页 共 15 页15. (1 分) (2016 高二上·云龙期中) 若直线 3x+4y﹣m=0 与圆 x2+y2+2x﹣4y+4=0 始终有公共点,则实数 m 的取值范围是________.16. (1 分) (2017·四川模拟) 已知函数 f(x)=(x﹣1)ex+ 取值范围是________.三、 解答题: (共 7 题;共 75 分)17. (10 分) (2017 高二下·集宁期末) 函数(1) 求函数的最小正周期;(其中 a∈R)有两个零点,则 a 的 .(2) 在 最大值.中,分别为内角的对边,且,,求的面积的18. (15 分) 一个盒子中装有 5 个编号依次为 1、2、3、4、5 的球,这 5 个球除号码外完全相同,有放回的 连续抽取两次,每次任意地取出一个球.(1) 用列表或画树状图的方法列出所有可能结果.(2) 求事件 A=“取出球的号码之和不小于 6”的概率.(3) 设第一次取出的球号码为 x,第二次取出的球号码为 y,求事件 B=“点(x,y)落在直线 y=x+1 上”的 概率.19. (5 分) (2018 高二上·西城期末) 如图,在正三棱柱中, 为 的中点.(Ⅰ)求证: (Ⅱ)求证:平面 平面; .第 5 页 共 15 页20. (5 分) (2017·太原模拟) 已知椭圆 C: + =1(a>b>0)的左、右焦点分别为 F1(﹣1,0), F2(1,0),点 A(1, )在椭圆 C 上.(Ⅰ)求椭圆 C 的标准方程;(Ⅱ)是否存在斜率为 2 的直线 l,使得当直线 l 与椭圆 C 有两个不同交点 M、N 时,能在直线 y= 上找到一点 P,在椭圆 C 上找到一点 Q,满足=?若存在,求出直线 l 的方程;若不存在,说明理由.21. (15 分) (2019 高三上·广东月考) 已知函数.(1) 若,求的最小值;(2) 若在上单调递增,求 的取值范围;(3) 若,求证:.22. (10 分) (2018·安徽模拟) 平面直角坐标系中,曲线 的参数方程为数),以坐标原点 为极点,以 轴正半轴为极轴,建立极坐标系,曲线 的极坐标方程为(1) 写出曲线 的极坐标方程和曲线 的直角坐标方程;( 为参 .(2) 若射线:,求 .平分曲线 ,且与曲线 交于点 ,曲线 上的点 满足23. (15 分) 已知数列 的各项均为正数, (1), 为自然对数的底数.求函数 (2)的单调区间,并比较与 的大小;计算 , , (3),由此推测计算的公式,并给出证明;第 6 页 共 15 页令,数列 , 的前 项和分别记为 , , 证明:.第 7 页 共 15 页一、 选择题: (共 12 题;共 24 分)1-1、 2-1、 3-1、 4-1、 5-1、 7-1、 8-1、 9-1、 10-1、 11-1、 12-1、二、 填空题: (共 4 题;共 4 分)13-1、 14-1、 15-1、 16-1、参考答案第 8 页 共 15 页三、 解答题: (共 7 题;共 75 分)17-1、 17-2、 18-1、 18-2、18-3、第 9 页 共 15 页19-1、第 10 页 共 15 页21-1、21-2、21-3、22-1、22-2、23-1、23-2、23-3、。
2021-2022中考数学模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。
选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列调查中,最适合采用普查方式的是()A.对太原市民知晓“中国梦”内涵情况的调查B.对全班同学1分钟仰卧起坐成绩的调查C.对2018年央视春节联欢晚会收视率的调查D.对2017年全国快递包裹产生的包装垃圾数量的调查2.下列解方程去分母正确的是( )A.由,得2x﹣1=3﹣3xB.由,得2x﹣2﹣x=﹣4C.由,得2y-15=3yD.由,得3(y+1)=2y+63.如图,A、B、C是⊙O上的三点,∠BAC=30°,则∠BOC的大小是()A.30°B.60°C.90°D.45°4.如图,△ABC是⊙O的内接三角形,AB=AC,∠BCA=65°,作CD∥AB,并与○O相交于点D,连接BD,则∠DBC 的大小为( )A .15°B .35°C .25°D .45°5.如图,正比例函数11y k x =的图像与反比例函数22k y x =的图象相交于A 、B 两点,其中点A 的横坐标为2,当12y y >时,x 的取值范围是( )A .x <-2或x >2B .x <-2或0<x <2C .-2<x <0或0<x <2D .-2<x <0或x >26.下列计算结果为a 6的是( ) A .a 2•a 3 B .a 12÷a 2 C .(a 2)3 D .(﹣a 2)37.∠BAC 放在正方形网格纸的位置如图,则tan ∠BAC 的值为( )A .16B .15C .13D .128.如图,在同一平面直角坐标系中,一次函数y 1=kx+b (k 、b 是常数,且k≠0)与反比例函数y 2=c x(c 是常数,且c≠0)的图象相交于A (﹣3,﹣2),B (2,3)两点,则不等式y 1>y 2的解集是( )A.﹣3<x<2 B.x<﹣3或x>2 C.﹣3<x<0或x>2 D.0<x<29.如图,夜晚,小亮从点A经过路灯C的正下方沿直线走到点B,他的影长y随他与点A之间的距离x的变化而变化,那么表示y与x之间的函数关系的图象大致为()A.B.C.D.10.下列汽车标志中,不是轴对称图形的是()A.B.C.D.11.计算:9115()515÷⨯-得()A.-95B.-1125C.-15D.112512.-sin60°的倒数为( )A.-2 B.12C.-33D.-33二、填空题:(本大题共6个小题,每小题4分,共24分.)137+3)73_____.14.已知x、y是实数且满足x2+xy+y2﹣2=0,设M=x2﹣xy+y2,则M的取值范围是_____.15.尺规作图:过直线外一点作已知直线的平行线.已知:如图,直线l与直线l外一点P.求作:过点P与直线l平行的直线.作法如下:(1)在直线l上任取两点A、B,连接AP、BP;(2)以点B为圆心,AP长为半径作弧,以点P为圆心,AB长为半径作弧,如图所示,两弧相交于点M;(3)过点P、M作直线;(4)直线PM即为所求.请回答:PM平行于l的依据是_____.16.以下两题任选一题作答:(1).下图是某商场一楼二楼之间的手扶电梯示意图,其中AB、CD 分别表示一楼、二楼地面的水平,∠ABC=150°,BC 的长是8m,则乘电梯次点B 到点C 上升的高度h 是_____m.(2).一个多边形的每一个内角都是与它相邻外角的 3 倍,则多边形是_____边形.17.计算:327=_____18.不等式组1xx m>-⎧⎨<⎩有2个整数解,则m的取值范围是_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,在三个小桶中装有数量相同的小球(每个小桶中至少有三个小球),第一次变化:从左边小桶中拿出两个小球放入中间小桶中;第二次变化:从右边小桶中拿出一个小球放入中间小桶中;第三次变化:从中间小桶中拿出一些小球放入右边小桶中,使右边小桶中小球个数是最初的两倍.(1)若每个小桶中原有3个小球,则第一次变化后,中间小桶中小球个数是左边小桶中小球个数的____倍;(2)若每个小桶中原有a个小球,则第二次变化后中间小桶中有_____个小球(用a表示);(3)求第三次变化后中间小桶中有多少个小球?20.(6分)九年级学生到距离学校6千米的百花公园去春游,一部分学生步行前往,20分钟后另一部分学生骑自行车前往,设x (分钟)为步行前往的学生离开学校所走的时间,步行学生走的路程为1y 千米,骑自行车学生骑行的路程为2y 千米,12y y 、关于x 的函数图象如图所示.(1)求2y 关于x 的函数解析式;(2)步行的学生和骑自行车的学生谁先到达百花公园,先到了几分钟?21.(6分)我国南水北调中线工程的起点是丹江口水库,按照工程计划,需对原水库大坝进行混凝土培厚加高,使坝高由原来的162米增加到176.6米,以抬高蓄水位,如图是某一段坝体加高工程的截面示意图,其中原坝体的高为BE ,背水坡坡角∠BAE=68°,新坝体的高为DE,背水坡坡角∠DCE=60°.求工程完工后背水坡底端水平方向增加的宽度AC .(结果精确到0.1米,参考数据:sin 68°≈0.93,cos 68°≈0.37,tan 68°≈2.5,3≈1.73)22.(8分)如图,某人站在楼顶观测对面的笔直的旗杆AB ,已知观测点C 到旗杆的距离CE=83m ,测得旗杆的顶部A 的仰角∠ECA=30°,旗杆底部B 的俯角∠ECB=45°,求旗杆AB 的髙.23.(8分)为鼓励大学毕业生自主创业,某市政府出台了相关政策:由政府协调,本市企业按成本价提供产品给大学毕业生自主销售,成本价与出厂价之间的差价由政府承担.李明按照相关政策投资销售本市生产的一种新型节能灯.已知这种节能灯的成本价为每件元,出厂价为每件元,每月销售量(件)与销售单价(元)之间的关系近似满足一次函数:.李明在开始创业的第一个月将销售单价定为元,那么政府这个月为他承担的总差价为多少元?设李明获得的利润为(元),当销售单价定为多少元时,每月可获得最大利润?物价部门规定,这种节能灯的销售单价不得高于元.如果李明想要每月获得的利润不低于元,那么政府为他承担的总差价最少为多少元?24.(10分)如图,抛物线y=ax2﹣2ax+c(a≠0)与y轴交于点C(0,4),与x轴交于点A、B,点A坐标为(4,0).(1)求该抛物线的解析式;(2)抛物线的顶点为N,在x轴上找一点K,使CK+KN最小,并求出点K的坐标;(3)点Q是线段AB上的动点,过点Q作QE∥AC,交BC于点E,连接CQ.当△CQE的面积最大时,求点Q的坐标;(4)若平行于x轴的动直线l与该抛物线交于点P,与直线AC交于点F,点D的坐标为(2,0).问:是否存在这样的直线l,使得△ODF是等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由.25.(10分)如图,矩形ABCD中,AB=4,AD=5,E为BC上一点,BE∶CE=3∶2,连接AE,点P从点A出发,沿射线AB的方向以每秒1个单位长度的速度匀速运动,过点P作PF∥BC交直线AE于点F.(1)线段AE=______;(2)设点P的运动时间为t(s),EF的长度为y,求y关于t的函数关系式,并写出t的取值范围;(3)当t为何值时,以F为圆心的⊙F恰好与直线AB、BC都相切?并求此时⊙F的半径.26.(1284cos45°+(12)﹣1+|﹣2|.27.(12分)为了了解市民“获取新闻的最主要途径”,某市记者开展了一次抽样调查,根据调査结果绘制了如下尚不完整的统计图:根据以上信息解答下列问题:这次接受调查的市民总人数是_______人;扇形统计图中,“电视”所对应的圆心角的度数是_________;请补全条形统计图;若该市约有80万人,请你估计其中将“电脑和手机上网”作为“获取新闻的最主要途径”的总人数.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、B【解析】分析:由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.详解:A、调查范围广适合抽样调查,故A不符合题意;B、适合普查,故B符合题意;C、调查范围广适合抽样调查,故C不符合题意;D、调查范围广适合抽样调查,故D不符合题意;故选:B.点睛:本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.2、D【解析】根据等式的性质2,A方程的两边都乘以6,B方程的两边都乘以4,C方程的两边都乘以15,D方程的两边都乘以6,去分母后判断即可.【详解】A.由,得:2x﹣6=3﹣3x,此选项错误;B.由,得:2x﹣4﹣x=﹣4,此选项错误;C.由,得:5y﹣15=3y,此选项错误;D.由,得:3(y+1)=2y+6,此选项正确.故选D.【点睛】本题考查了解一元一次方程,注意在去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.3、B【解析】【分析】欲求∠BOC,又已知一圆周角∠BAC,可利用圆周角与圆心角的关系求解.【详解】∵∠BAC=30°,∴∠BOC=2∠BAC =60°(同弧所对的圆周角是圆心角的一半),故选B.【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.4、A【解析】根据等腰三角形的性质以及三角形内角和定理可得∠A =50°,再根据平行线的性质可得∠ACD=∠A=50°,由圆周角定理可行∠D=∠A=50°,再根据三角形内角和定理即可求得∠DBC的度数.【详解】∵AB=AC,∴∠ABC=∠ACB=65°,∴∠A=180°-∠ABC-∠ACB=50°,∵DC//AB,∴∠ACD=∠A=50°,又∵∠D=∠A=50°,∴∠DBC=180°-∠D -∠BCD=180°-50°-(65°+50°)=15°,故选A.【点睛】本题考查了等腰三角形的性质,圆周角定理,三角形内角和定理等,熟练掌握相关内容是解题的关键.5、D【解析】先根据反比例函数与正比例函数的性质求出B 点坐标,再由函数图象即可得出结论.【详解】解:∵反比例函数与正比例函数的图象均关于原点对称,∴A 、B 两点关于原点对称,∵点A 的横坐标为1,∴点B 的横坐标为-1,∵由函数图象可知,当-1<x <0或x >1时函数y 1=k 1x 的图象在22k y x的上方, ∴当y 1>y 1时,x 的取值范围是-1<x <0或x >1.故选:D .【点睛】本题考查的是反比例函数与一次函数的交点问题,能根据数形结合求出y 1>y 1时x 的取值范围是解答此题的关键. 6、C【解析】分别根据同底数幂相乘、同底数幂相除、幂的乘方的运算法则逐一计算可得.【详解】A 、a 2•a 3=a 5,此选项不符合题意;B 、a 12÷a 2=a 10,此选项不符合题意;C 、(a 2)3=a 6,此选项符合题意;D 、(-a 2)3=-a 6,此选项不符合题意;故选C .【点睛】本题主要考查幂的运算,解题的关键是掌握同底数幂相乘、同底数幂相除、幂的乘方的运算法则.7、D【解析】连接CD ,再利用勾股定理分别计算出AD 、AC 、BD 的长,然后再根据勾股定理逆定理证明∠ADC =90°,再利用三角函数定义可得答案.【详解】连接CD ,如图:222222AD =+=CD 22112+=AC 223110+=.∵22222210+=()()(),∴∠ADC =90°,∴tan ∠BAC =222CD AD ==12. 故选D .【点睛】本题主要考查了勾股定理,勾股定理逆定理,以及锐角三角函数定义,关键是证明∠ADC =90°.8、C【解析】【分析】一次函数y 1=kx+b 落在与反比例函数y 2=c x图象上方的部分对应的自变量的取值范围即为所求. 【详解】∵一次函数y 1=kx+b (k 、b 是常数,且k≠0)与反比例函数y 2=c x (c 是常数,且c≠0)的图象相交于A (﹣3,﹣2),B (2,3)两点,∴不等式y 1>y 2的解集是﹣3<x <0或x >2,故选C .【点睛】本题考查了反比例函数与一次函数的交点问题,利用数形结合是解题的关键.9、A【解析】设身高GE=h ,CF=l ,AF=a ,当x≤a 时,在△OEG 和△OFC 中,∠GOE=∠COF (公共角),∠AEG=∠AFC=90°,∴△OEG ∽△OFC ,OE/OF GE/CF =,∴()y h h ah y x a x y l l h l h=∴=-+----,, ∵a 、h 、l 都是固定的常数,∴自变量x 的系数是固定值,∴这个函数图象肯定是一次函数图象,即是直线;∵影长将随着离灯光越来越近而越来越短,到灯下的时候,将是一个点,进而随着离灯光的越来越远而影长将变大. 故选A .10、C【解析】根据轴对称图形的概念求解.【详解】A 、是轴对称图形,故错误;B 、是轴对称图形,故错误;C 、不是轴对称图形,故正确;D 、是轴对称图形,故错误.故选C .【点睛】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.11、B【解析】同级运算从左向右依次计算,计算过程中注意正负符号的变化.【详解】919111551551515⎛⎫⎛⎫÷⨯-=⨯⨯-= ⎪ ⎪⎝⎭⎝⎭-1125 故选B.【点睛】本题考查的是有理数的混合运算,熟练掌握运算法则是解题的关键.12、D【解析】分析:sin 60-︒=根据乘积为1的两个数互为倒数,求出它的倒数即可.详解:sin 60-︒=31,23⎛⎫⎛-⨯-= ⎪ ⎪ ⎝⎭⎝⎭的倒数是3-. 故选D.点睛:考查特殊角的三角函数和倒数的定义,熟记特殊角的三角函数值是解题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、4【解析】利用平方差公式计算.【详解】解:原式2-()2=7-3=4.故答案为:4.【点睛】本题考查了二次根式的混合运算.14、23≤M≤6 【解析】把原式的xy 变为2xy-xy ,根据完全平方公式特点化简,然后由完全平方式恒大于等于0,得到xy 的范围;再把原式中的xy 变为-2xy+3xy ,同理得到xy 的另一个范围,求出两范围的公共部分,然后利用不等式的基本性质求出2-2xy 的范围,最后利用已知x 2+xy+y 2-2=0表示出x 2+y 2,代入到M 中得到M=2-2xy ,2-2xy 的范围即为M 的范围.【详解】由2220x xy y ++-=得:22220x xy y xy ++--=,即2()20x y xy +=+≥, 所以2xy ≥-;由2220x xy y ++-=得:222230x xy y xy -+-+=,即2()230,x y xy -=-≥ 所以32xy ≤, ∴322xy -≤≤, ∴不等式两边同时乘以−2得:()()()322222xy -⨯-≥-≥⨯-,即4243xy -≤-≤, 两边同时加上2得:422242,3xy -+≤-≤+即22263xy ≤-≤, ∵2220,x xy y ++-=∴222x y xy +=-,∴2222M x xy y xy =-+=-,则M 的取值范围是23≤M≤6. 故答案为:23≤M≤6. 【点睛】此题考查了完全平方公式,以及不等式的基本性质,解题时技巧性比较强,对已知的式子进行了三次恒等变形,前两次利用拆项法拼凑完全平方式,最后一次变形后整体代入确定出M 关于xy 的式子,从而求出M 的范围.要求学生熟练掌握完全平方公式的结构特点:两数的平方和加上或减去它们乘积的2倍等于两数和或差的平方.15、两组对边分别相等的四边形是平行四边形;平行四边形对边平行;两点确定一条直线.【解析】利用画法得到PM =AB ,BM =PA ,则利用平行四边形的判定方法判断四边形ABMP 为平行四边形,然后根据2平行四边形的性质得到PM ∥AB .【详解】解:由作法得PM =AB ,BM =PA ,∴四边形ABMP 为平行四边形,∴PM ∥AB .故答案为:两组对边分别相等的四边形是平行四边形;平行四边形对边平行;两点确定一条直线.【点睛】本题考查基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了平行四边形的判定与性质.16、4 8【解析】(1)先求出斜边的坡角为30°,再利用含30°的直角三角形即可求解;(2)设这个多边形边上为n ,则内角和为(n-2)×180°,外角度数为360?n 故可列出方程求解.【详解】(1)∵∠ABC=150°,∴斜面BC 的坡角为30°,∴h=12BC =4m (2)设这个多边形边上为n ,则内角和为(n-2)×180°,外角度数为360?n 依题意得2180360?3n n n-⨯︒=⨯() 解得n=8故为八边形.【点睛】此题主要考查含30°的直角三角形与多边形的内角和计算,解题的关键是熟知含30°的直角三角形的性质与多边形的内角和公式.17、【解析】按照二次根式的运算法则进行运算即可.【详解】==【点睛】本题考查的知识点是二次根式的运算,解题关键是注意化简算式.18、1<m≤2【解析】首先根据不等式恰好有2个整数解求出不等式组的解集为1x m -<<,再确定12m <≤.【详解】不等式组1x x m >-⎧⎨<⎩有2个整数解, ∴其整数解有0、1这2个,∴12m <≤.故答案为:12m <≤.【点睛】此题主要考查了解不等式组,关键是正确理解解集的规律:同大取大,同小取小,大小小大中间找,大大小小找不到.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、 (1)5;(2)(a+3);(3)第三次变化后中间小桶中有2个小球.【解析】(1)(2)根据材料中的变化方法解答;(3)设原来每个捅中各有a 个小球,根据第三次变化方法列出方程并解答.【详解】解:(1)依题意得:(3+2)÷(3﹣2)=5 故答案是:5;(2)依题意得:a+2+1=a+3;故答案是:(a+3)(3)设原来每个捅中各有a 个小球,第三次从中间桶拿出x 个球,依题意得:a ﹣1+x =2ax =a+1所以 a+3﹣x =a+3﹣(a+1)=2答:第三次变化后中间小桶中有2个小球.【点睛】考查了一元一次方程的应用和列代数式,解题的关键是找到描述语,列出等量关系,得到方程并解答.20、20.24y x =﹣;(2)骑自行车的学生先到达百花公园,先到了10分钟.【解析】(1)根据函数图象中的数据可以求得2y 关于x 的函数解析式;(2)根据函数图象中的数据和题意可以分别求得步行学生和骑自行车学生到达百花公园的时间,从而可以解答本题.【详解】解:(1)设2y 关于x 的函数解析式是2y kx b +=,200404k b k b +=⎧⎨+=⎩,得0.24k b =⎧⎨=-⎩, 即2y 关于x 的函数解析式是20.24y x=﹣;(2)由图象可知,步行的学生的速度为:4400.1÷=千米/分钟,∴步行同学到达百花公园的时间为:60.160÷=(分钟), 当28y =时, 60.24x =﹣,得50x =,605010﹣=,答:骑自行车的学生先到达百花公园,先到了10分钟.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质解答.21、工程完工后背水坡底端水平方向增加的宽度AC 约为37.3米.【解析】解:在Rt △BAE 中,∠BAE=680,BE=162米,∴(米). 在Rt △DEC 中,∠DGE=600,DE=176.6米,∴DE CE 102.08tan DGE 3==≈∠(米). ∴AC CE AE 102.0864.8037.2837.3=-≈-=≈(米).∴工程完工后背水坡底端水平方向增加的宽度AC 约为37.3米.在Rt △BAE 和Rt △DEC 中,应用正切函数分别求出AE 和CE 的长即可求得AC 的长.22、 3.【解析】利用∠ECA 的正切值可求得AE ;利用∠ECB 的正切值可求得BE ,由AB=AE+BE 可得答案.【详解】在Rt △EBC 中,有BE=EC×tan45°3m , 在Rt △AEC 中,有AE=EC×tan30°=8m , ∴3+8(m ).【点睛】本题考查了解直角三角形的应用-俯角、仰角问题,要求学生能借助其关系构造直角三角形并解直角三角形.23、(1)政府这个月为他承担的总差价为644元;(2)当销售单价定为34元时,每月可获得最大利润144元;(3)销售单价定为25元时,政府每个月为他承担的总差价最少为544元.【解析】试题分析:(1)把x=24代入y=﹣14x+544求出销售的件数,然后求出政府承担的成本价与出厂价之间的差价;(2)由利润=销售价﹣成本价,得w=(x﹣14)(﹣14x+544),把函数转化成顶点坐标式,根据二次函数的性质求出最大利润;(3)令﹣14x2+644x﹣5444=2,求出x的值,结合图象求出利润的范围,然后设设政府每个月为他承担的总差价为p元,根据一次函数的性质求出总差价的最小值.试题解析:(1)当x=24时,y=﹣14x+544=﹣14×24+544=344,344×(12﹣14)=344×2=644元,即政府这个月为他承担的总差价为644元;(2)依题意得,w=(x﹣14)(﹣14x+544)=﹣14x2+644x﹣5444=﹣14(x﹣34)2+144∵a=﹣14<4,∴当x=34时,w有最大值144元.即当销售单价定为34元时,每月可获得最大利润144元;(3)由题意得:﹣14x2+644x﹣5444=2,解得:x1=24,x2=1.∵a=﹣14<4,抛物线开口向下,∴结合图象可知:当24≤x≤1时,w≥2.又∵x≤25,∴当24≤x≤25时,w≥2.设政府每个月为他承担的总差价为p元,∴p=(12﹣14)×(﹣14x+544)=﹣24x+3.∵k=﹣24<4.∴p随x的增大而减小,∴当x=25时,p有最小值544元.即销售单价定为25元时,政府每个月为他承担的总差价最少为544元.考点:二次函数的应用.24、(1)y=﹣2142x x ++;(1)点K 的坐标为(817,0);(2)点P 的坐标为:(1+5,1)或(1﹣5,1)或(1+3,2)或(1﹣3,2).【解析】试题分析:(1)把A 、C 两点坐标代入抛物线解析式可求得a 、c 的值,可求得抛物线解析;(1)可求得点C 关于x 轴的对称点C′的坐标,连接C′N 交x 轴于点K ,再求得直线C′K 的解析式,可求得K 点坐标;(2)过点E 作EG ⊥x 轴于点G ,设Q (m ,0),可表示出AB 、BQ ,再证明△BQE ≌△BAC ,可表示出EG ,可得出△CQE 关于m 的解析式,再根据二次函数的性质可求得Q 点的坐标;(4)分DO=DF 、FO=FD 和OD=OF 三种情况,分别根据等腰三角形的性质求得F 点的坐标,进一步求得P 点坐标即可.试题解析:(1)∵抛物线经过点C (0,4),A (4,0),∴416840c a a =⎧⎨-+=⎩,解得124a c ⎧=-⎪⎨⎪=⎩ , ∴抛物线解析式为y=﹣12x 1+x+4; (1)由(1)可求得抛物线顶点为N (1,92 ), 如图1,作点C 关于x 轴的对称点C′(0,﹣4),连接C′N 交x 轴于点K ,则K 点即为所求,设直线C′N 的解析式为y=kx+b ,把C′、N 点坐标代入可得924k b b ⎧+=⎪⎨⎪=-⎩ ,解得1724k b ⎧=⎪⎨⎪=-⎩ ,∴直线C′N 的解析式为y=172x-4 ,令y=0,解得x=817, ∴点K 的坐标为(817,0); (2)设点Q (m ,0),过点E 作EG ⊥x 轴于点G ,如图1,由﹣12x 1+x+4=0,得x 1=﹣1,x 1=4, ∴点B 的坐标为(﹣1,0),AB=6,BQ=m+1,又∵QE ∥AC ,∴△BQE ≌△BAC ,∴EG BQ CO BA = ,即246EG m += ,解得EG=243m + ; ∴S △CQE =S △CBQ ﹣S △EBQ =12(CO-EG )·BQ=12(m+1)(4-243m +) =2128-333m m ++ =-13(m-1)1+2 . 又∵﹣1≤m≤4,∴当m=1时,S △CQE 有最大值2,此时Q (1,0);(4)存在.在△ODF 中,(ⅰ)若DO=DF ,∵A (4,0),D (1,0),∴AD=OD=DF=1.又在Rt △AOC 中,OA=OC=4,∴∠OAC=45°.∴∠DFA=∠OAC=45°.∴∠ADF=90°.此时,点F 的坐标为(1,1).由﹣12x 1+x+4=1,得x 15,x 1=15 此时,点P 的坐标为:P 1(51)或P 1(151);(ⅱ)若FO=FD ,过点F 作FM ⊥x 轴于点M .由等腰三角形的性质得:OM=12OD=1, ∴AM=2. ∴在等腰直角△AMF 中,MF=AM=2.∴F (1,2). 由﹣12x 1+x+4=2,得x 13,x 1=13 此时,点P 的坐标为:P 2(32)或P 4(132);(ⅲ)若OD=OF ,∵OA=OC=4,且∠AOC=90°.∴2.∴点O 到AC 的距离为2而OF=OD=1<2,与2矛盾.∴在AC 上不存在点使得OF=OD=1.此时,不存在这样的直线l ,使得△ODF 是等腰三角形.综上所述,存在这样的直线l ,使得△ODF 是等腰三角形.所求点P 的坐标为:(51)或(151)或(32)或(132).点睛:本题是二次函数综合题,主要考查待定系数法、三角形全等的判定与性质、等腰三角形的性质等,能正确地利用数形结合思想、分类讨论思想等进行解题是关键.25、(1)5;(2)()()550445544t t y t t ⎧-≤≤⎪⎪=⎨⎪->⎪⎩;(3)167t =时,半径PF =127;t =16,半径PF =12. 【解析】(1)由矩形性质知BC =AD =5,根据BE :CE =3:2知BE =3,利用勾股定理可得AE =5;(2)由PF∥BE知AP AFAB AE,据此求得AF=54t,再分0≤t≤4和t>4两种情况分别求出EF即可得;(3)由以点F为圆心的⊙F恰好与直线AB、BC相切时PF=PG,再分t=0或t=4、0<t<4、t>4这三种情况分别求解可得【详解】(1)∵四边形ABCD为矩形,∴BC=AD=5,∵BE∶CE=3∶2,则BE=3,CE=2,∴AE===5.(2)如图1,当点P在线段AB上运动时,即0≤t≤4,∵PF∥BE,∴=,即=,∴AF=t,则EF=AE-AF=5-t,即y=5-t(0≤t≤4);如图2,当点P在射线AB上运动时,即t>4,此时,EF=AF-AE=t-5,即y=t-5(t>4);综上,()()550445544t t y t t ⎧-≤≤⎪⎪=⎨⎪->⎪⎩; (3)以点F 为圆心的⊙F 恰好与直线AB 、BC 相切时,PF =FG ,分以下三种情况:①当t =0或t =4时,显然符合条件的⊙F 不存在;②当0<t <4时,如解图1,作FG ⊥BC 于点G ,则FG =BP =4-t ,∵PF ∥BC ,∴△APF ∽△ABE ,∴=,即=,∴PF =t ,由4-t =t 可得t =,则此时⊙F 的半径PF =;③当t >4时,如解图2,同理可得FG =t -4,PF =t ,由t -4=t 可得t =16,则此时⊙F 的半径PF =12.【点睛】本题主要考查了矩形的性质,勾股定理,动点的函数为题,切线的性质,相似三角形的判定与性质及分类讨论的数学思想.解题的关键是熟练掌握切线的性质、矩形的性质及相似三角形的判定与性质.26、4【解析】分析:代入45°角的余弦函数值,结合“负整数指数幂的意义”和“二次根式的相关运算法则”进行计算即可.详解:原式=22242242⨯++=. 点睛:熟记“特殊角的三角函数值、负整数指数幂的意义:1p p aa-=(0a p ≠,为正整数)”是正确解答本题的关键. 27、 (1)1000;(2)54°;(3)见解析;(4)32万人【解析】根据“每项人数=总人数×该项所占百分比”,“所占角度=360度×该项所占百分比”来列出式子,即可解出答案. 【详解】解:(1)400÷40%=1000(人)(2)360°×1501000=54°,故答案为:1000人; 54°;(3)1-10%-9%-26%-40%=15% 15%×1000=150(人)(4)80×6601000=52.8(万人)答:总人数为52.8万人.【点睛】本题考查获取图表信息的能力,能够根据图表找到必要条件是解题关键.。
浙江省宁波市2024年数学(高考)统编版摸底(评估卷)模拟试卷一、单项选择题(本题包含8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的)(共8题)第(1)题某校羽毛球队的4名男生和4名女生分成四组,参加四场混合双打比赛(每名队员只限参加一场比赛),则组队方法的总数为()A.24B.288C.576D.1152第(2)题已知菱形沿对角线向上折起,得到三棱锥分别是棱的中点.设三棱锥的外接球为球,则下列结论正确的个数为()①;②上存在点,使得平面;③当二面角为时,球的表面积为.④三棱锥的体积最大值为1.A.1B.2C.3D.4第(3)题已知集合,,则()A.{0}B.{2}C.{3}D.{0,3}第(4)题将函数的图象的横坐标变为原来的2倍(纵坐标不变),然后再向左平移个单位长度,得到函数的部分图象如图所示,则函数的解析式为()A.B.C.D.第(5)题已知动直线与圆交于,两点,且.若与圆相交所得的弦长为,则的最大值与最小值之差为()A.B.1C.D.2第(6)题若复数满足,则在复平面上所对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限第(7)题已知椭圆的左、右焦点分别为,直线与椭圆交于两点,直线与椭圆交于另一点,若直线与的斜率之积为,则椭圆的离心率为()A.B.C.D.第(8)题已知全集,集合,则()A.B.C.D.二、多项选择题(本题包含3小题,每小题6分,共18分。
在每小题给出的四个选项中,至少有两个选项正确。
全部选对的得6分,选对但不全的得3分,有选错或不答的得0分) (共3题)第(1)题已知函数(,,),满足:,恒成立,且在上有且仅有4个零点,则()A .,B.函数的单调递增区间为C.函数的对称中心为D .函数的对称轴为直线,第(2)题已知椭圆C:的左、右焦点分别为,,上顶点为B,直线l:与椭圆C交于M,N两点,的角平分线与x轴相交于点E,与y轴相交于点,则()A.四边形的周长为8B.的最小值为9C.直线BM,BN的斜率之积为D.当时,第(3)题下列函数中,最小正周期为,且在上单调递增的是()A.B.C.D.三、填空(本题包含3个小题,每小题5分,共15分。
浙江省宁波市高考数学四模试卷(理科)姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)设A={x|x>0},B={x|x<1},则=A . {x|0<x<1}B . {x|x<1}C . {x|x<0}D . R2. (2分) (2018高二下·大连期末) 设复数,则()A .B .C .D .3. (2分)(2016·潮州模拟) 当实数x,y满足时,1≤ax+y≤4恒成立,则实数a的取值范围()A . [1, ]B . [﹣1,2]C . [﹣2,3]D . [1,2]4. (2分) (2019高一上·大庆期中) 设函数,则 =()A .B .C .D .5. (2分) (2018高一下·六安期末) 设等差数列的前项和为,且,,则满足的最大自然数的值为()A . 12B . 13C . 22D . 236. (2分)若双曲线的一条渐近线经过点(3,-4),则此双曲线的离心率为()A .B .C .D .7. (2分)如图,当直线l:y=x+t从虚线位置开始,沿图中箭头方向平行匀速移动时,正方形ABCO位于直线l下方(图中阴影部分)的面积记为S,则S与t的函数图象大致是()A .B .C .D .8. (2分)在如右上图的程序图中,输出结果是()A . 5B . 10C . 20D . 159. (2分)下列命题正确的个数是()①已知复数,在复平面内对应的点位于第四象限;②若是实数,则“”的充要条件是“或”;③命题:“”的否定:“”;A . 3B . 2C . 1D . 010. (2分) (2019高二上·南充期中) 下图是一个边长为4的正方形二维码,为了测算图中黑色部分的面积,在正方形区域内随机投掷400个点,其中落入黑色部分的有225个点,据此可估计黑色部分的面积为()A . 8B . 9C . 10D . 1211. (2分) (2018高二上·万州月考) 已知一个表面积为44的长方体,且它的长、宽、高的比为3:2:1,则此长方体的外接球的体积为()A .B .C .D .12. (2分)下列函数f(x)中,满足“对任意x1 ,x2∈(0,+∞)(x1≠x2),都有>0”的是()A . f(x)=B . f(x)=(x﹣1)2C . f(x)=2xD . f(x)=﹣|x|二、填空题 (共4题;共4分)13. (1分)(x2﹣1)(x﹣2)7的展开式中x3项的系数是________.14. (1分)(2017·上海模拟) 如图,在△ABC中,AB=AC=3,cos∠BAC= , =2 ,则•的值为________.15. (1分)已知某几何体的三视图如图所示,则该几何体的外接球体积为________16. (1分) (2017高二下·河北开学考) 如图,已知抛物线y2=4x的焦点为F,直线l过F且依次交抛物线及圆(x﹣1)2+y2= 于点A,B,C,D四点,则9|AB|+4|CD|的最小值为________.三、解答题 (共7题;共65分)17. (10分) (2018高二上·湖南月考) 在中,角所对的边分别为,且满足.(1)求角的大小;(2)若边长,求面积的最大值.18. (10分) (2018高二下·通许期末) 甲乙两人独立解某一道数学题,已知该题被甲独立解出的概率为,被甲或乙解出的概率为,(1)求该题被乙独立解出的概率;(2)求解出该题的人数的数学期望和方差19. (5分) (2016高二上·陕西期中) 已知四棱锥P﹣ABCD及其三视图如下图所示,E是侧棱PC上的动点.(Ⅰ)求四棱锥P﹣ABCD的体积;(Ⅱ)不论点E在何位置,是否都有BD⊥AE?试证明你的结论;(Ⅲ)若点E为PC的中点,求二面角D﹣AE﹣B的大小.20. (10分)(2017·江西模拟) 已知焦距为2的椭圆W: =1(a>b>0)的左、右焦点分别为A1 ,A2 ,上、下顶点分别为B1 , B2 ,点M(x0 , y0)为椭圆W上不在坐标轴上的任意一点,且四条直线MA1 ,MA2 , MB1 , MB2的斜率之积为.(1)求椭圆W的标准方程;(2)如图所示,点A,D是椭圆W上两点,点A与点B关于原点对称,AD⊥AB,点C在x轴上,且AC与x轴垂直,求证:B,C,D三点共线.21. (15分)(2018·朝阳模拟) 已知函数 .(1)当时,求曲线在点处的切线方程;(2)求函数的单调区间;(3)若 ,求证: .22. (5分)(2017·亳州模拟) 已知直线l的参数方程是(t是参数),圆C的极坐标方程为ρ=4cos(θ+ ).(Ⅰ)求圆心C的直角坐标;(Ⅱ)由直线l上的点向圆C引切线,求切线长的最小值.23. (10分) (2017高二下·牡丹江期末) 已知函数 .(1)若,解不等式;(2)若存在实数,使得不等式成立,求实数的取值范围.参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共4题;共4分)13-1、14-1、15-1、16-1、三、解答题 (共7题;共65分) 17-1、17-2、18、答案:略19-1、20-1、20-2、21-1、21-2、21-3、22-1、23-1、23-2、。
浙江省宁波市镇海区2017年高中数学竞赛模拟试题(四)一、填空题(共10小题,每小题6分,满分60分。
请直接将答案写在题中的横线上) 1.若函数()的最小正周期为,则在区间上的最大值为。
2.已知集合,,若,则实数的取值范围为。
3.函数零点的个数为。
4.如图,在正方体中,二面角的大小为。
5.在空间四边形中,已知,,,,则。
6.已知直线过椭圆:的左焦点且交椭圆于、两点。
为坐标原点,若,则点到直线的距离为。
7.已知,若关于的方程(为虚数单位)有实数根,则复数的模的最小值为。
8.将16本相同的书全部分给4个班级,每个班级至少有一本书,且各班所得书的数量互不相同,则不同的分配方法种数为。
(用数字作答)C 1B 1D 1CABD A 1BDCA9.是定义在的函数,若,且对任意,满足,,则。
10.当,,为正数时,的最大值为。
二、解答题(共5小题,每小题20分,满分100分。
要求写出解题过程)11.已知数列的前项和()。
(1)求的通项公式;(2)设,是数列的前项和,求正整数,使得对任意均有;(3)设,是数列的前项和,若对任意均有成立,求的最小值。
12.已知()。
(1)若曲线在点处的切线方程为,求,的值;(2)若恒成立,求的最大值。
13.如图,、为双曲线:的左、右焦点,动点()在双曲线上的右支上。
设的角平分线交轴于点,交轴于点。
(1)求的取值范围;(2)设过,的直线交双曲线于点,两点,求面积的最大值。
14.求满足下列条件的最小正整数:若将集合任意划分为63个两两不相交的子集(它们非空且并集为集合),,,…,,则总存在两个正整数,属于同一个子集()且,。
数学竞赛模拟试卷(4)参考答案一、填空题(共10小题,每小题6分,满分60分。
请直接将答案写在题中的横线上)1.若函数()的最小正周期为,则在区间上的最大值为。
【答案】【解答】∵,且的最小正周期为。
∴,。
又时,,∴,即时,在区间上取最大值。
2.已知集合,,若,则实数的取值范围为。
【答案】【解答】。
由,得。
∴时,。
满足。
时,由,得,。
满足。
时,由,得,。
由满足,得,。
综合得,。
的取值范围为。
3.函数零点的个数为。
【答案】 1【解答】∵。
时,;时,。
∴在区间上为减函数,在区间上为增函数。
又时,,;,。
∴函数的零点个数为1。
或:作图考察函数与图像交点的个数。
4.如图,在正方体中,二面角的大小为。
【解答】设正方体棱长为1。
作于,连结。
由正方体的性质知,。
∴,为二面角的平面角,且,。
∴。
∴二面角的大小为。
或:设、交于点,由,得。
5.在空间四边形中,已知,,,,则。
【答案】7【解答】以,,为基底向量。
则。
∴,即。
∴,∴。
∴。
C1B1D1CA BDA1EB DCA6.已知直线过椭圆:的左焦点且交椭圆于、两点。
为坐标原点,若,则点到直线的距离为。
【答案】【解答】。
显然轴不符合要求。
设直线方程为。
由,得…………①①的判别式大于0。
设,,则,。
由,得。
∴,。
∴点到直线的距离为。
7.已知,若关于的方程(为虚数单位)有实数根,则复数的模的最小值为。
【答案】 1【解答】设(,),是方程的一个实数根。
则。
∴。
由②得,,代入①,得,,。
∴,当且仅当时等号成立。
∴的最小值为1。
(,或,,即)。
8.将16本相同的书全部分给4个班级,每个班级至少有一本书,且各班所得书的数量互不相同,则不同的分配方法种数为。
(用数字作答)【答案】 216【解答】∵将16分解成4个互不相同的正整数的和有9种不同的方式:,,,,,,,,。
∴符合条件的不同分配方法有种。
9.是定义在的函数,若,且对任意,满足,,则。
【答案】【解答】∵对任意,,∴又,∴。
∴。
∴。
10.当,,为正数时,的最大值为。
【解答】∵,当且仅当时等号成立,,当且仅当时等号成立。
∴。
∴,当且仅当,,即时等号成立。
∴的最大值为。
注:本题利用待定系数法。
将拆成两项和。
由,,以及,得。
由此得到本题的解法。
二、解答题(共5小题,每小题20分,满分100分。
要求写出解题过程)11.已知数列的前项和()。
(1)求的通项公式;(2)设,是数列的前项和,求正整数,使得对任意均有;(3)设,是数列的前项和,若对任意均有成立,求的最小值。
【解答】(1)由,得。
两式相减,得。
∴,数列为等比数列,公比。
由又,得,。
∴。
(2)。
由计算可知,,,,。
当时,由,得当时,数列为递减数列。
于是,时,。
∴时,。
因此,,。
∴对任意均有。
故。
(3)∵……… 15分∴。
∵对任意均有成立,∴。
的最小值为。
12.已知()。
(1)若曲线在点处的切线方程为,求,的值;(2)若恒成立,求的最大值。
【解答】(1)。
依题意,有。
解得,,。
∴,。
…………………………………… 5分(2)设,则,。
①时,定义域,取使得,得。
则与矛盾。
∴时,不恒成立,即不符合要求。
……………… 10分②时,()。
当时,;当时,。
∴在区间上为增函数,在区间上为减函数。
∴在其定义域上有最大值,最大值为。
由,得。
∴。
………………………………… 15分∴。
设,则。
∴时,;时,。
∴在区间上为增函数,在区间上为减函数。
∴的最大值为。
∴当,时,取最大值为。
综合①,②得,的最大值为。
………………………………… 20分13.如图,、为双曲线:的左、右焦点,动点()在双曲线上的右支上。
设的角平分线交轴于点,交轴于点。
(1)求的取值范围;(2)设过,的直线交双曲线于点,两点,求面积的最大值。
【解答】(1)依题意,,。
直线方程为;直线方程为。
即直线方程为;直线方程为。
由点在的平分线上,得。
由,,以及,得。
∴,。
∴。
结合,得。
∴的取值范围为。
(2)由(1)知,直线方程为。
令,得。
故,点坐标为。
∴直线方程为。
由,消得……………①①的判别式。
(第14题)设,,则,。
(15)分∴。
由,得,。
∴,,。
设,则,。
∴,即点为时,面积取最大值。
∴面积的最大值为。
………………………… 20分14.求满足下列条件的最小正整数:若将集合任意划分为63个两两不相交的子集(它们非空且并集为集合),,,…,,则总存在两个正整数,属于同一个子集()且,。
【解答】考虑模63的剩余类,即将集合划分为如下63个两两不相交的子集:,,2,3,…,63。
……………………… 5分则对每一个()及任意的,()都有。
于是,,。
∴。
若,则,,与矛盾。
∴时,不满足题设条件。
…………………………… 10分另一方面,当时,由知,下列64个数:,,,…,都在集合中。
因此,对将任意划分为63个两两不相交的子集,,,…,的划分方法,由抽屉原则知,,,,…,这64个数中必有两个数,()属于同一个。
…………………………… 15分设,,。
于是,。
∴,满足题设的条件。
综上可知,满足题设条件的的最小值为2016。
…………………… 20分。