最新人教版高中数学选修1-2《数系的扩充与复数引入》本章检测
- 格式:doc
- 大小:194.50 KB
- 文档页数:6
第三章 数系的扩充与复数的引入 3.1.1 数系的扩充和复数的概念双基达标 限时20分钟1.以3i -2的虚部为实部,以3i 2+2i 的实部为虚部的复数是( ).A .3-3iB .3+iC .-2+2iD.2+2i解析 3i -2的虚部为3,3i 2+2i =-3+2i 的实部为-3,故选A. 答案 A2.若复数cos θ+isin θ和sin θ+icos θ相等,则θ值为( ).A.π4B.π4或54π C .2k π+π4(k ∈Z )D .k π+π4(k ∈Z )解析 由复数相等定义得⎩⎪⎨⎪⎧cos θ=sin θ,sin θ=cos θ,∴tan θ=1,∴θ=k π+π4(k ∈Z ).答案 D 3.下列命题中①若x ,y ∈C ,则x +y i =2+i 的充要条件是x =2,y =1; ②纯虚数集相对复数集的补集是虚数集; ③若(z 1-z 2)2+(z 2-z 3)2=0,则z 1=z 2=z 3. 正确的命题个数是( ).A .0B .1C .2D .3解析 ①x ,y ∈C ,x +y i 不一定是代数形式,故①错.②③错;对于④,a =0时,a i =0,④错,故选A. 答案 A4.已知复数z =m 2(1+i)-m (m +i)(m ∈R ),若z 是实数,则m 的值为________.解析 z =m 2+m 2i -m 2-m i =(m 2-m )i ,∴m 2-m =0, ∴m =0或1. 答案 0或15.已知(1+i)m 2+(7-5i)m +10-14i =0,则实数m =________.解析 把原式整理得(m 2+7m +10)+(m 2-5m -14)i =0,∵m ∈R ,∴⎩⎪⎨⎪⎧m 2+7m +10=0,m 2-5m -14=0,∴m =-2.答案 -26.实数m 取什么值时,复数lg(m 2-2m -2)+(m 2+3m +2)i 分别是(1)纯虚数;(2)实数.解 (1)复数lg(m 2-2m -2)+(m 2+3m +2)i 为纯虚数.则⎩⎪⎨⎪⎧m 2-2m -2=1,m 2+3m +2≠0,∴⎩⎪⎨⎪⎧m =3或m =-1,m ≠-2且m ≠-1,∴m =3.即m =3时,lg(m 2-2m -2)+(m 2+3m +2)i 为纯虚数, (2)复数为实数,则⎩⎪⎨⎪⎧m 2-2m -2>0, ①m 2+3m +2=0, ②解②得m =-2或m =-1, 代入①检验知满足不等式,∴m =-2或m =-1时,lg(m 2-2m -2)+(m 2+3m +2)i 为实数.综合提高 限时25分钟7.已知集合M ={1,(m 2-3m -1)+(m 2-5m -6)i},N ={1,3},M ∩N ={1,3},则实数m 的值为( ).A .4B .-1C .4或-1D .1或6解析 由题意⎩⎪⎨⎪⎧m 2-3 m -1=3,m 2-5 m -6=0,∴m =-1.答案 B8.如果关于x 的方程x 2-2x -a =0的一个根是i ,那么复数a( ).A .一定是实数B .一定是纯虚数C .可能是实数,也可能是虚数D .一定是虚数,但不是纯虚数解析 因为i 是方程x 2-2x -a =0的根,故代入整理得:a =x 2-2x =i 2-2i =-1-2i ,故选D.答案 D9.若4-3a -a 2i =a 2+4a i ,则实数a 的值为________.解析 易知⎩⎪⎨⎪⎧4-3a =a 2,-a 2=4a ,解得a =-4.答案 -410.若log 2(x 2-3x -2)+ilog 2(x 2+2x +1)>1,则实数x 的取值范围是________.解析 ∵log 2(x 2-3x -2)+ilog 2(x 2+2x +1)>1,∴⎩⎪⎨⎪⎧log 2x 2-3x -2>1,log 2x 2+2x +1=0,∴x =-2.答案 -211.已知A ={1,2,(a 2-3a -1)+(a 2-5a -6)i},B ={-1,3},A ∩B ={3},求实数a 的值.解 按题意:(a 2-3a -1)+(a 2-5a -6)i =3,∴⎩⎪⎨⎪⎧a 2-5a -6=0a 2-3a -1=3,得a =-1.12.(创新拓展)若m 为实数,z 1=m 2+1+(m 3+3m 2+2m )i ,z 2=4m +2+(m 3-5m 2+4m )i ,那么使z 1>z 2的m 值的集合是什么?使z 1<z 2的m 值的集合又是什么? 解 当z 1∈R 时,m 3+3m 2+2m =0,m =0,-1,-2,z 1=1或2或5.当z 2∈R 时,m 3-5m 2+4m =0,m =0,1,4,z 2=2或6或18.上面m 的公共值为m =0, 此时z 1与z 2同时为实数, 此时z 1=1,z 2=2.所以z 1>z 2时m 值的集合为空集,z 1<z 2时m 值的集合为{0}.。
人教版A版高中数学选修1-2课后习题解答高中数学选修1-2课后题答案第一章统计案例1.1 回归分析的基本思想及其初步应用回归分析是一种统计分析方法,用于探究自变量与因变量之间的关系。
它的基本思想是通过建立数学模型,利用已知数据进行拟合,从而预测或解释未知数据。
回归分析的初步应用包括简单线性回归和多元线性回归。
1.2 独立性检验的基本思想及其初步应用独立性检验是一种用于检验两个变量之间是否存在关联的方法。
其基本思想是通过观察两个变量之间的频数或频率分布,来判断它们是否相互独立。
独立性检验的初步应用包括卡方检验和Fisher精确检验。
第二章推理证明2.1 合情推理与演绎推理合情推理是指根据已知事实和常识,推断出可能的结论。
演绎推理是指根据已知的前提和逻辑规则,推导出必然的结论。
两种推理方法都有其适用的场合,需要根据具体情况进行选择。
2.2 直接证明与间接证明直接证明是指通过逻辑推理,直接证明所要证明的命题成立。
间接证明是指采用反证法或归谬法,证明所要证明的命题的否定不成立,从而推出所要证明的命题成立。
第三章数系的扩充与复数的引入3.1 数系的扩充与复数的概念数系的扩充是指在实数系的基础上引入新的数,使得一些原来不可解的方程可以得到解。
复数是指由实部和虚部组成的数,可以表示在平面直角坐标系中的点。
复数的引入扩充了数系,使得一些原本无解的方程可以得到解。
3.2 复数的代数形式的四则运算复数的代数形式是指将复数表示为实部和虚部的和的形式。
复数的四则运算包括加减乘除四种运算,可以通过对实部和虚部分别进行运算来得到结果。
第四章框图4.1 流程图流程图是一种用图形表示算法或过程的方法。
它由各种基本符号和连线构成,用于描述算法或过程的各个步骤及其执行顺序。
流程图可以帮助人们更好地理解算法或过程,从而提高效率。
4.2 结构图结构图是一种用于描述程序结构的图形表示方法。
它包括顺序结构、选择结构和循环结构三种基本结构,可以用来表示程序的控制流程。
一、选择题1.1z 2z 是复数,则下列结论中正确的是( )A .若22120z z +>,则2212z z >- B .12||z z -=C .22121200z z z z +=⇔==D .2211||||z z =2.若复数2i z =-,i 为虚数单位,则(1)(1)z z +-= A .24i +B .24i -+C .24i --D .4-3.若复数1z ,2z 满足1134z z i +=-,212z i ++=,则12z z -的最小值为( ).A .110B .1110C .2110D .2110-4.“20>z ”是“z 是非零实数”的( )条件 A .充分不必要B .必要不充分C .充要D .既不充分也不必要5.设z 是复数,从z ,z ,z ,2||z ,2||z ,2||z ,z z ⋅中选取若干对象组成集合,则这样的集合最多有( ) A .3个元素B .4个元素C .5个元素D .6个元素6.复数()34z i i =--在复平面内对应的点位于( ) A .第一象限 B .第二象限C .第三象限D .第四象限7.若2131aii i+=--+,a R ∈,则a =( ) A .4- B .3-C .3D .48.复数1323ii+的共轭复数为( ) A .32i + B .32i -C .23i +D .23i -9.设复数3422i iz +-=, 则复数z 的共轭复数是( )A .5-2i B .52i + C .5-2i + D .5--2i 10.设i 为虚数单位,则复数1i z =-的模z =( ).A .1BC .2D .11.已知i 是虚数单位,复数z 满足|12|z i i -=+,则z 的共轭复数z 在复平面上对应点所在的象限为( ) A .第一象限B .第二象限C .第三象限D .第四象限12.已知复数z 满足(1)||i z i +=,其中i 为虚数单位,则复数z 在复平面内对应点所在的象限为( ) A .第一象限B .第二象限C .第三象限D .第四象限二、填空题13.设复数z 满足()()213z i i +=-,则z 的虚部为__________.14.i 是虚数单位,若复数()()12i i a -+ 是纯虚数,则实数a 的值为____________. 15.若复数z 满足22zii i=-+(i 为虚数单位),则复数z =__________. 16.若02|4-+-=z i z z 表示的动点的轨迹是椭圆,则0z 的取值范围是________. 17.在复平面上,若正方形OABC (按顺时针方向,O 表示原点)中的顶点A 对应复数为12i +,则顶点C 对应的复数为_________. 18.若复数是纯虚数(是虚数单位),为实数,则复数的模为__________.19.已知复数242(1)iz i +=+(i 是虚数单位),在复平面内对应的点在直线20x y m -+=上,则m =__________.20.若z C ∈,且221z i +-=,则22z i --的最小值为______________.三、解答题21.已知复数1212,34,z i z i i =-=+为虚数单位.(1)若复数21z az + 对应的点在第四象限,求实数a 的取值范围; (2)若()1212z z z z z +=-,求z 的共轭复数.22.已知复数2132z ⎛⎫=- ⎪ ⎪⎝⎭是一元二次方程21(,)0m n x nx m ++=∈R 的一个根. (1)求m 和n 的值;(2)若1(2i)z a z =-,a ∈R ,1z 为纯虚数,求|2i |a +的值. 23.已知z 是复数,且z i +,2z1+i均为实数(i 为虚数单位). (Ⅰ)求复数z ;(Ⅱ)若z i 5a +=a 的值.24.已知复数1z bi =+(b 为正实数),且2(2)z -为纯虚数. (Ⅰ)求复数z ; (Ⅱ)若2izω=+,求复数ω的模||ω. 25.已知复数()()2256215z m m m m i =+-+--,(i 为虚数单位,m R ∈) (1)若复数z 在复平面内对应的点位于第一、三象限的角平分线上,求实数M 的值; (2)当实数1m =-时,求1zi+的值.26.复数()2132z i a a i =--++(a R ∈),(Ⅰ)若z z =,求z ;(Ⅱ)若在复平面内复数z 对应的点在第一象限,求a 的范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】举反例12z i =+,22z i =-可判断选项A 、B ,举反例11z =,2z i =可判断选项C ,设1z a bi =+,(),a b R ∈,分别计算21||z 、21||z 即可判断选项D ,进而可得正确选项.【详解】对于选项A :取12z i =+,22z i =-,()221232z i i =+=+,()222232z i i =-=-,满足221260z z +=>,但21z 与22z 是两个复数,不能比较大小,故选项A 不正确; 对于选项B :取12z i =+,22z i =-,12||22z z i -==,==B 不正确;对于选项C :取11z =,2z i =,则22120z z +=,但是10z ≠,20z ≠,故选项C 不正确; 对于选项D :设1z a bi =+,(),a b R ∈,则()222212z a bi a b abi =+=-+2221z a b ===+,1z a bi =-,1z =,所以2221z a b =+,所以2211||||z z =,故选项D 正确.故选:D.2.B解析:B 【解析】()()11z z +-=2211(2)1(34)24z i i i -=--=--=-+ ,选B.,3.A解析:A 【分析】由复数模的定义求出1z 对应的点在一条直线上,2z 对应的点在圆上,利用圆的性质可求得直线上的点到圆上点的距离的最小值. 【详解】复数1z 对应的点为1(,)Z x y ,因为1134z z i +=-,所以=6870x y +-=,所以点1Z 的轨迹是一条直线.复数2z 对应的点为2(,)Z x y ,因为212z i ++=表示点(),x y 到定点()1,1--的距离为2,所以点2Z 的轨迹表示以()1,1--为圆心、半径为2的圆,12z z -211221010-=-=. 故选:A . 【点睛】本题考查复数的模的运算,考查模的几何意义,利用几何意义把复数问题转化为直线上的点到圆上点的距离的最小值这个几何问题,利用几何性质得出求解方法.4.C解析:C 【分析】设(),,z a bi a b R =+∈,由题意结合复数的运算及性质可得0a =或0b =,分类讨论即可得0a ≠、0b =;当z 是非零实数,则20>z ;由充分条件和必要条件的概念即可得解.【详解】设(),,z a bi a b R =+∈,则2222z a b abi =-+, 若20>z ,则0a =或0b =, 当0a =时,220z b =->不存在, 当0b =时,220z a =>即0a ≠, 所以若20>z ,则z 是非零实数; 若z 是非零实数,则20>z ;所以“20>z ”是“z 是非零实数”的充要条件. 故选:C. 【点睛】本题考查了复数的运算及复数性质的应用,考查了充分条件、必要条件的判断,属于中档题.5.A解析:A 【分析】设复数z a bi =+(),a b R ∈分别计算出以上式子,根据集合的元素互异性,可判断答案. 【详解】解:设复数z a bi =+(),a b R ∈z a bi ∴=-(),a b R ∈,z a bi z =+=(),a b R ∈,||222z a b =+,222||z a b =+,()()22z z a bi a bi a b ⋅=+-=+()22222z a bi a b abi =+=-+222222z a b abi a b ∴=-+===+故由以上的数组成的集合最多有a bi +,a bi -,22a b +这3个元素, 故选:A 【点睛】本题考查复数的运算及相关概念,属于中档题.6.D解析:D 【分析】直接由复数的乘法运算化简,求出z 对应点的坐标,则答案可求. 【详解】复数()3443z i i i =--=-.对应的点为()4,3-,位于第四象限.故选D. 【点睛】本题考查复数代数形式的乘法运算,考查了复数的代数表示法及其几何意义,是基础题.7.A解析:A 【解析】分析:利用复数的除法运算法则:分子、分母同乘以分母的共轭复数,化简复数21aii++,然后利用复数相等的性质列方程求解即可.详解:因为()()()()2i 1i 2i 1i 1i 1i a a +-+=++- ()()22i2a a ++-=13i =--,所以212232aa +⎧=-⎪⎪⎨-⎪=-⎪⎩,解得4a =-,故选A.点睛:复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轭复数这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.8.B解析:B 【解析】分析:由题意结合复数的运算法则整理计算即可求得最终结果. 详解:由复数的运算法则可知:()()()23231323322323i i i i i i i i i+-==-=+++, 则复数1323ii +的共轭复数为32i -. 本题选择B 选项.点睛:本题主要考查复数的运算法则及其应用等知识,意在考查学生的转化能力和计算求解能力.9.B解析:B 【解析】分析:由题意结合复数的运算法则整理计算即可求得最终结果. 详解:由题意可得:342525222i ii z i +--===-, 则其共轭复数为:52z i =+. 本题选择B 选项.点睛:本题主要考查复数的运算法则及其应用,意在考查学生的转化能力和计算求解能力.10.B解析:B 【解析】分析:根据复数模的定义求解.详解:1i z =-,z ==B .点睛:对于复数的四则运算,要切实掌握其运算技巧和常规思路,如()()()(),(,,.)++=-++∈a bi c di ac bd ad bc i a b c d R . 其次要熟悉复数相关基本概念,如复数(,)a bi a b R +∈的实部为a 、虚部为b (,)a b 、共轭为.-a bi 11.D解析:D 【解析】分析:先根据复数的模求出z ,再求z 的共轭复数,最后确定对应点所在象限.详解:因为12z i i -=+,所以z i =,所以z i =,因此对应点为1-),在第四象限, 选D.点睛:.首先对于复数的四则运算,要切实掌握其运算技巧和常规思路,如()()()(),(,,.)++=-++∈a bi c di ac bd ad bc i a b c d R . 其次要熟悉复数相关基本概念,如复数(,)a bi a b R +∈的实部为a 、虚部为b (,)a b 、共轭为.-a bi 12.D解析:D 【分析】把已知等式变形,利用复数代数形式的乘除运算化简得答案. 【详解】解:因为(1)|i z i +=2(1)1(1)(1)i z i i i -∴===-+-, ∴复数z 在复平面内对应的点的坐标为()1,1-在第四象限,故选:D . 【点睛】本题考查复数代数形式的乘除运算,考查复数的代数表示法及其几何意义,是基础题.二、填空题13.-7【解析】分析:先求出复数z 再求z 的虚部详解:由题得所以z 的虚部为-7故答案为-7点睛:(1)本题主要考查复数的运算和复数的虚部概念意在考查学生对这些知识的掌握水平和基本的运算能力(2)复数的实部解析:-7 【解析】分析:先求出复数z,再求z 的虚部. 详解:由题得86(86)(1)214171(1)(1)2i i i iz i i i i ----====-++-,所以z 的虚部为-7, 故答案为-7.点睛:(1)本题主要考查复数的运算和复数的虚部概念,意在考查学生对这些知识的掌握水平和基本的运算能力.(2) 复数(,)z a bi a b R =+∈的实部是a,虚部为b ,不是bi.14.【解析】试题分析:由复数的运算可知是纯虚数则其实部必为零即所以考点:复数的运算 解析:2-【解析】试题分析:由复数的运算可知,()()12i a i -+是纯虚数,则其实部必为零,即,所以.考点:复数的运算.15.【解析】由题意得考点:复数的运算 解析:5i -【解析】 由题意,得.考点:复数的运算.16.【分析】根据复数几何意义以及椭圆定义列关于的条件再解不等式得的取值范围【详解】因为表示的动点的轨迹是椭圆所以复数所对应点距离小于4即故答案为:【点睛】本题考查复数几何意义以及椭圆定义考查综合分析求解 解析:[)0,6【分析】根据复数几何意义以及椭圆定义列关于0z 的条件,再解不等式得0z 的取值范围. 【详解】因为02|4-+-=z i z z 表示的动点的轨迹是椭圆,所以复数02,i z 所对应点距离小于4,即0000|2|4||||2||44||242||6z i z i z z -<∴-<∴-<-<∴-<< 00||00||6z z ≥∴≤<故答案为:[)0,6 【点睛】本题考查复数几何意义以及椭圆定义,考查综合分析求解能力,属中档题.17.【分析】根据正方形的几何性质对应的复数乘以得到对应的复数【详解】由于顶点对应复数为顺时针旋转得到故对应的复数为故填:【点睛】本小题主要考查复数对应的点考查复数的几何性质与乘法运算属于基础题 解析:2i -【分析】根据正方形的几何性质,A 对应的复数乘以i -,得到C 对应的复数. 【详解】由于顶点A 对应复数为12i +,OA 顺时针旋转90得到OC ,故C 对应的复数为()()122i i i +⋅-=-.故填:2i -.【点睛】本小题主要考查复数对应的点,考查复数的几何性质与乘法运算,属于基础题.18.2【解析】分析:先化z 为代数形式再根据纯虚数概念得a 最后根据复数模的定义求结果详解:因为z=(a+i)2=a2-1+2ai 是纯虚数所以a2-1=02a ≠0∴a=±1所以|z|=(a2+1)2=a2+解析:2 【解析】分析:先化z 为代数形式,再根据纯虚数概念得a ,最后根据复数模的定义求结果. 详解:因为是纯虚数,所以,所以点睛:首先对于复数的四则运算,要切实掌握其运算技巧和常规思路,如. 其次要熟悉复数相关基本概念,如复数的实部为、虚部为、模为、对应点为、共轭为19.-5【详解】分析:利用复数的运算法则可得z=1﹣2i 再利用复数的几何意义可得其对应的点代入直线x ﹣2y+m=0即可得出详解:∵复数z==所对应的点为(1﹣2)代入直线x ﹣2y+m=0可得1﹣2×(﹣解析:-5 【详解】分析:利用复数的运算法则可得z=1﹣2i ,再利用复数的几何意义可得其对应的点,代入直线x ﹣2y+m=0即可得出. 详解:∵复数z=()2421ii ++=()24+22122i i i i i i i i i-++===--⋅所对应的点为(1,﹣2),代入直线x ﹣2y+m=0,可得1﹣2×(﹣2)+m=0,解得m=﹣5. 故答案为-5.点睛:本题考查了复数的运算法则、复数的几何意义、点与直线的位置关系,属于基础题.复数问题高考必考,常见考点有:点坐标和复数的对应关系,点的象限和复数的对应关系,复数的加减乘除运算,复数的模长的计算.20.3【详解】∵|z+2-2i|=|z-(-2+2i)|=1∴复数z 在复平面内对应点的轨迹是以(-22)为圆心1为半径的圆∵|z-2-2i|=|z-(2+2i)|表示复数z 在复平面内的对应点到点(22)解析:3 【详解】∵|z+2-2i|=|z-(-2+2i)|=1,∴复数z 在复平面内对应点的轨迹是以(-2,2)为圆心,1为半径的圆.∵|z-2-2i|=|z-(2+2i)|表示复数z 在复平面内的对应点到点(2,2)的距离,即圆上的点到点(2,2)的距离,∴最小值为圆心与点(2,2)的距离减去半径, ∴|z-2-2i|的最小值为4-1=3.三、解答题21.(1)0a >;(2)1z i =-+ 【解析】试题分析:(1)求出复数21z az +的代数形式,根据第四象限的点的特征,求出a 的范围;(2)由已知得出1212z z z z z -=+ ,代入12,z z 的值,求出1,1z i z i =--=-+ . 试题解析;(I )=,由题意得解得(2)()()()()12121234261,123442i i z z iz i z z i i i--+---====--+-+++ 1.z i =-+22.(1)1m n ==;(2)4. 【分析】(1)利用复数代数形式的乘除运算化简z ,再由实系数一元二次方程虚根成共轭复数这一性质,结合韦达定理求解;(2)化简()12z a i z =-,由实部为0且虚部不为0求出a 的值,然后利用复数模的计算公式求解.【详解】(1)213144212z =--=-⎛⎫=- ⎪⎪⎝ ⎭是一元二次方程210mx nx ++=的一个虚根,则12-是一元二次方程210mx nx ++=的另一个虚根, 11112222i m ⎛⎫⎛⎫∴=---+= ⎪⎪ ⎪⎪⎝⎭⎝⎭,得1m =, 11122n m ⎛⎫⎛⎫-=-+-=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,解得1n=, 因此,1m n ==;(2)()()11122122z a i z a i a i ⎛⎫⎛⎫⎛=-=--=-+-⎪ ⎪⎪ ⎪⎝⎝⎭⎝⎭是纯虚数, 则102102a a ⎧-=⎪⎪⎨⎪-≠⎪⎩,即a =-224a i i +=-==.【点睛】本题考查虚根与实系数一元二次方程之间的关系,同时也考查了复数相关的概念以及复数模的计算,解题时要利用复数的四则运算法则将复数化为一般形式,针对实部和虚部进行求解,考查计算能力,属于中等题.23.(1)1z i ,=--(2)3a =或1a =-【解析】试题分析:(1)设R z x yi x y =+∈,、,根据复数为实数条件列方程组100y y x +=⎧⎨-=⎩,解得1x y ==-(2)根据复数模的定义得方程()()221+15a --=,解方程可得实数a 的值.试题解:(1)设R z x yi x y =+∈,、则()++1R z i x y i x y =+∈,、;()()221+1+x yi z x y y x i i i+==++- 2+1+z z i i,均为实数, 100y y x +=⎧∴⎨-=⎩ 1x y ∴==- 1z i ∴=--,(2)由z i a +=得1i i a --+=()()221+15a ∴--= 3a ∴=或1a =-24.(Ⅰ)1z i =+;(Ⅱ)ω=. 【解析】试题分析:(Ⅰ)由22(2)12z b bi -=--,又由纯虚数,得210b -=,且20b -≠,即可得到结论;(Ⅱ)由复数的运算可知3155i ω=+,即可求解||ω. 试题(Ⅰ)()()222z 21bi 1b 2bi -=-+=--,∵其为纯虚数,∴21b 0-=,且2b 0-≠,得b 1=或b 1=-(舍),所以z 1i =+.(Ⅱ)()()121312555i i i i i ω+-+===++,所以5ω=.25.(1) 3m =-【解析】试题分析:(1)由题意得到关于实数,m 的方程,解方程可得3m =- ;(2)首先求得复数z 的值为212z i =- ,然后利用复数模的运算法则可得1z i+. 试题(1)因为复数z 所对应的点在一、三象限的角平分线上,所以2256215m m m m ++=--,解得3m =-.(2)当实数1m =-时,()()156+1215212z i i =-++-=-.212212111i z i i i i --====+++所以1z i+. 26.(Ⅰ)0z =或6z =;(Ⅱ)11a -<<.【详解】试题分析:将复数化简得()22321z a a ai =-++-(1)中z z =,所以虚部为0,(2)中复数对应点为()2232,1a a a -+-,在第一象限得到不等式,求得a 范围试题()22321z a a a i =-++-,(1)由z z =知,210a -=,故1a =±.当1a =时,0z =;当1a =-时,6z =. (2)由已知得,复数的实部和虚部皆大于0,即22320{10a a a -+>->,即21{11a a a 或><-<<, 所以11a -<<.。
第三章 数系的扩充与复数的引入章末检测时间:120分钟 满分:150分一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.i 是虚数单位,计算i +i 2+i 3=( ) A .-1 B .1 C .-iD .i解析:i +i 2+i 3=i +(-1)-i =-1. 答案:A2.已知i 为虚数单位,复数z =1-2i2-i ,则复数z 的虚部是( )A .-35iB .-35C.45 iD.45解析:1-2i 2-i =-+-+=4-3i 5=45-35i ,则复数z 的虚部是-35. 答案:B3.如图,在复平面内,点A 表示复数z ,则图中表示z 的共轭复数的点是( ) A .A B .B C .CD .D解析:设z =a +b i(a <0,b >0)∴z =a -b i 对应点的坐标是(a ,-b ),是第三象限点B . 答案:B4.i 是虚数单位,复数z =7+i3+4i的共轭复数z =( ) A .1-i B .1+i C.1725+3125i D .-177+257i解析:z =7+i3+4i =+-25=25-25i25=1-i ∴z =1+i. 答案:B5.若复数z =(1+i)(x +i)(x ∈R)为纯虚数,则|z |等于( ) A .2 B. 5 C. 2D .1解析:∵z =x -1+(x +1)i 为纯虚数且x ∈R ,∴⎩⎪⎨⎪⎧x -1=0,x +1≠0,得x =1,z =2i ,|z |=2.答案:A6.已知复数z 1=3+4i ,z 2=t +i ,且z 1·z 2是实数,则实数t 等于( ) A.34 B.43 C .-43D .-34解析:z 1·z 2=(3+4i)(t -i)=(3t +4)+(4t -3)i , 依题意4t -3=0,∴t =34.答案:A7.设z ∈C ,若z 2为纯虚数,则z 在复平面上的对应点落在( ) A .实轴上B .虚轴上C .直线y =±x (x ≠0)上D .以上都不对解析:设z =a +b i(a ,b ∈R),∵z 2=a 2-b 2+2ab i 为纯虚数,∴⎩⎪⎨⎪⎧a 2-b 2=0,ab ≠0.∴a =±b ,即z 在直线y =±x (x ≠0)上. 答案:C8.定义运算⎪⎪⎪⎪⎪⎪ab cd =ad -bc ,则符合条件⎪⎪⎪⎪⎪⎪1 -1z z i =4+2i 的复数z 为( ) A .3-i B .1+3i C .3+iD .1-3i解析:由定义知⎪⎪⎪⎪⎪⎪1 -1z z i =z i +z ,得z i +z =4+2i ,∴z =4+2i 1+i =+-2=6-2i2=3-i. 答案:A9.若复数x 0=1+2i 是关于x 的实系数方程x 2+bx +c =0的一个根,则( )A .b =2,c =3B .b =-2,c =3C .b =-2,c =-1D .b =2,c =-1解析:因为1+2i 是实系数方程的一个复数根,所以1-2i 也是方程的根,则1+2i +1-2i =2=-b ,(1+2i)(1-2i)=3=c ,解得b =-2,c =3. 答案:B10.已知复数z 1=-1+2i ,z 2=1-i ,z 3=3-4i ,它们在复平面上所对应的点分别为A ,B ,C .若OC →=λOA →+μOB →(λ,μ∈R),则λ+μ的值是( )A .1B .2C .3D .4解析:3-4i =λ(-1+2i)+μ(1-i)=μ-λ+(2λ-μ)i ,∴⎩⎪⎨⎪⎧μ-λ=3,2λ-μ=-4,得⎩⎪⎨⎪⎧λ=-1,μ=2,∴λ+μ=1.答案:A二、填空题(本大题共5小题,每小题5分,共25分,把答案填在题中的横线上) 11.设i 为虚数单位,则1-i +2=________. 解析:1-i+2=1-i 2i=--2=-i 2-12.答案:-12-i212.已知复数z 1=cos 23°+sin 23°i 和复数z 2=sin 53°+sin 37°i,则z 1·z 2=________.解析:z 1·z 2=(cos 23°+sin 23°i)·(sin 53°+sin 37°i)=(cos 23°sin 53°-sin 23°sin 37°)+(sin 23°sin 53°+co s 23°sin 37°)i =(cos 23°sin 53°-sin 23°cos 53°)+i(sin 23°sin 53°+cos 23°cos 53°) =sin 30°+i cos 30°=12+32i.答案:12+32i13.已知复数z =a +b i(a ,b ∈R)且a 1-i +b 1-2i =53+i,则复数z =________.解析:∵a ,b ∈R 且a1-i +b 1-2i =53+i,即a 1+i2+b 1+2i5=3-i2, ∴5a +5a i +2b +4b i =15-5i ,即⎩⎪⎨⎪⎧5a +2b =15,5a +4b =-5,解得⎩⎪⎨⎪⎧a =7,b =-10,故z =a +b i =7-10i. 答案:7-10i14. 复数z =(m 2-3m +2)+(m 2-2m -8)i 的共轭复数在复平面内的对应点位于第一象限,则实数m 的取值范围是________.解析:复数z =(m 2-3m +2)+(m 2-2m -8)i 的共轭复数为z =(m 2-3m +2)-(m 2-2m -8)i , 又z 在复平面内对应的点在第一象限,得⎩⎪⎨⎪⎧m 2-3m +2>0,-m 2-2m -,解得-2<m <1或2<m <4. 答案:(-2,1)∪(2,4)15.若复数z =1+2i ,其中i 是虚数单位,则⎝ ⎛⎭⎪⎫z +1z ·z =________. 解析:∵z =1+2i ,知z =1-2i则⎝ ⎛⎭⎪⎫z +1z ·z =z ·z +1=(1+2i)(1-2i)+1=6. 答案:6三、解答题(本大题共有6小题,共75分.解答时应写出文字说明、证明过程或运算步骤) 16.(12分)实数k 为何值时,复数z = (k 2-3k -4)+(k 2-5k -6)i 是: (1)实数;(2)虚数;(3)纯虚数;(4)0.解析:(1)当k 2-5k -6=0,即k =6或k =-1时,z 是实数. (2)当k 2-5k -6≠0,即k ≠6且k ≠-1时,z 是虚数.(3)当⎩⎪⎨⎪⎧k 2-3k -4=0,k 2-5k -6≠0,即k =4时,z 是纯虚数.(4)当⎩⎪⎨⎪⎧k 2-3k -4=0,k 2-5k -6=0,即k =-1时,z 是0.17.(12分)已知复数z 的共轭复数为z ,且z ·z -3i z =101-3i,求z .解析:设z =a +b i(a ,b ∈R),则z =a -b i. 又z ·z -3i z =101-3i ,所以a 2+b 2-3i(a +b i)=+10,所以a 2+b 2+3b -3a i =1+3i ,所以⎩⎪⎨⎪⎧a 2+b 2+3b =1,-3a =3.所以⎩⎪⎨⎪⎧a =-1,b =0,或⎩⎪⎨⎪⎧a =-1,b =-3.所以z =-1,或z =-1-3i.18.(12分)已知z 是复数,z +2i ,z2-i 均为实数(i 为虚数单位),且复数(z +a i)2在复平面上对应的点位于第一象限,求实数a 的取值范围. 解析:设z =x +y i(x ,y ∈R),则z +2i =x +(y +2)i , 由z +2i 为实数,得y =-2. ∵z2-i =x -2i 2-i =15(x -2i)(2+i) =15(2x +2)+15(x -4)i , 由z2-i为实数,得x =4.∴z =4-2i. ∵(z +a i)2=(12+4a -a 2)+8(a -2)i ,根据条件,可知⎩⎪⎨⎪⎧12+4a -a 2>0,a -解得2<a <6.∴实数a 的取值范围是(2,6).19.(12分)已知复数z 1满足(1+i)z 1=-1+5i ,z 2=a -2-i ,其中i 为虚数单位,a ∈R ,若|z 1-z 2|<|z 1|,求a 的取值范围.解析:∵z 1=-1+5i1+i =2+3i ,z 2=a -2-i ,z 2=a -2+i ,∴|z 1-z 2|=|(2+3i)-(a -2+i)|=|4-a +2i| =-a2+4,又∵|z 1|=13,|z 1-z 2|<|z 1|, ∴-a2+4<13,∴a 2-8a +7<0,解得1<a <7. ∴a 的取值范围是(1,7).20.(13分)已知关于x 的方程x a +b x=1,其中a ,b 为实数. (1)若x =1-3i 是该方程的根,求a ,b 的值.(2)当a >0且b a >14时,证明该方程没有实数根.解析:(1)将x =1-3i 代入x a +bx=1, 化简得⎝ ⎛⎭⎪⎫1a +b 4+⎝ ⎛⎭⎪⎫34b -3a i =1,∴⎩⎪⎨⎪⎧1a +b 4=1,34b -3a =0,解得a =b =2.(2)原方程化为x 2-ax +ab =0, 假设原方程有实数解,那么Δ=(-a )2-4ab ≥0,即a 2≥4ab .∵a >0,∴b a ≤14,这与题设b a >14相矛盾.故原方程无实数根. 21.(14分)复数z =+3a +b1-i且|z |=4,z 对应的点在第一象限,若复数0,z ,z 对应的点是正三角形的三个顶点,求实数a ,b 的值.解析:z =+2+1-i(a +b i)=-2a -2b i.由|z |=4得a 2+b 2=4,①∵复数0,z ,z 对应的点构成正三角形, ∴|z -z |=|z |.把z =-2a -2b i 代入化简得a 2=3b 2,② 代入①得,|b |=1. 又∵Z 点在第一象限, ∴a <0,b <0.由①②得⎩⎨⎧a =-3,b =-1,故所求值为a =-3,b =-1.。
一、选择题1.复数z 满足(2)36z i i +=-(i 为虚数单位),则复数z 的虚部为( )A .3B .3i -C .3iD .3- 2.已知复数13ai z i +=+为纯虚数(其中i 为虚数单位),则实数a =( ) A .3-B .3C .13- D .133.设z 是复数,从z ,z ,z ,2||z ,2||z ,2||z ,z z ⋅中选取若干对象组成集合,则这样的集合最多有( )A .3个元素B .4个元素C .5个元素D .6个元素 4.设i 是虚数单位,则()()3211i i -+等于( )A .1i -B .1i -+C .1i +D .1i -- 5.已知i 为虚数单位,若(1)2z i i ⋅+=,则复数z 的模等于( ).A .1i +B .1i -C .2D 6.若(13)n x +的二项展开式各项系数和为256,i 为虚数单位,则复数(1)n i +的运算结果为( )A .16-B .16C .4-D .47.设i 为虚数单位,则复数1i z =-的模z =( ).A .1BC .2D .8.i 为虚数单位,复数512i +的共轭复数是( ) A .12i - B .12i +C .2i -D .2i + 9.已知实数[1,1]a ∈-,实数[1,2]b ∈-,则复数2a bi z i +=-在复平面内对应的点位于第一象限的概率为( )A .524B .14C .724D .13 10.已知复数()()211i a bi i -+=+(i 是虚数单位,,a b ∈R ),则a b +=( ) A .2-B .-1C .0D .2 11.已知z 是复数,则“2z 为纯虚数”是“z 的实部和虚部相等”的( )A .充分必要条件B .充分不必要条C .必要不充分条件D .既不充分也不必要条件12.若34sin cos 55i z θθ⎛⎫-+- =⎪⎝⎭是纯虚数,则tan 4πθ⎛⎫-= ⎪⎝⎭( ) A .17- B .-1 C .73- D .-7二、填空题13.已知复数z 满足方程||2z i +=,则|2|z -的最小值为____________.14.若复数z 满足034z z z i -+-=,且复数z 对应的点的轨迹是椭圆,则复数0z 的模的取值范围是__________.15.已知关于x 的实系数方程20x ax b ++=有一个模为1的虚根,则a 的取值范围是______.16.在复数范围内解方程23||()2i z z z i i-++=+(i 为虚数单位),z =________ 17.i 为虚数单位,若复数22(23)()m m m m i +-+-是纯虚数,则实数m =_______. 18.设i 为虚数单位,复数2i z i+=,则z 的模||z =______. 19.若复数z 满足11z -=,则z 的最大值为________.20.()()12i a i ++(i 是虚数单位)的实部与虚部相等,则实数a =__________.三、解答题21.已知关于x 的方程210x tx ++=的两个根是1x 、2x .(1)若12x i =+(i 为虚数单位),求2x 与t 的值;(2)若t 是实数,且12||x x -=t 的值.22.设z 是虚数,1w z z=+是实数,且12w -<<. (1)求z 的值及Rez 的取值范围;(2)若2z z z z++为纯虚数,求z . 23.已知复数z a bi =+(a ,b 为正实数,i 是虚数单位)是方程2450x x -+=的一个根.(1)求此方程的另一个根1z 及1z 的值;(2)复数3w u i =+()u R ∈满足w z -<u 的取值范围.24.已知a R ∈,且以下命题都为真命题:命题:p 实系数一元二次方程220x ax ++=的两根都是虚数;命题:q 存在复数z 同时满足2z =且1z a +=,求实数a 的取值范围. 25.已知z 是复数,2iz +为实数(i 为虚数单位),且4i z z -=. (1)求复数z ;(2)若i 5z m -<,求实数m 的取值范围.26.设z 1是虚数,z 2=z 111z +是实数,且﹣1≤z 2≤1. (1)求|z 1|的值以及z 1的实部的取值范围;(2)若ω1111z z -=+,求证ω为纯虚数; (3)求z 2﹣ω2的最小值.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】首先化简复数z ,然后结合复数的定义确定其虚部即可.【详解】 由题意可得:()()()()362361151322255i i i i z i i i i -----====--++-, 据此可知,复数z 的虚部为3-.本题选择D 选项.【点睛】复数的代数形式的运算主要有加、减、乘、除及求低次方根.除法实际上是分母实数化的过程.2.A解析:A【分析】化简复数z 的代数形式,根据复数为纯虚数,列出方程组,即可求解.【详解】 由题意,复数()()()()131********10ai i ai a a z i i i i +-++-===+++-, 因为复数z 为纯虚数,可得30310a a +=⎧⎨-≠⎩,解得3a =-. 故选:A.【点睛】本题主要考查了复数的除法运算,以及复数的分类及其应用,着重考查计算能力,属于基础题.3.A解析:A【分析】设复数z a bi =+(),a b R ∈分别计算出以上式子,根据集合的元素互异性,可判断答案.【详解】解:设复数z a bi =+(),a b R ∈z a bi ∴=-(),a b R ∈,z a bi z =+=(),a b R ∈,||222z a b =+,222||z a b =+,()()22z z a bi a bi a b ⋅=+-=+()22222z a bi a b abi =+=-+222222z a b abi a b ∴=-+===+ 故由以上的数组成的集合最多有a bi +,a bi -,22a b +这3个元素,故选:A【点睛】本题考查复数的运算及相关概念,属于中档题.4.B解析:B【分析】化简复数得到答案. 【详解】()()3221(1)(1)2(1)1221i i i i i i i ii -----===-++ 故答案选B【点睛】本题考查了复数的计算,意在考查学生的计算能力.5.D解析:D【分析】结合复数的四则运算,计算复数z ,计算模长,即可.【详解】()()()2122211112i i i i z i i i i -+====+++-,z =,故选D. 【点睛】本道题考查了复数的乘除运算法则,复数的模的求法,难度中等.6.C解析:C【详解】分析:利用赋值法求得n ,再按复数的乘方法则计算.详解:令1x =,得4256n =,4n =,∴42(1)(2)4i i +==-.故选C .点睛:在二项式()()nf x a bx =+的展开式中,求系数和问题,一般用赋值法,如各项系数为(1)f ,二项式系数和为2n ,两者不能混淆. 7.B解析:B【解析】分析:根据复数模的定义求解.详解:1i z =-,z ==B .点睛:对于复数的四则运算,要切实掌握其运算技巧和常规思路,如()()()(),(,,.)++=-++∈a bi c di ac bd ad bc i a b c d R . 其次要熟悉复数相关基本概念,如复数(,)a bi a b R +∈的实部为a 、虚部为b (,)a b 、共轭为.-a bi8.B解析:B【分析】分析:直接利用复数的除法的运算法则化简求解即可. 详解:()()()51251 2.121212i i i i i ⋅-==-++- 则复数512i+的共轭复数是12i +. 故选B.点睛:本题考查复数的除法的运算法则的应用,复数的基本概念,是基础题. 9.A解析:A【解析】分析:化简复数z ,得()()225a b a b i z -++=,复数z 在复平面内对应的点位于第一象限,则2020a b a b ->+>,结合[]1,1a ∈-,[]1,2b ∈-,画出可行域,利用几何概型即可求出答案. 详解:化简复数z ,得()()225a b a b i z -++=, 复数z 在复平面内对应的点位于第一象限,则2020a b a b ->+>, 又[] 1,1a ∈-,[]1,2b ∈-,故在平面直角坐标系上画出可行域,如图所示:∴复数z 在复平面内对应的点位于第一象限的概率1515222324P ⨯⨯==⨯. 故选:A.点睛:应用几何概型求概率的方法建立相应的几何概型,将试验构成的总区域和所求事件构成的区域转化为几何图形,并加以度量.(1)一般地,一个连续变量可建立与长度有关的几何概型,只需把这个变量放在数轴上即可;(2)若一个随机事件需要用两个变量来描述,则可用这两个变量的有序实数对来表示它的基本事件,然后利用平面直角坐标系就能顺利地建立与面积有关的几何概型;(3)若一个随机事件需要用三个连续变量来描述,则可用这三个变量组成的有序数组来表示基本事件,利用空间直角坐标系即可建立与体积有关的几何概型.10.A解析:A【解析】分析:由题意首先求得等式右侧的复数,然后结合复数相等的充分必要条件整理计算即可求得最终结果.详解:由复数的运算法则可得:()()()()2121222111112i i i i i i i i i i ------====--+++-, 结合题意可得:1a bi i +=--,即:1,1a b =--=-,据此可得:2a b +=-.本题选择A 选项.点睛:本题主要考查复数的综合运算,复数相等的充分必要条件等知识,意在考查学生的转化能力和计算求解能力.11.D解析:D【分析】设z a bi =+,2z 为纯虚数得到0a b =±≠,得到答案.【详解】设z a bi =+,,a b ∈R ,则()2222z a b abi =-+,2z 为纯虚数220020a b a b ab ⎧-=⇔⇔=±≠⎨≠⎩,z 的实部和虚部相等a b ⇔=. 故选:D.【点睛】本题考查了既不充分也不必要条件,意在考查学生的推断能力.12.D解析:D【分析】 根据复数为纯虚数得到3sin 5θ=,4cos 5θ=-,故3tan 4θ=-,展开计算得到答案. 【详解】 34sin cos 55z i θθ⎛⎫=-+- ⎪⎝⎭是纯虚数,则3sin 5θ=且4cos 5θ≠,故4cos 5θ=- 3tan 4θ=-,tan 1tan 741tan πθθθ-⎛⎫-==- ⎪+⎝⎭故选:D【点睛】本题考查了复数的概念,和差公式,意在考查学生的综合应用能力和计算能力.二、填空题13.【分析】设复数根据复数的几何意义可知的轨迹为圆;再根据点和圆的位置关系及的几何意义即可求得点到圆上距离的最小值即为的最小值【详解】复数满足方程设()则在复平面内轨迹是以为圆心以2为半径的圆;意义为圆【分析】设复数,z a bi =+根据复数的几何意义可知(),a b 的轨迹为圆;再根据点和圆的位置关系,及|2|z -的几何意义即可求得点到圆上距离的最小值,即为|2|z -的最小值.【详解】复数z 满足方程||2z i +=,设,z a bi =+(,a b ∈R ),则|||(1)|2z i a b i +=++=,(),a b 在复平面内轨迹是以()0,1-为圆心,以2为半径的圆;()|2||2|z a bi -=-+=()2,0的距离,由点与圆的几何性质可知,|2|z -22=,2.【点睛】 本题考查了复数几何意义的综合应用,点和圆的位置关系及距离最值的求法,属于中档题. 14.【分析】根据椭圆的定义可知从而可得复数的模的取值范围【详解】因为复数满足且复数对应的点的轨迹是椭圆所以根据复数差的几何意义知表示复数在以为圆心4为半径的圆的内部数形结合可得故答案为:【点睛】本题主要 解析:[0,7)【分析】根据椭圆的定义可知03i 4z -<,从而可得复数0z 的模的取值范围.【详解】因为复数z 满足034z z z i -+-=,且复数z 对应的点的轨迹是椭圆,所以03i 4z -<,根据复数差的几何意义知03i 4z -<表示复数0z 在以(0,3)为圆心,4为半径的圆的内部,数形结合可得07z <.故答案为:[0,7)【点睛】本题主要考查椭圆的定义应用,明确椭圆定义中2a 与2c 的大小关系是求解的关键,侧重考查直观想象的核心素养.15.【分析】根据系数方程有虚根则可得设方程的虚根为:则另一个虚根为:其模为1可得即可求得的取值范围【详解】设方程的虚根为:另一个虚根为:由韦达定理可得:故:实系数方程有一个模为1的虚根故若方程有虚根则可【分析】根据系数方程20x ax b ++=有虚根,则可得240a b ∆=-<.设方程的虚根为:=+x m ni ,则另一个虚根为:x m ni =-,其模为1,可得221+=m n ,即可求得a 的取值范围.【详解】设方程的虚根为:=+x m ni , 另一个虚根为:x m ni =-由韦达定理可得:x x a x x b +=-⎧⎨⋅=⎩ 故:222m a m n b =-⎧⎨+=⎩实系数方程20x ax b ++=有一个模为1的虚根∴ 221+=m n 故=1b若方程有虚根,则240a b ∆=-< 可得240a -<∴ 22a -<<故答案为: 22a -<<.【点睛】本题考查复数代数形式乘除运算,韦达定理的使用,实系数方程有虚数根的条件,共轭复数的性质、共轭复数的模,意在考查基础知识的掌握与综合应用.16.-【解析】分析:首先对等式的右边进行复数的除法运算得到最简形式设出要求的复数的结果把设出的结果代入等式根据复数相等的充要条件写出关于x 的方程解方程即可详解:原方程化简为设z=x+yi (xy ∈R )代入解析:-12±. 【解析】分析:首先对等式的右边进行复数的除法运算,得到最简形式,设出要求的复数的结果,把设出的结果代入等式,根据复数相等的充要条件写出关于x 的方程,解方程即可. 详解:原方程化简为()2||1z z z i i ++=-, 设z=x+yi (x 、y ∈R ),代入上述方程得x 2+y 2+2xi=1﹣i ,∴x 2+y 2=1且2x=﹣1,解得x=﹣12且y=±2,∴原方程的解是z=﹣122±.故答案为﹣12±. 点睛:本题主要考查复数的除法和乘方运算,考查复数相等的充要条件,是一个基础题,解题时没有规律和技巧可寻,只要认真完成,则一定会得分.17.-3【解析】分析:利用纯虚数的定义直接求解详解:∵复数是纯虚数解得故答案为-3点睛:本题考实数值的求法是基础题解题时要认真审题注意纯虚数的定义的合理运用解析:-3【解析】分析:利用纯虚数的定义直接求解.详解:∵复数()()2223m m m m i +-+-是纯虚数,222300m m m m ⎧+-∴⎨-≠⎩= ,解得3m =- .故答案为-3. 点睛:本题考实数值的求法,是基础题,解题时要认真审题,注意纯虚数的定义的合理运用.18.【解析】分析:利用复数的除法法则运算得到复数然后根据复数模的公式进行求解即可详解:即答案为点睛:本题主要考查了复数代数形式的乘除运算以及复数模的计算同时考查计算能力属基础题【解析】分析:利用复数的除法法则运算得到复数z ,然后根据复数模的公式进行求解即可. 详解:()()()2212,i i iz i z i i i +⋅-+===-∴=⋅-点睛:本题主要考查了复数代数形式的乘除运算,以及复数模的计算,同时考查计算能力,属基础题.19.2【解析】分析:首先根据题中的条件结合复数的几何意义可以明确复数对应点的轨迹是以为圆心以1为半径的圆取最大值时就是圆上的点到原点的距离的最大值结合原的性质其为圆心到原点的距离加半径求得结果详解:依题 解析:2【解析】分析:首先根据题中的条件,结合复数的几何意义,可以明确复数z 对应点的轨迹是以(1,0)为圆心,以1为半径的圆,z 取最大值时,就是圆上的点到原点的距离的最大值,结合原的性质,其为圆心到原点的距离加半径求得结果.详解:依题意,设复数,(,)z x yi x R y R =+∈∈,因为11z -=,所以有22(1)1x y -+=, 由复数的几何意义,可知z 对应的点的轨迹为以(1,0)为圆心,以1为半径的圆, 因为z =所以z 的最大值为112+=,所以答案为2.点睛:该题考查的是有关复数z 的模的问题,利用复数的几何意义,结合题中的条件,最后将其转化为圆上的点到某个点的距离的最值问题,等于圆心到对应点的距离加半径,从而求得结果.20.【解析】的实部与虚部相等解得故答案为解析:3-【解析】()()12i a i ++()212a a i =-++的实部与虚部相等,212a a ∴-=+,解得3a =-,故答案为3-.三、解答题21.(1)22i 5x -=,12455t i =--;(2),. 【分析】(1)利用韦达定理,分别求得2x 与t 的值;;(2)若t 是实数,利用求根公式,根据两个根是共轭复数,且可以为实根,可以为虚根,结合题中条件,列出等量关系式,从而求得结果.【详解】(1)根据121x x ⋅=,得22111222215i i x x i --====++, 利用12x x t +=-,所以2124(2)555i t i i -=-++=--, (2)根据题意,x =,所以12x x -==当240t ->时,有26t =,t =当240t -<=,即242t -=-,所以t =所以t的值为,.【点睛】该题考查的是有关在复数域内求一元二次方程的根的问题,涉及到的知识点有韦达定理,分类讨论的思想,属于中档题目.22.(1)1,z =Rez 的取值范围为1(,1)2-;(2)122z =+或122z =-. 【分析】(1)先设出复数,结合1w z z=+是实数可求出z 的值及Rez 的取值范围;(2)先设出复数,结合2z z z z++为纯虚数可求. 【详解】(1)设z x yi =+,其中,x y R ∈且0y ≠,222211i ()i i x y w z x y x y z x y x y x y =+=++=++-+++, 因为1w z z =+是实数,所以220y y x y -=+,解得221x y +=,所以1z ==;因为12w -<<,所以222(1,2)x x x x y +=∈-+,即1(,1)2x ∈-; 所以Rez 的取值范围为1(,1)2-. (2)由(1)知221x y +=,()2222i i (2)i i i 2x y x y z z x y x xy y x y x y x z z++++-+++==++-+, 因为2z z z z ++为纯虚数,所以220x y x -+=且20xy y +≠,0x ≠, 联立222201x y x x y ⎧-+=⎨+=⎩可得12x y ⎧=⎪⎪⎨⎪=⎪⎩12x y ⎧=⎪⎪⎨⎪=⎪⎩,所以12z =+或12z =-. 【点睛】本题主要考查复数的运算及相关概念,待定系数法是求解复数的常用方法,侧重考查数学运算的核心素养.23.(1) 12z i =-,1z =;(2) 26u -<< 【分析】(1)先求得2450x x -+=的根,再根据题意求另一根1z 即可.(2)根据复数模长的计算表达w z -<.【详解】(1)22450(2)12x x x x i -+=⇒-=-⇒=±,故2z i =+,12z i =-,1z =(2)由w z -<(3)(2)u i i +-+<,<.所以26u -<<.【点睛】本题主要考查了复数的基本运算以及模长的用法等,属于基础题型.24.(1⎤⎡--⋃⎦⎣【分析】 220x ax ++=的两根都是虚数,说明该方程在实数范围内无实根,由命题q 为真,可知复平面上的圆224x y +=和圆()221x a y ++=有公共交点,从而可得结果.【详解】由命题p 为真,可得(280a a ∆=-<⇒∈-,又224x y +=表示以()0,0为圆心,以2为半径的圆,而()221x a y ++=是以(),0a -为圆心,以1为半径的圆; 因为存在复数z 同时满足2z =且1z a +=,所以224x y +=与()221x a y ++=有公共点, 可得实数[][]3,11,3a ∈--⋃,故两个命题同时为真的实数a 的取值范围是(1a ⎤⎡∈--⋃⎦⎣.【点睛】本题主要考查复数的几何意义、圆圆的位置关系,属于中档题. 复数的模的几何意义是复平面内两点间的距离,所以若z x yi =+,则z a bi --表示点(),x y 与点(),a b 的距离,z a bi r --=表示以(),a b 为圆心,以r 为半径的圆.25.(1)42i z =+;(2) ()1,5-.【分析】(1)设2iz += a ,可得2i z a a =+,则2i z z a -=,结合4i z z -=,从而可得2a =,从而可得结果;(2)结合(1),利用复数模的公式列不等式求解即可.【详解】 (1)由2i z +是实数,可设2iz +=a ,R a ∈, 故()2i 2i z a a a =+=+, 所以2i z z a -=,又4i z z -=,可得24a =,即2a =,所以42i z =+.(2)由i 5z m -<,可得()42i 5m +-<,又R m ∈,∴5< 即()216225m +-<,解得15m -<<,所以实数m 的取值范围是()1,5-.【点睛】复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轭复数、复数的模这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.26.(1)|z 1|=1,取值范围为[12-,12].(2)见解析(3)1 【分析】(1)设z 1代数形式代入z 2,根据z 2是实数,求得|z 1|,再根据﹣1≤z 2≤1,求得z 1的实部的取值范围;(2)根据复数除法法则化简ω,再根据纯虚数概念判断证明;(3)先化简z 2﹣ω2,再利用基本不等式求最小值.【详解】(1)设z 1=a +bi ,(a ,b ∈R ,且b ≠0),则z 2=z 111z +=(a +bi )1a bi +=+(a +bi )()()a bi a bi a bi -+=+-(a +bi )22a bi a b -+=+(a 22a a b ++)+(b 22b a b-+)i , 因为z 2是实数,所以b 22b a b -=+0,即b (22221a b a b +-+)=0, 因为b ≠0,所以a 2+b 2=1,即|z 1|=1,且z 2=2a ,由﹣1≤z 2≤1,得﹣1≤2a ≤1,解得12-≤a 12≤, 即z 1的实部的取值范围为[12-,12]. (2)证明:∵a 2+b 2=1, ω221221111211(1)1z a bi a b bi bi z a bi a b a ------====-++++++, 因为12-≤a 12≤,b ≠0, 所以ω1111z z -=+为纯虚数. (3)z 2﹣ω2=(a 22a a b ++)+(b 22b a b -+)i ﹣(1bi a -+)2,=2a +(b ﹣b )i 22(1)b a ++ =2a 221(1)a a -++ =2a 11a a -++ ()()2111a a a a ++-=+2211a a a ++=+ =1221a a ++ =122(1)421a a a +--++ =1()22(1)4121a a a +-++++=1+2(a +1)﹣421a ++ =2(a +1)21a +-+3,a +1∈[12,32], 当2(a +1)21a =+时,即a =0时,z 2﹣ω2取最小值1. 【点睛】 本题考查复数概念、复数的模、纯虚数概念、复数运算以及利用基本不等式求最值,考查综合分析求解与论证能力,属中档题.。
一、选择题1.已知,a b ∈R ,且2,ai b i ++(i 是虚数单位)是实系数一元二次方程20x px q ++=的两个根,那么,p q 的值分别是( )A .4,5p q ==B .4,3p q =-=C .4,5p q =-=D .4,3p q ==2.若202031i iz i+=+,则z 在复平面内对应点位于( )A .第一象限B .第二象限C .第三象限D .第四象限3.若复数z 的虚部小于0,|z |=4z z +=,则iz =( ) A .13i +B .2i +C .12i +D .12i -4.若复数34sin cos 55z i θθ⎛⎫=-+- ⎪⎝⎭是纯虚数,则tan()θ-π的值为( ) A .34±B .43C .34-D .43-5.已知i 是虚数单位,复数134z i =-,若在复平面内,复数1z 与2z 所对应的点关于虚轴对称,则12z z ⋅= A .25-B .25C .7-D .76.已知(,)z x yi x y R =+∈且1z =,则x +的最大值( ) A.1B .2C .1D7.已知复数12,z z 在复平面内对应的点分别为()()2,1,0,1--,则122z z z +=( ) A .22i +B .22i -C .2i -+D .2i --8.下列命题中,正确的是( ). A .若z 是复数,则22||z z = B .任意两个复数不能比较大小C .当240b ac ->时,一元二次方程20ax bx c ++=(,,)a b c C ∈有两个不相等的实数根D .在复平面xOy 上,复数2z m mi =+(m R ∈,i 是虚数单位)对应的点的轨迹方程是2y x =9.复数1234ii-+在复平面上对应的点位于第________象限 A .一B .二C .三D .四10.设i为虚数单位,则复数z =的共轭复数是( ) A .1i +B .1i -C .1i -+D .2i +11.已知向量OA =(2,2),OB =(4,1),在x 轴上一点P ,使AP ·BP 有最小值,则点P 的坐标为 ( ) A .(-3,0)B .(2,0)C .(3,0)D .(4,0)12.已知复数z 的模为2,则z i -的最大值为:( ) A .1B .2CD .3二、填空题13.已知复数乘法()()cos sin x yi i θθ++(,x y R ∈,i 为虚数单位)的几何意义是将复数x yi +在复平面内对应的点(),x y 绕原点逆时针方向旋转θ角,则将点()8,4绕原点逆时针方向旋转3π得到的点的坐标为_________. 14.已知复数12,z z 满足122,3z z ==,若它们所对应向量的夹角为60︒,则1212z z z z +=-___ 15.已知i 为虚数单位,计算1i1i-=+__________. 16.411i i +⎛⎫=⎪-⎝⎭__________. 17.已知复数43i z =+(i 为虚数单位),则z =____. 18.已知复数43cos sin 55z i θθ⎛⎫⎛⎫=-+- ⎪ ⎪⎝⎭⎝⎭是纯虚数,(i 为虚数单位),则tan 4πθ⎛⎫-= ⎪⎝⎭__________.19.复平面内,已知复数13z x i =-所对应的点都在单位圆内,则实数x 的取值范围是__________.20.复平面内有,,A B C 三点,点A 对应的复数为2i +,向量BA 对应的复数为23i +,向量BC 对应的复数为3i -,则点C 对应的复数是___________.三、解答题21.已知复数2(1)(24)33Z i m i m i =+-+-+ (1)当m 为何值时 , Z 为纯虚数 ?(2) 当m 为何值时 , Z 对应的点在y x =上?22.已知关于x 的方程2()40x x m m R ++=∈的两个虚根为α、β,且||2αβ-=,求m 的值. 23.计算:(1))()245i +(2)1-的值.24.设z 是虚数,1=z zω+ 是实数,且-1<2ω< (1) 求z 的实部的取值范围(2)设11zzμ-=+ ,那么μ是否是纯虚数?并说明理由. 25.已知复数2z i =-(i 为虚数单位). (1)求复数z 的模z ; (2)求复数z 的共轭复数;(3)若z 是关于x 的方程250x mx -+=一个虚根,求实数m 的值.26.设m ∈R ,复数z 1=22m mm +++(m -15)i ,z 2=-2+m (m -3)i ,若z 1+z 2是虚数,求m的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】利用根与系数的关系列出方程组,根据复数相等运算即可得出所求结果. 【详解】因为2,ai b i ++(i 是虚数单位)是实系数一元二次方程20x px q ++=的两个根,所以()()22ai b i p ai b i q +++=-⎧⎨++=⎩,所以210220b p a b a q ab +=-⎧⎪+=⎪⎨-=⎪⎪+=⎩,解得1245a b p q =-⎧⎪=⎪⎨=-⎪⎪=⎩. 故选:C 【点睛】本题主要考查复数的有关计算,解题的关键是熟练掌握复数相等的条件和一元二次方程根与系数的关系.2.A解析:A 【分析】化简得到2z i =+,得到答案.【详解】()()()()202013131342211112i i i i i i z i i i i i +-+++=====++++-,对应的点在第一象限.故选:A . 【点睛】本题考查了复数对应象限,意在考查学生的计算能力.3.C解析:C 【分析】根据4z z +=可得()2z mi m =+∈R ,结合模长关系列方程,根据虚部小于0即可得解. 【详解】由4z z +=,得()2z mi m =+∈R ,因为||z ==1m =±. 又z 的虚部小于0,所以2z i =-,12iz i =+. 故选:C 【点睛】此题考查复数的概念辨析和模长计算,根据复数的概念和运算法则求解.4.C解析:C 【分析】根据所给的虚数是一个纯虚数,得到虚数的实部等于0,而虚部不等于0,得到角的正弦和余弦值,根据同角三角函数之间的关系,得到结果. 【详解】 若复数34sin (cos )55z i θθ=-+-是纯虚数, 则3sin 05θ-=且4cos 05θ-≠, 所以3sin 5θ=,4cos 5θ=-,所以3tan 4θ=-,故tan()θ-π=3tan 4θ=-. 故选C . 【点睛】本题主要考查了复数的基本概念,属于基础题.纯虚数是一个易错概念,不能只关注实部为零的要求,而忽略了虚部不能为零的限制,属于易错题.5.A解析:A 【解析】 【分析】根据复数1z 与2z 所对应的点关于虚轴对称,134z i =-,求出2z ,代入计算即可 【详解】复数1z 与2z 所对应的点关于虚轴对称,134z i =-234z i ∴=--()()12343425z z i i ⋅=---=-故选A 【点睛】本题主要考查了复数的运算法则及其几何意义,属于基础题6.B解析:B 【解析】分析:由1z =可得221x y +=,可设cos x θ=,sin y θ=,R θ∈,可得2sin()6x πθ=+,进而利用正弦函数的性质求出答案.详解:∵(),z x yi x y R =+∈且1z = ∴221x y +=设cos x θ=,sin y θ=,R θ∈.∴cos 2sin()6x πθθθ+=+=+∴x +的最大值是2 故选B.点睛:本题主要考查复数的求模公式及三角函数的性质,解答本题的关键是利用三角换元结合三角函数的性质求函数的最值.7.A解析:A 【解析】分析:首先确定复数12,z z ,然后结合题意进行复数的混合运算即可. 详解:由题意可得:122,z i z i =-=-, 则:()1222212i i z i i z i i--===+--,21z =, 据此可得:12222z z i z +=+.本题选择A 选项.点睛:本题主要考查复数的定义及其运算法则等知识,意在考查学生的转化能力和计算求解能力.8.D解析:D 【分析】举例说明A 错误;当两复数为实数时B 错误;由实系数一元二次方程的判别式与根的关系说明C 错误;求出z 的参数方程,消参后得到z 的轨迹方程说明D 正确. 【详解】 解:对于A ,若zi ,则2||1z =,21z =-,22||z z ≠,故A 错误;对于B ,当两个复数均为实数时,可以比较大小,故B 错误;对于C ,只有当a ,b ,c 均为实数时,在满足240b ac ->时,一元二次方程20ax bx c ++=有两个不相等的实数根,故C 错误;对于D ,由2(z m mi m R =+∈,i 是虚数单位),设z 对应的点(,)Z x y ,得2x m y m⎧=⎨=⎩,消去m 得,2y x =,∴在复平面xOy 上,复数2(z m mi m R =+∈,i 是虚数单位)对应的点的轨迹方程是2y x =.故D 正确. 故选:D . 【点睛】本题考查命题的真假判断与应用,考查了复数的有关概念,考查复数的代数表示法及其几何意义,属于基础题.9.C解析:C 【解析】 【分析】将复数化简为a bi +的形式,得到(,)a b ,就可以得到答案. 【详解】 ∵复数12(12)(34)5101234(34)(34)2555i i i i i i i i -----===--++- ∴复数1234ii -+在复平面上对应的点位于第三象限 故选C. 【点睛】复数化简为a bi +的形式,是解题关键,a b 、的符号决定复数在复平面上对应的点位于的象限.基础题目.10.A解析:A 【解析】【分析】利用复数的运算法则和共轭复数即可求得结果 【详解】()22111i z i i-====--,则共轭复数为1i +故选A 【点睛】本题主要考查了复数的运算法则和共轭复数,属于基础题11.C解析:C 【解析】设点P 坐标为(x ,0),则AP =(x-2,-2),BP =(x-4,-1),·AP BP =(x-2)(x-4)+(-2)×(-1)=x 2-6x+10=(x-3)2+1.当x=3时,P?A BP 有最小值1. 故点P 坐标为(3,0).选C.12.D解析:D 【解析】因为z i -213z i ≤+-=+= ,所以最大值为3,选D.二、填空题13.【分析】写出点对应的复数再乘以即得新复数其对应点坐标为所求【详解】点对应复数为对应点坐标为故答案为:【点睛】本题考查复数的新定义考查复数的乘法运算与复数和几何意义正确理解新定义把新定义转化为复数的乘解析:(42-+【分析】写出点()8,4对应的复数,再乘以cos sin33i ππ+即得新复数,其对应点坐标为所求.【详解】点()8,4对应复数为84z i =+,1(cossin )(84)()332z i i ππ+=+(4(2i =-++,对应点坐标为(42-+.故答案为:(42-+. 【点睛】本题考查复数的新定义,考查复数的乘法运算与复数和几何意义.正确理解新定义把新定义转化为复数的乘法解题关键.14.【解析】【分析】由余弦定理可得故【详解】如图在三角形中由余弦定理得同理可得故答案为:【点睛】本题主要考查复数的运算借助于余弦定理是解决问题的关键属中档题 解析:1337【解析】 【分析】由余弦定理可得12||19Z Z +=,12||7Z Z -=,故12121212||133||||7z z z z z z z z ++==-- 【详解】如图在三角形OAC 中由余弦定理得2212||||23223cos12019Z Z OB +==+-⨯⨯⨯︒=, 同理可得2212||||23223cos607Z Z CA -==+-⨯⨯⨯︒=,∴12121212||19133||||77z z z z z z z z ++===--. 故答案为:1337【点睛】本题主要考查复数的运算,借助于余弦定理是解决问题的关键,属中档题.15.【解析】分析:根据复数除法法则求解详解:复数点睛:首先对于复数的四则运算要切实掌握其运算技巧和常规思路如其次要熟悉复数相关基本概念如复数的实部为虚部为模为对应点为共轭为 解析:i -【解析】分析:根据复数除法法则求解.详解:复数1i (1)(1)2ii 1i (1)(1)2i i i i ----===-++-. 点睛:首先对于复数的四则运算,要切实掌握其运算技巧和常规思路,如()()()(),(,,.)++=-++∈a bi c di ac bd ad bc i a b c d R . 其次要熟悉复数相关基本概念,如复数(,)a bi a b R +∈的实部为a 、虚部为b(,)a b 、共轭为.-a bi16.1【解析】分析:先利用复数除法的运算法则化简再利用复数乘方运算法则求解即可详解:故答案为点睛:本题主要考查的是复数的乘法除法运算属于中档题解题时一定要注意和以及运算的准确性否则很容易出现错误解析:1 【解析】分析:先利用复数除法的运算法则化简11ii+-,再利用复数乘方运算法则求解即可. 详解:411i i +⎛⎫ ⎪-⎝⎭()()()4241i 2i =11i 1i 2⎡⎤+⎛⎫==⎢⎥ ⎪-+⎝⎭⎢⎥⎣⎦,故答案为1. 点睛:本题主要考查的是复数的乘法、除法运算,属于中档题.解题时一定要注意21i =-和()()()()a bi c di ac bd ad bc i ++=-++以及()()()()a bi c di a bi c di c di c di +-+=++- 运算的准确性,否则很容易出现错误.17.5【解析】解析:5 【解析】5z ==.18.【分析】利用复数为纯虚数可得实部为零虚部不为零从而可求利用同角的三角函数的基本关系式和两角差的正切可求的值【详解】所以故答案为:【点睛】本题考查复数的概念同角的三角函数的基本关系以及两角差的正确理解 解析:7-【分析】利用复数为纯虚数可得实部为零,虚部不为零,从而可求43cos 0,sin 055θθ-=-≠,利用同角的三角函数的基本关系式和两角差的正切可求tan 4πθ⎛⎫- ⎪⎝⎭的值. 【详解】4333cos 0,sin 0sin tan 5554θθθθ-=-≠⇒=-⇒=-, 所以tan 4πθ⎛⎫-= ⎪⎝⎭3147314--=--, 故答案为:7-.【点睛】本题考查复数的概念、同角的三角函数的基本关系以及两角差的正确,理解纯虚数的概念是关键,本题为中档题.19.【详解】∵z 对应的点z(x -)都在单位圆内∴|z|<1即<1∴x2+<1∴x2<∴- 解析:222233x -<<【详解】 ∵z 对应的点z (x ,-)都在单位圆内, ∴|z|<1,即<1.∴x 2+<1.∴x 2<. ∴-.20.【解析】试题分析:由得同理所以点对应的复数是考点:复数的几何意义 解析:33i -【解析】 试题分析:由得(2,1)(2,3)(0,2)OB OA BA =-=-=-,同理(0,2)(3,1)(3,3)OC OB BC =+=-+-=-,所以点C 对应的复数是33i -.考点:复数的几何意义.三、解答题21.(1) 1m =-(2) 3m =. 【解析】 【分析】化简复数为22(23)(43)Z m m m m i =--+-+,(1)由Z 为纯虚数,列出方程组,即可求解;(2)根据Z 对应的点在y x =上,列出方程,即可求解. 【详解】由题意,复数2(1)(24)33Z i m i m i =+-+-+,则22(23)(43)Z m m m m i =--+-+,(1)若Z 为纯虚数,则有22230430m m m m ⎧--=⎨-+≠⎩,解得:1m =-;(2)根据Z 对应的点在y x =上,则有222343m m m m --=-+,解得:3m =.【点睛】本题主要考查了复数的概念,以及复数的表示的应用,其中解答中熟记复数的表示方法,列出相应的方程(组)是解答的关键,着重考查了推理与运算能力,属于基础题. 22.5【解析】【分析】本题首先可以根据复数根虚根必共轭的性质设,a bi a bi αβ=+=-,然后根据韦达定理可得2a =-以及m ,再通过||2αβ-=计算得1b =±,最后通过运算即可得出结果。
"【全程复习方略】2014-2015学年高中数学第三章数系的扩充与复数的引入单元质量评估新人教A版选修1-2 "(120分钟150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2014·吉林高二检测)i是虚数单位,计算i+i2+i3=( )A.-1B.1C.-iD.i【解析】选A.i+i2+i3=i-1-i=-1.2.(2014·银川高二检测)在如图的知识结构图中:“求函数的导数”的“上位”要素有( )A.1个B.2个C.3个D.4个【解析】选C.由流程图知“求函数的导数”的“上位”要素有:基本导数公式,函数四则运算求导法则,复合函数求导法则.3.(2014·天津高二检测)已知i为虚数单位,则复数z=的虚部为( )A.1B.-1C.iD.1-i【解析】选B.z===-i,因此虚部为-1.4.如图所示的知识结构图为结构.( )A.树形B.环形C.对称形D.左右形【解析】选A.由框图知,此类框图是树形结构.5.(2014·温州高二检测)复数的共轭复数为( )A.-+iB.+iC.-iD.--i【解析】选D.z====-+i,则其共轭复数为--i.6.下列命题中:①若a∈R,则(a+1)i是纯虚数;②若a,b∈R且a>b,则a+i3>b+i2;③若(x2-1)+(x2+3x+2)i是纯虚数,则实数x=±1;④两个虚数不能比较大小.其中,正确命题的序号是( )A.①B.②C.③D.④【解析】选D.复数a+bi(a,b∈R).当a=0且b≠0时为纯虚数.在①中,若a=-1,则(a+1)i不是纯虚数,故①错误.在③中,若x=-1,也不是纯虚数,故③错误.a+i3=a-i,b+i2=b-1,复数a-i与实数b-1不能比较大小,故②错误.④正确.故应选D.7.(2014·西安高二检测)若复数(a2-a-2)+(|a-1|-1)i(a∈R)不是纯虚数,则( )A.a=-1B.a≠-1且a≠2C.a≠-1D.a≠2【解析】选C.若一个复数不是纯虚数,则该复数是一个虚数或是一个实数.当a2-a-2≠0时,已知的复数一定不是纯虚数,解得a≠-1且a≠2;当a2-a-2=0且|a-1|-1=0时,已知的复数也不是一个纯虚数,解得a=2. 综上所述,当a≠-1时,已知的复数不是一个纯虚数.8.下列判断不正确的是( )A.画工序流程图类似于算法的程序框图,首先把每一个工序逐步细化,按自上向下或从左向右的顺序画B.在工序流程图中可以出现循环回路,这一点不同于算法的程序框图C.工序流程图中的流程线表示相邻两工序之间的衔接关系,且是有方向的指向线D.结构图用来刻画静态的系统结构,流程图用来描述一个动态过程【解析】选B.概念判断题,对于A,算法的程序框图本身就是一种流程图;对于B,显然错误,因循环结构是算法结构中最常见的一类结构,选B;对于C,主要是考查流程线的知识.流程线是具有方向性的指向线.对于D,主要明确结构图与流程图的概念.9.(2014·武汉高二检测)若a,b∈R,则复数(a2-6a+10)+(-b2+4b-5)i对应的点在( ) A.第一象限 B.第二象限C.第三象限D.第四象限【解析】选D.a2-6a+10=(a-3)2+1>0,-b2+4b-5=-(b-2)2-1<0.所以复数对应的点在第四象限,故应选D. 【变式训练】已知z=(1+i)m2-(8+i)m+15-6i(m∈R),若复数z对应的点位于复平面上的第二象限,则m的取值范围是.【解析】将复数z变形为z=(m2-8m+15)+(m2-m-6)i,因为复数z对应的点位于复平面上的第二象限,所以解得3<m<5.答案:3<m<510.(2014·陕西高考)根据如图所示的框图,对大于2的整数N,输出的数列的通项公式是( )A.a n=2nB.a n=2(n-1)C.a n=2nD.a n=2n-1【解题指南】搞清程序的算法功能是解题的关键,解题时按照程序框图的顺序执行求解,特别注意根据判断框中的条件来执行循环体或结束循环.【解析】选C.当S=1,i=1时,执行循环体,a1=2,S=2,i=2,若不满足条件i>N,执行循环体,a2=4,S=4,i=3,若不满足条件i>N,执行循环体,a3=8,S=8,i=4,若不满足条件i>N,执行循环体,a4=16,S=16,i=5,若输入条件N=4,此时满足条件i>N,即输出a4=16,所以a n=2n.11.已知复数z=(x-1)+(2x-1)i的模小于,则实数x的取值范围是( )A.-<x<2B.x<2C.x>-D.x=-或x=2【解析】选A.由题意知(x-1)2+(2x-1)2<10,解得-<x<2.故应选A.12.(2014·南昌高二检测)已知复数z=-3+2i(i为虚数单位)是关于x的方程2x2+px+q=0(p,q为实数)的一个根,则p+q的值为( )A.22B.36C.38D.42【解析】选C.因为z=-3+2i是关于x的方程2x2+px+q=0的一个根,所以有2(-3+2i)2+p(-3+2i)+q=0,即2(9-4-12i)-3p+2pi+q=0得10-24i-3p+2pi+q=0得10+q-3p+(2p-24)i=0.由复数相等得⇒所以p+q=38.二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上)13.(2014·嘉兴高二检测)某工程由A,B,C,D四道工序组成,完成它们需用时间依次为2,5,x,4天,四道工序的先后顺序及相互关系是:A,B可以同时开工;A完成后,C可以开工;B,C完成后,D可以开工.若该工程总时数为9天,则完成工序C需要的天数x最多是.【解析】画出流程图如图:又因为该工程总时数为9天,则由图知完成工序C需要的天数x最多是3.答案:314.若复数z=的实部为3,则z的虚部为.【解析】z===,由条件知,=3,所以a=-1,所以z=3+i,所以z的虚部为1.答案:115.(2014·丽江高二检测)下面是中国移动关于发票的表述:我们在充分考虑您的个性化需求基础上提供了以下几种话费发票方式:后付费话费发票、预付费话费发票、充值发票、全球通发票(包括简单发票和单一发票).你可以根据你的实际情况选择其中的话费发票方式.试写出关于发票的结构图. 【解析】答案:16.已知复数z1=m+(4+m)i(m∈R),z2=2cosθ+(λ+3cosθ)i(λ∈R),若z1=z2,则λ的取值范围是.【解析】因为z1=z2,所以所以λ=4-cosθ.又因为-1≤cosθ≤1,所以3≤4-cosθ≤5,所以λ∈[3,5].答案:[3,5]三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)试画出“推理与证明”这一部分内容的知识结构图.【解析】知识结构图如图:18.(12分)(2014·牡丹江高二检测)计算:(1)(1-i)(1+i).(2)+.【解析】(1)(1-i)(1+i)=(1-i)(1+i)=2×=-1+i.(2)+=+=i(1+i)+=-1+i+(-i)1005=-1+i-i=-1.【拓展延伸】复数的运算可以看作多项式的化简,加减看作多项式加减,合并同类项,乘法和除法可看作多项式的乘法和除法.19.(12分)明天小强要参加班里组织的郊游活动,为了做好参加这次郊游的准备工作,他测算了如下数据:整理床铺、收拾携带物品8分钟,洗脸、刷牙7分钟,煮牛奶15分钟,吃早饭10分钟,查公交线路图9分钟,给出差在外的父亲发手机短信6分钟,走到公共汽车站10分钟,等公共汽车10分钟.小强粗略地算了一下,总共需要75分钟,为了赶上7:50的公共汽车,小强决定6:30起床,不幸的是他一下子睡到6:50,请你帮小强安排一下时间,画出一份郊游出行前时间安排流程图,使他还能来得及参加此次郊游.【解析】出行前时间安排流程图如图所示.这样需要60分钟,故可以赶上7:50的公共汽车,并来得及参加此次郊游.20.(12分)(2014·长沙高二检测)(1)求复数z=1+cosα+isinα(π<α<2π)的模.(2)如果lo(m+n)-(m2-3m)i>-1,试求自然数m,n.【解析】(1)|z|===-2cos.(2)因为lo(m+n)-(m2-3m)i>-1,所以式子lo(m+n)-(m2-3m)i是实数,从而有由①得m=0或m=3,当m=0时代入②得n<2.又因为m+n>0,所以n=1;当m=3时代入②得n<-1与n是自然数矛盾,综上可得m=0,n=1.21.(12分)已知等腰梯形OABC的顶点A,B在复平面上对应的复数分别为1+2i,-2+6i,OA∥BC.求顶点C所对应的复数z.【解析】设z=x+yi,x,y∈R,因为OA∥BC,|OC|=|BA|,所以k OA=k BC,|z C|=|z B-z A|,即解得或因为|OA|≠|BC|,所以x2=-3,y2=4(舍去),故z=-5.【拓展延伸】数形结合既是一种重要的数学思想,又是一种常用的数学方法.复数本身的几何意义、复数的模以及复数加减法的几何意义都是数形结合思想的体现.它们得以相互转化.涉及的主要问题有复数在复平面内对应点的位置、复数运算及模的最值问题等.22.(12分)(2014·青岛高二检测)已知复数z1=i(1-i)3.(1)求|z1|.(2)若|z|=1,求|z-z1|的最大值.【解析】(1)|z1|=|i(1-i)3|=|i|·|1-i|3=2.(2)如图所示,由|z|=1可知,z在复平面内对应的点的轨迹是半径为1,圆心为O(0,0)的圆,而z1对应着坐标系中的点Z1(2,-2).所以|z-z1|的最大值可以看成是点Z1(2,-2)到圆上的点的距离的最大值.由图知|z-z1|max=|z1|+r(r为圆半径)=2+1.【变式训练】已知z是复数,z+2i,均为实数,且(z+ai)2的对应点在第一象限,求实数a的取值范围. 【解析】设z=x+yi(x,y∈R),则z+2i=x+(y+2)i为实数,所以y=-2.又因为==(x-2i)(2+i)=(2x+2)+(x-4)i为实数,所以x=4.所以z=4-2i,又因为(z+ai)2=(4-2i+ai)2=(12+4a-a2)+8(a-2)i在第一象限.所以解得2<a<6.所以实数a的取值范围是(2,6).【拓展延伸】复数问题实数化在求复数时,常设复数z=x+yi(x,y∈R),把复数z满足的条件转化为实数x,y满足的条件,即复数问题实数化的基本思想.。
《数系的扩充与复数的引入》章末达标测评(满分:150分;时间:120分钟)―、选择题(每小题5分,共60分)1.复数z 是实数的充分而不必要条件为( ) A.z z = B.z z = C.2z 是实数 D.z z +是实数2.在复平面上,一个正方形的三个顶点对应的复数分别是12i +,2i -+,0,则第四个顶点对应的复数为( ) A.3i + B.3i - C.13i - D.13i -+3.复数2017z i =(i 为虚数单位),则z 的虚部为( ) A.i - B.i C.1- D.14.在复平面内,复数cos3sin3z i =+(i 为虚数单位),则z 为( ) A.1 B.2 C.3 D.45.复数()()213z a a i =++-(i 为虚数单位),若0z <,则实数a 的值是( )B.1C.1-D.6.若(z a ai =+为纯虚数,其中a R ∈,则71a i ai+=+( )A.iB.1C.i -D.1-7.已知3()1f x x =-,设i 是虚数单位,则复数()f i i的虚部为( ) A.1- B.1 C.i D.08.若复数z 满足()11z i i i -=-+,则z 的实部为( )A.121 C.1D.129.复数212ii+-的共扼复数是( ) A.35i -B.35iC.i -D.i10.在复平面内,O 是原点,OA ,OC ,AB 对应的复数分别为2i -+,32i +,15i +,那么BC 对应的复数为( ) A.47i +B.13i +C.44i -D.16i -+11.设i 是虚数单位,若()17,2ia bi ab R i+=+∈-,则ab 的值是( ) A.15- B.3 C.3- D.1512.已知复数z 的共扼复数为z,若()31522z z ⎛⎫+-= ⎪⎝⎭(i 为虚数单位),则在复平面内,复数z 所对应的点位于( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限二、填空题(每小题5分,共20分)13.复数()()32i m i +-+对应的点在第三象限内,则实数m 的取值范围是_____. 14.设32z i =+,z 和z 在复平面内对应的点分别为A 和B ,O 为坐标原点,则AOB ∆的面积为_____.15.已知复数1cos z i θ=-,2sin z i θ=+,R θ∈,则12z z ⋅的实部最大值为____,虚部最大值为_____.16.设i是虚数单位,122w i =-+,则使得()1niw =成立的最小正整数n 为_____.三、解答题(共70分)17.(12分)设复数()()22lg 2232z m m m m i =--+++,当m 为何值时, (1)z 是实数? (2)z 是纯虚数?18.(14分)计算下列各题.(1)()()33+÷-;(2))()()()245541i i i +-+.19.(14分)已知复数()()22815918z m m m m i =-++-+在复平面内表示的点为A ,则实数m 取什么值时: (1)复数z 为实数? (2)复数z 为纯虚数?(3)点A 位于复平面的第三象限?20.(15分)设复数z满足42z z i +=,1sin cos z i θθ=-,R θ∈,求z 及1z z -的取值范围.21.(15分)已知复数()211z i i =+.(1)求1z 及1z ;(2)当复数z 满足341z i +-=,求1z z -的最大值与最小值.参考答案 一、选择题1.答案:A解析:z z z =⇒为实数,但z 为实数z z ⇒=,例如11-≠-. 2.答案:D解析:设第四个顶点对应的坐标为(),C x y ,已知三点的坐标为()0,0O ,()1,2A ,()2,1B -,由题意可知BC OA =,即()()2,11,2x y +-=,1x ∴=-,3y =.∴第四个顶点C 对应的复数为13i -+. 3.答案:D解析:()504201720164z i i i i i i ==⋅=⋅=,故其虚部为1.4.答案:A解析:1z ==,故选A. 5.答案:D解析:由题意得210,30,a a +<⎧⎨-=⎩解得a =故选D.6.答案:C解析:z 为纯虚数,a R ∈,a ∴=,71313i a i ii ai +-∴====-+. 7.答案:B 解析:()311f i i i =-=--,()2111f i i i i i i i ----∴===-+-,则复数()f i i的虚部为1,故选B.8.答案:A解析:由()11z i i i -=-+,得)()()()11111122i i iz i i i i +===+--+,故z 的实部为12,故选A. 9.答案:C 解析:因为()()()22212122i i i ii i i i i i+++===--+,所以它的共扼复数为i -,选C. 10.答案:C解析:因为OA ,OC ,AB 对应的复数分别为2i -+,32i +,15i +,()BC OC OB OC OA AB =-=-+,所以BC 对应的复数为()()3221544i i i i +--+++=-⎡⎤⎣⎦. 11.答案:C 解析:()()172171325i i i i i +++==-+-,1a ∴=-,3b =,3ab =-. 12.答案:A解析:设(),z a bi a b R =+∈,则3222z z a bi +=+,故21a bi +==,故12a =,b =则在复平面内,复数z所对应的点的坐标为12⎛ ⎝,位于第一象限.二、填空题13.答案:见解析解析:()()321z m m i =-+-,其对应点()32,1m m --在第三象限内,故320m -<且10m -<,23m ∴<. 14.答案:见解析解析:z 和z 在复平面内对应的点如图所示,则14362AOB S ∆=⨯⨯=.15.答案:见解析解析:()()()()12cos sin cos sin 1cos sin z z i i i θθθθθθ⋅=-⋅+=⋅++-,实部13cos sin 11sin 222θθθ⋅+=+≤,最大值为32,虚部cos sin 224πθθθ⎛⎫-=+≤ ⎪⎝⎭2.16.答案:见解析解析:解法一:132w =-+,312iw i ∴=,()2132iw =,()3iw i =-,,()121iw =,可知n 的最小值是12.解法二:1i i =,21i =-,3i i =-,41i =,132w =-,2132w =-,31w =,()()()34121212431iw i w i w ∴=⋅=⋅=.可知使()1niw =成立的最小正整数是12.三、解答题17.答案:见解析解析:(1)要使复数z 为实数,需满足22220,320,m m m m ⎧-->⎪⎨++=⎪⎩解得2m =-或1-.即当2m =-或1-时,z 是实数.(2)要使复数z 为纯虚数,需满足22221,320,m m m m ⎧--=⎪⎨++≠⎪⎩解得3m =.即当3m =时,z 是纯虚数.18.答案:见解析解析:(1)()()2333++÷-==229898ii++=-11171717+==+.(2)原式()()()()()()()4454544142254154112i i i iii i i i i+----=====-+-+-++.19.答案:见解析解析:(1)当29180m m-+=,即3m=或6m=时,z为实数.(2)当28150m m-+=,且29180m m-+≠,即5m=时,z为纯虚数.(3)228150,9180,m mm m⎧-+<⎪⎨-+<⎪⎩35,36,mm<<⎧∴⎨<<⎩∴当35m<<时,z的对应点位于第三象限.20.答案:见解析解析:设(),z a bi a b R=+∈,则z a bi=-,代入42z z i+=,得()()42a bi a bi i++-=.621,ab⎧=⎪∴⎨=⎪⎩即1,2ab⎧=⎪⎪⎨⎪=⎪⎩122z i∴=+.()11sin cos2z z i iθθ∴-=--===1sin16πθ⎛⎫-≤-≤⎪⎝⎭,022sin46πθ⎛⎫∴≤--≤⎪⎝⎭,102z z∴≤-≤.21.答案:见解析解析:复数()()221112122z i i i i i=+=+-==-.(1)12z=-,12z=.(2)设复数(),z x yi x y R =+∈,341z i +-=,()()341x y i ∴++-=,()()22341x y ∴++-=,它表示圆心为()3,4P -,半径为1的圆,画出图形,如图所示,1z 所对应的点为()2,0A -.则圆心P 到点A 的距离为()223+2+4=17PA =-因为1z z -表示圆P 上的点到点A 的距离,所以1z z -的最大值为+1=17+1PA ,最小值为1=171PA -.。
选修1-2数系的扩充与复数引入 南海区平洲高级中学 曾庆荣说明:本试卷分为第Ⅰ、Ⅱ卷两部分,请将第Ⅰ卷选择题的答案填入题后括号内,第Ⅱ卷可在各题后直接作答.共150分,考试时间90分钟.第Ⅰ卷(选择题 共60分)一、选择题(本大题共12小题,每小题5分,共60分) 1.下面四个命题中正确的命题个数是①0比-i 大 ②两个复数互为共轭复数,当且仅当其和为实数 ③x +y i=1+i 的充要条件为x =y =1 ④11.设z 为复数,M ={z |(z -1)2=|z -1|2},那么正确的应是 A.M ={纯虚数} B.M ={实数} C.{实数}M {复数} D.M ={复数} 12.复数iz -=11的共轭复数是A .i 2121+B .i 2121-C .i -1D .i +1第Ⅱ卷(非选择题 共70分)二、填空题(本大题共4小题,每小题5分,共70分.把答案填在题中横线上)13ii-+15的值等于__________. 14.设z =-1+(ii -+11)2003,则z =__________.15.8+6i 的平方根是__________. 16.复平面内,已知复数z =x -31i 所对应的点都在单位圆内,则实数x 的取值范围是__________.(1)(2)解:z 1·z 2=(3+i)·(1-i)=4-2i. 答案: D5.分析:本题考查i 的幂的运算性质.解:(i -i -1)3=(i -i1)3=(i+i)3=(2i)3=8i 3=-8i,则虚部为-8.答案: D6.分析:本题考查虚数的基本知识及运算能力.此类问题通常利用两复数相等的充要条件转化为实数问题去解决.解:设z =b i(b ∈R 且b ≠0),则(z +2)2-8i=(b i+2)2-8i=b 2i 2+4b i+4-8i=(4-b 2)+(4b -8)i.∴⎩⎨⎧≠-=-.084,042b b ∴⎩⎨⎧≠±=.22b b ,∴b =-2.∴z =-2i.答案:B7.分析:本题考查复数代数形式的基本运算.可利用多项式乘以多项式的方法解决此类问题,但应特别注意运算过程中的符号问题.12.B第Ⅱ卷(非选择题 共70分)二、填空题(本大题共4小题,每小题5分,共70分.把答案填在题中横线上) 13分析:本题考查复数的除法运算.解:2)15()15()1)(1()1)(5(15ii i i i i i ++-=+-++=-+ =2+3i. 答案: 2+3i14分析:本题考查i 的周期性及常见复数的化简.如(1±i)2=±2i,i-i11+ =i 等. 解:z =-1+(i-i 11+)2003=-1+i 2003=-1+i 4×500+3=-1+i 3=-1-i. 答案: -1-i15.分析:本题考查复数的平方运算及复数相等的概念. 解法一: 设8+6i 的平方根是x +y i(x 、y ∈R ),则 (x +y i)2=8+6i ,即x 2-y 2+2xy i=8+6i.解:把z =i i --1a 代入,得ω=i i --1a (i i--1a +i) =i i --1a (i i i -++-11a )=21+a (1+a i).4分 于是21+a ·a -2321=+a ,即a 2=4.8分 ∵a >0,∴a =2,ω=23+3i.10分19.分析:本题考查复数相等的概念及复数的有关运算.此题可设复数z =a +b i(a 、b ∈R ),把求复数z 转化为列方程组求实数a 、b 值的问题;也可把复数z 视为一个整体分离出来,求复数z .解法一:设z =a +b i(a 、b ∈R ),则原方程可化为(3+a +b i)i=1. 整理得-b +(3+a )i=1. 5分由复数相等的定义,得方程组⎩⎨⎧=+=-.03,1a b⎧-=,3a 4分⎩=.2b 21.分析:本题考查复数的运算及复数相等的概念.解题的关键是搞清x 是实数.应先把复数整理成a +b i(a 、b ∈R )的形式,再由复数相等的充要条件列方程组求值.解:设此方程的实根为x 0,纯虚数m =a i(a ∈R 且a ≠0),则原方程可化为 x 02+(1+2i)x 0-(3a i -1)i=0. 2分 整理得(x 02+x 0+3a )+(2x 0+1)i=0. 8分由复数相等的定义,得方程组⎪⎩⎪⎨⎧=+=++.012,030020x a x x10分解得⎪⎪⎩⎪⎪⎨⎧=-=.121,210a x 所以m =i 121.12分22. [原方程化简为i i z z z-=++1)(2,设z=x+yi(x 、y ∈R),代入上述方程得 x 2+y 2+2xi=1-i,3。
本章检测
(时间90分钟,满分100分)
一、选择题(每题3分,共36分)
1.复数z 1=3+i,z 2=1-i,则z=z 1·z 2在复平面内的对应点位于( )
A.第一象限
B.第二象限
C.第三象限
D.第四象限 答案:D
2.(1+i )20-(1-i)20的值为( )
A.0
B.1 024
C.-1 024
D.-1 024i 解析:(1+i )20-(1-i)20=(2i)10-(-2i)10=0.
答案:A
3.已知复数z 满足|z|=2,则复数z ( )
A.是实数
B.是虚数
C.是纯虚数
D.对应的点在一个半径为2的圆上 答案:D
4.已知复数z 满足z=-|z|,则z 的实部( )
A.不小于0
B.不大于0
C.大于0
D.小于0 解析:设z=x+yi,
∴x+yi=-|z|.∴x=-|z|≤0.
答案:B
5.复平面上平行四边形ABCD 的四个顶点中,A 、B 、C 所对应的复数分别为2+3i,3+2i,-2-3i ,则D 点对应的复数是( )
A.-2+3i
B.-3-2i
C.2-3i
D.3-2i
解析:∵A 、B 、C 对应的复数分别为2+3i 、3+2i 、-2-3i ,
∴A (2,3),B (3,2),C (-2,-3).
设D (x,y ),则2
32)2(2x +=-+, 322)3(3y +=-+,∴⎩⎨⎧-=-=.
2,3y x ∴D 点的坐标为(-3,-2),
∴D 点对应的复数为-3-2i.
答案:B
6.设z=(2t 2+5t-3)+(t 2+2t+2)i(t ∈R ),则以下结论正确的是( )
A.z 对应的点在第一象限
B.z 一定不为纯虚数
C.z 对应的点在实轴的下方
D.z 一定为实数
解析:2t 2+5t-3=(t+3)(2t-1),
t 2+2t+2=(t+1)2+1>0,
又z=(2t 2+5t-3)-(t 2+2t+2)i,
∴z 对应的点在实轴的下方.
答案:C
7.在复数集C 内分解因式2x 2-4x+5等于( )
A.(x-1+3 i )(x-1-3i)
B.(2x-2+3i)(
2x-2-3i)
C.2(x-1+i)(x-1-i)
D.2(x+1+i)(x+1-i)
答案:B 8.(i
i -+11)2 005等于( ) A.i B.-i C.22 005 D.-22 005 解析:(i
i -+11)2 005=(22i )2 005=i 2 004+1=i. 答案:A 9.设复数ω=21-+23i,则1+ω等于( ) A.-ω B.ω2 C.ω1
- D.2
1ω 解析:1+ω=
ω
13321-=+. 答案:C 10.设复数z 满足
z z +-11=i,则|1+z|等于( ) A.-2 B.2-
C.2
D.2 解析:由
z z +-11=i,得 z=i
i +-11=-i. ∴|1+z|=|1-i|=11+=2.
答案:C
11.两个复数z 1=a 1+b 1i,z 2=a 2+b 2i(a 1、a 2、b 1、b 2都是实数且z 1≠0,z 2≠0)对应的向量1OZ 和2OZ 在同一条直线上的充要条件是(O 为坐标原点)( ) A.11a b ·2
2a b =-1 B.a 1a 2+b 1b 2=0 C.21a a =2
1b b D.a 1b 2=a 2b 1 解析:由题意知1OZ =(a 1,b 1), 2OZ =(a 2,b 2), ∴1OZ ∥2OZ .∴a 1b 2-a 2b 1=0.
答案:D
12.已知复数z=3
62+-+a a a +(a 2-3a-10)i(a ∈R )满足zi>0或zi<0,则a 的值为( )
A.3
B.-3
C.2或-3
D.2 解析:zi>0或zi<0知zi 为实数. ∴3
62+-+a a a =0且a 2-3a-10≠0.∴a=2. 答案:D
二、填空题(每题4分,共16分)
13.i 4n +i 4n+1+i 4n+2+i 4n+3=_______________(n 为正整数).
解析:i 4n +i 4n+1+i 4n+2+i 4n+3=1+i-1-i=0.
答案:0
14.已知i
i +-1)1(3
=a+3i ,则a=_______________. 解析:∵i i +-1)1(3=2)1(4i -=2
)2(2
i -=-2, ∴a+3i=-2.
∴a=-2-3i.
答案:-2-3i
15.若关于x 的方程x 2+(1+2i)x-(3m-1)i=0有实根,则纯虚数m=_______________. 解析:设m=ki(k≠0),
则⎩⎨⎧=+=++.
012,032x k x x ∴⎪⎪⎩
⎪⎪⎨⎧=-=.121,21k x ∴m=
12
1i. 答案:121i 16.已知z 为复数,则z+z >2的一个充要条件是z 满足_______________.
解析:设z=a+bi(a 、b ∈R ).
由z+z=2a>2得a>1.
反之,由a>1得z+z=2a>2.
答案:z 的实部大于1
三、解答题(每小题8分,共48分)
17.设|z 1|=13,z 2=12+5i,z 1·z 2是纯虚数,求z 1.
解:设z 1=a+bi,
则z 1·z 2=(a+bi)(12+5i)
=(12a-5b)+(5a+12b)i.
由题意,得
⎩⎨⎧=-=+,
0512,16922b a b a ∴⎩⎨⎧==12,5b a 或⎩
⎨⎧-=-=.12,5b a ∴z 1=5+12i 或-5-12i.
18.已知z=1+i,求1
632++-z z z 的模. 解:1
632++-z z z =i
i i +++-+26)1(3)1(2 =i
i +-23=1-i, ∴1
632++-z z z 的模为2. 19.已知复数z 满足z·z +2i z =3+ai (其中a ∈R ),
(1)求复数z (写成关于a 的表达式);
(2)当a 为何值时,满足条件的复数z 存在?
解:(1)设z=x+yi(x 、y ∈R ), 则z =x-yi,代入题设z·z+2iz=3+ai(a ∈R ),
得(x+yi)(x-yi)+2i(x-yi)=3+ai.
∴x 2+y 2+2y+2xi=3+ai.
∴⎩
⎨⎧==++.2,3222a x y y x ∴y 2+2y+42
a -3=0. ∴y=2
1622
a -±-. ∴z=2a +2
1622
a -±-i. (2)∵y ∈R ,
∴Δ=4-4(4
2
a -3)≥0. ∴-4≤a≤4.
20.设O 为坐标原点,已知向量1OZ 、2OZ 分别对应复数z 1、z 2,且z 1=
53+a +(10-a 2)i ,z 2=a
-12+(2a-5)i(a ∈R ),若1z +z 2可以与任意实数比较大小,求1OZ ·2OZ 的值. 解:依题意得z 1+z 2为实数, 由1z =
5
3+a -(10-a 2)i, ∴1z +z 2=53+a +a -12+[(a 2-10)+(2a-5)]i 的虚部为0. ∴a 2+2a-15=0,解得a=-5或a=3.又分母不为零,∴a=3.
此时z 1=
8
3+i,z 2=-1+i, 即1OZ =(8
3,1),2OZ =(-1,1), ∴1OZ ·2OZ =38×(-1)+1×1=85. 21.关于t 的二次方程t 2+(2+i)t+2xy+(x-y)i=0(x 、y ∈R )有实根,求点P (x,y )的轨迹方程. 解析:设实根为t,
则t 2+(2+i)t+2xy+(x-y)i=0,
即(t 2+2t+2xy)+(t+x-y)i=0.
根据复数相等,
⎩⎨⎧=-+=++)
2(.0)1(,0222y x t xy t t 由②得t=y-x 代入①得
(y-x )2+2(y-x)+2xy=0,
即(x-1)2+(y+1)2=2.③
∴所求点的轨迹方程为(x-1)2+(y+1)2=2,轨迹是以(1,-1)为圆心,2为半径的圆.
22.设z≠-1,求证1
1+-z z 是虚数的充要条件是|z|=1. 证明:设z=x+yi(x,y ∈R )则
]
)1[(])1[(])1[(])1[(1111yi x yi x yi x yi x yi x yi x z z ---++++-=+++-=+- =2
22222122121y x x y y x x y x +++++-+-+. 若|z|=1,则x 2+y 2=1.又z≠-1,
∴x≠-1且y≠0,
∴z-1z+1是纯虚数.
∴充分性证完. 若1
1+-z z 是纯虚数,则x 2+y 2-1=0,且y≠0, ∴|z|=1.
∴必要性证完.
∴命题成立.。