【期中试卷】湖北省襄阳市四校2017届高三上学期期中联考数学(理)试题 Word版含答案
- 格式:doc
- 大小:933.00 KB
- 文档页数:9
湖北省襄阳市襄阳四中2017届高三七月第二周周考数学(理科)试题(7.20)时间:120分钟 分值150分第I 卷(选择题共60分)一、选择题(本大题12小题,每小题5分,共60分) 1.已知集合1|,,11M y y x x R x x ⎧⎫==+∈≠⎨⎬-⎩⎭,集合{}2|230N x x x =--≤,则( ) A .M N =∅ B .R M C N ⊆ C .R M C M ⊆ D .M N R ⋃=2.复数z 为纯虚数,若()3i z a i ∴-=+(为虚数单位),则实数a 的值为( ) A .﹣3 B .3 C .﹣ D .3.下列函数中,既是偶函数,又在(0,∞+)上是单调减函数的是( ) A .2xy =- B .12y x=C .ln 1y x =+D .cos y x =4.已知甲、乙两组数据如茎叶图所示,若它们的中位数相同,平均数也相同,则图中的m,n 的比值mn=( )A .1B .13 C .29 D .385.给出下列命题,其中真命题的个数是( ) ①存在0x R ∈,使得007sin cos 2sin24x x π+=成立; ②对于任意的三个平面向量a 、b 、c ,总有()()a b c a b c ⋅⋅=⋅⋅成立;③相关系数r (||1r ≤),||r 值越大,变量之间的线性相关程度越高. A .0 B .1 C .2 D .3 6.由曲线x y =,直线2-=x y 及y 轴所围成的封闭图形的面积为( )A .316 B .310C .4D .6 7.某四面体的三视图如图所示,则该四面体的所有棱中最长的是( )A .B .C .D .58.某程序框图如图所示,该程序运行后输出的k 的值是( )A .4B .5C .6D .7 9.将函数f (x )=3sin (4x +6π)图象上所有点的横坐标伸长到原来的2倍,再向右平移6π个单位长度,得到函数y =g (x )的图象.则y =g (x )图象的一条对称轴是( ) A .x =12πB .x =6πC .x =3πD .x =23π 10.过双曲线22221(0,0)x y a b a b-=>>的右顶点A 作斜率为1-的直线,该直线与双曲线的两条渐近线的交点分别为,B C ,若,,A B C 三点的横坐标成等比数列,则双曲线的离心率为( )A .3B ..11.已知变量x ,y 满足约束条件⎪⎩⎪⎨⎧-≥-≤+≥+144222y x y x y x ,则目标函数z =3x -y 的取值范围是A .⎥⎦⎤⎢⎣⎡623-,B .⎥⎦⎤⎢⎣⎡1-23-, C .[]6,1- D .⎥⎦⎤⎢⎣⎡236-,12.已知函数0()ln(1),0x f x x x ≥=⎪--<⎩,若函数()()F x f x kx =-有且只有两个零点,则k 的取值范围为( )A .(0,1)B .1(0,)2 C .1(,1)2D .(1,)+∞第II 卷(非选择题)二、填空题(本大题共4个小题,每题5分,满分20分) 13.设=a 0(sin cos )x x dx π-⎰,若8822108)1(x a x a x a a ax +⋅⋅⋅+++=-,则8210a a a a +⋅⋅⋅+++= .14.在直径AB =2的圆上有长度为1的动弦CD ,则AC BD ⋅的最大值是 .15.已知直三棱柱111ABC A B C -的6个顶点都在球O 的球面上,若34AB AC ==,,AB AC ⊥,112AA =,则球O 的表面积为________.16.45,=ABC a b B A ∆==∠=∠ 中,则_________.三、解答题:解答应写出文字说明、证明过程或演算步骤.共70分.17.(本题12分)已知各项均为正数的数列{}n a 的前n 项和为n S ,满足:2*11,2,n n n S ka ta n n -+=-∈N ≥(其中,k t 为常数).(1)若12k =,14t =,数列{}n a 是等差数列,求1a 的值; (2)若数列{}n a 是等比数列,求证:k t <.18.(本题12分)某单位员工500人参加“学雷锋”志愿活动,按年龄分组:第组[)25,30,第2组[)30,35,第3组[)35,40,第4组[)40,45,第5组[)45,50,得到的频率分布直方图如图所示.(1)下表是年龄的频率分布表,求正整数,a b 的值;(2)现在要从年龄较小的第1,2,3组中用分层抽样的方法抽取6人,年龄在第1,2,3组抽取的员工的人数分别是多少?(3) 在(2) 的前提下,从这6人中随机抽取2人参加社区宣传交流活动,求至少有人年龄在第3组的概率.19.(本题12分)如图,在梯形ABCD 中,AB ∥CD ,a CB DC AD ===, 60=∠ABC ,平面⊥ACFE 平面ABCD ,四边形ACFE 是矩形,a AE =,点M 在线段EF 上.(Ⅰ)求证:⊥BC 平面ACFE ;(Ⅱ)当EM 为何值时,AM ∥平面BDF ?证明你的结论; (Ⅲ)求二面角D EF B --的平面角的余弦值. 20.(本题12分)已知椭圆+=1(a >b >0)的离心率为,且a 2=2b .(1)求椭圆的方程;(2)直线l :x ﹣y+m=0与椭圆交于A ,B 两点,是否存在实数m ,使线段AB 的中点在圆x 2+y 2=5上,若存在,求出m 的值;若不存在,说明理由.21.(本题12分)函数),()(R a a ax e x f x∈+-=其图像与x 轴交于)0,(),0,(21x B x A 两点,且21x x <.(1)求a 的取值范围;(2)证明:0)('21<x x f ;()('x f 为)(x f 的导函数;)(3)设点C 在函数)(x f 图像上,且△ABC 为等腰直角三角形,记,1112t x x =--求)1(1--t a )(的值.请考生在第22、23、24三题中任选一题做答,如果多做,则按所做的第一题记分.答题时用2B 铅笔在答题卡上把所选的题号涂黑.22.(本题10分)选修4—1: 几何证明选讲如图,P 是圆O 外一点,PA 是圆O 的切线,A 为切点,割线PBC 与圆O 交于B ,C ,PA PC 2=,D 为PC 中点,AD 的延长线交圆O 于点E ,证明:OPED CBA(Ⅰ)EC BE =; (Ⅱ)22PB DE AD =⋅.23.(本小题满分10分)【选修4一4:坐标系与参数方程】已知在直角坐标系x0y中,曲线1C:sin cos x y θθθθ⎧=+⎪⎨=-⎪⎩(θ为参数),在以平面直角坐标系的原点)为极点,x 轴的正半轴为极轴,取相同单位长度的极坐标系中,曲线2C :sin()16πρθ+=.(1)求曲线1C 的普通方程和曲线2C 的直角坐标方程;(2)曲线1C 上恰好存在三个不同的点到曲线2C 的距离相等,分别求这三个点的极坐标. 24.(本题10分)选修4—5: 不等式选讲 已知,,a b c R ∈,且2221a b c ++=. (Ⅰ)求证:a b +(Ⅱ)若不等式()211x x a b c -++≥++对一切实数,,a b c 恒成立,求x 的取值范围.参考答案1.D 【解析】试题分析:1111[3,)(,1]11y x x M x x =+=-++∴=+∞-∞--- ;{}2|230[1,3]N x x x =--≤=-,因此{1,3}M N =- ,(3,)(,1)R C N M =+∞-∞-⊂ ,(1,3)R C M M =-⊂,M N R ⋃=,故选D.考点:集合包含关系【名师点睛】本题重点考查集合间关系,容易出错的地方是审错题意,由求函数值域,易忽视小于零的情况,导致错求集合M.属于基本题,难点系数较小.一要注意培养良好的答题习惯,避免出现粗心错误,二是明确集合题要关注区间端点开与闭,强化对集合关系正确的理解. 2.D 【解析】试题分析:设复数,0z bi b =≠,()3i z a i ∴-=+,化为()3i bi a i -=+,即3b bi a i +=+,13b a ∴==, 故选D. 3.A 【解析】试题分析:B ,C 是非奇非偶函数,D 不是恒单调递减,故选A . 考点:函数单调性与奇偶性. 4.D 【解析】试题分析:由茎叶图可知乙的中位数是3323432=+,甲、乙两组数据中位数相同所以3=m ,所以甲的平均数为333273339=++,甲、乙两组数据平均数也相同,所以33420383432=++++n 解得8=n ,所以m n =38考点:由茎叶图求中位数及平均数.5.B 【解析】试题分析:因为sin cos 4x x x π⎛⎫+=+≤ ⎪⎝⎭72sin 2sin 244ππ>=,故①为假命题,对于②向量的数量积不满足结合律,故为假命题,③由相关性判断方法可知,为真命题,综上可知,真命题的个数为,故选B. 考点:命题真假判断. 6.A 【解析】试题分析:由2y y x ⎧=⎪⎨=-⎪⎩解得4,2x y ==,故面积为)324420021622323|xx dx x x ⎛⎫-+=-+= ⎪⎝⎭⎰.考点:定积分.7.B 【解析】试题分析:本题只要画出原几何体,理清位置及数量关系,由勾股定理可得答案. 解:由三视图可知原几何体为三棱锥,其中底面△ABC 为俯视图中的直角三角形,∠BAC 为直角, 其中AC=3,AB=4,BC=5,PB ⊥底面ABC ,且PB=4, 由以上条件可知,∠PBC 为直角,最长的棱为PC , 在直角三角形PBC 中,由勾股定理得,PC==,故选:B考点:由三视图求面积、体积. 8.A 【解析】试题分析:根据流程图所示的顺序,程序的运行过程中各变量值变化如下表: 是否继续循环 S K 循环前/0 0第一圈 是 1 1 第二圈 是 3 2 第三圈 是 11 3 第四圈 是 2059 4 第五圈 否∴最终输出结果k=4,故答案为A . 考点:程序框图. 9.C 【解析】试题分析:横坐标伸长到原来的两倍,得到3sin(2)6y x π=+,再向右移动6π得到3sin(2)6y x π=-,注意到sin(2)136ππ⋅-=,故对称轴为3x π=.考点:三角函数图象变换.10.C【解析】由题意,(,0)A a .双曲线的渐近线方程为by x a=±. 由()y x a b y x a =--⎧⎪⎨=⎪⎩,解得2B a x a b =+;由()y x a by x a =--⎧⎪⎨=-⎪⎩,解得2C a x a b =-. 由题意2BA C x x x =,即222()a a a a b a b=⨯+-,整理得3b a =.所以c =,故e =.故选C .【命题意图】本题主要考查双曲线的性质以及直线方程、等比数列等基础知识,考查基本的运算能力等. 11.A 【解析】试题分析:线性约束条件对应的可行域为直线22,24,41x y x y x y +=+=-=-围成的区域,顶点为()()10,1,2,0,,32⎛⎫ ⎪⎝⎭,目标函数z =3x -y 在点1,32⎛⎫ ⎪⎝⎭处取得最小值32-,在点()2,0处取得最大值6362z ∴-≤≤ 考点:线性规划问题 12.C 【解析】试题分析:()()0,()F x f x kx f x kx =-==,画出函数图象如下图所示.令2241y y x =-=,这是双曲线的一支,其渐近线方程为12y x =±.由图象可知,渐近线12y x =与()f x 图象只有一个交点.令''01ln(1),,|11x y x y y x==--==-,故函数ln(1)y x =--在()0,0处的切线方程为y x =.从而()f x kx =的k 的取值范围是1(,1)2.考点:1.函数导数;2.零点问题.【思路点晴】零点问题一种解法是变为两个函数图象的交点,如本题中的()()F x f x kx =-的零点问题,转化为()f x kx =左右两边函数图象有两个交点.我们只需要画出函数图象,就可以解决这个问题.在函数的第一段中,2241y y x =-=,由此可知该图象为双曲线的一支,其渐近线方程为12y x =±.另一段求取其过()0,0的切线方程,k 的范围就在这两条直接的斜率之间. 13. 【解析】试题分析:根据题意可知,00(sin cos )(cos sin )|a x x dx x x ππ=-=--⎰2=,所以8210a a a a +⋅⋅⋅+++88(1)(12)1a =-=-=.考点:定积分,二项展开式. 14.12【解析】试题分析:以AB 的中点为原点,AB 所在的直线为x 轴建立平面直角坐标系x y O ,如图所示:连结C O 和D O ,则D C 3π∠O =,设C α∠BO =(02απ≤<),则()1,0A -,()1,0B ,()C cos ,sin αα,D cos ,sin 33ππαα⎛⎫⎛⎫⎛⎫++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以()C cos 1,sin ααA =+ ,D cos 1,sin 33ππαα⎛⎫⎛⎫⎛⎫B =+-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ ,所以()1C D cos 1cos 1sin sin cos cos 3332πππαααααα⎡⎤⎛⎫⎛⎫⎛⎫A ⋅B =++-++=+-- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦111cos sin 2262πααα⎛⎫=--=-+-⎪⎝⎭,因为02απ≤<,所以13666πππα≤+<,所以当362ππα+=,即43πα=时,()()max 11C D 1122A ⋅B =-⨯--= ,所以答案应填:12.考点:1、任意角的三角函数;2、平面向量的坐标运算;3、两角和与差的余弦公式;4、辅助角公式;5、三角函数的图象与性质. 15.169π 【解析】试题分析:由下图可知,球心在O 的位置,球的半径为22252514416962444R ⎛⎫=+=+=⎪⎝⎭,故表面积为24169R ππ=.考点:球的内接几何体.【思路点晴】设几何体底面外接圆半径为x ,常见的图形有正三角形,直角三角形,矩形,它们的外心可用其几何性质求;而其它不规则图形的外心,可利用正弦定理来求.若长方体长宽高分别为,,a b c 则其体对角线长为;长方体的外接球球心是其体对角线中点.直棱柱;有一条棱垂直于一个面的棱锥,设高为h 其外接球半径R 公式秒杀公式2222h R x ⎛⎫=+ ⎪⎝⎭.16.3π或23π 【解析】试题分析:据正弦定理可求出角B 的正弦值,进而得到其角度值.45b a B ==∠=︒,根据正弦定理可得:3b sinA A sinA sinB a π∴=∴∠==或23π. 考点:正弦定理.17.(1)11a =+;(2)证明见解析. 【解析】试题分析:(1)已知条件是2111124n n n S a a -+=-,这种问题一般都是再写一次即21111124n n n S a a +++=-,两式相减变形后可得12n n a a +-=,注意这里有2n ≥,但由于数列{}n a 是等差数列,因此也有212a a -=,代入已知212211124a a a +=-可求得1a ;(2)与(1)相同方法得2211(2)n n n n n a ka ka ta ta n +++-=-≥,由数列{}n a 是等比数列,可设1n n a qa +=,代入化简得2(1)1(2)n t q a kq k n ∴-=-+≥,下面对此式分析,首先0q >,1q ≠,{}n a 不是常数列,这样此式对2n ≥恒成立,必有0t =,恒等式变为10kq k -+=,不能得出什么有用结论,回到已知条件,已知变为11n n S ka -∴+=-,此式中,10,0n n a S ->>,那么只能有0k <,命题得证.试题解析:(1)由题意知,21111(*)24n n n S a a -+=-,21111124n n n S a a ++∴+=-,两式相减,得:22111111(2)2244n n n n n a a a a a n +++-=-≥, 整理,得:11()(2)0(2)n n n n a a a a n +++--=≥, 0n a > ,12(2)n n a a n +∴-=≥,数列{}n a 是等差数列,212a a ∴-=,由(*)得:212211124a a a +=-,11a ∴=±10a > ,11a =+(2)由211n n n S ka ta -+=-得2111n n n S ka ta +++=-,两式相减,得:2211(2)n n n n n a ka ka ta ta n +++-=-≥,设等比数列{}n a 的公比为q ,∴222n n n n n a kqa ka tq a ta +-=-,2(1)1(2)n t q a kq k n ∴-=-+≥,由已知,可知0q >,∴1q ≠,{}n a 不是常数列,0t ∴=;11n n S ka -∴+=-,而0n a >且10n S ->,0k ∴<, k t ∴<.考点:等差数列与等比数列的定义.18.(1)200a =,50b =(2)人,人,4人. (3) 1415【解析】 试题分析:(1)由频数等于总数乘以频率,而频率等于纵坐标乘以组距,因此0.085500200a =⨯⨯=,0.02550050b =⨯⨯=(2)由分层抽样知,按比例抽取:第,2组的人数为5061300⨯= ,第3组的人数为20064300⨯= (3) 从这6人中随机抽取2人共有15种方法,其中年龄没人在第3组的有1种方法,所以至少有人年龄在第3组有14种方法,从而所求概率为1415试题解析:解:(1)由题设可知,0.085500200a =⨯⨯=,0.02550050b =⨯⨯=. (2)因为第1,2,3组共有5050200300++=人,利用分层抽样在300名员工中抽取6名员工,每组抽取人数分别为:第组的人数为5061300⨯=,第2组的人数为5061300⨯=,第3组的人数为20064300⨯=.所以第1,2,3组分别抽取人,人,4人.(3) 设第组的位员工为A ,第2组的位员工为B ,第3组的4位员工为1234,,,C C C C ,则从六位员工为员工中的两位员工有:()()()()()()()()()12341234,,,,,,,,,,,,,,,,,A B A C A C A C A C B C B C B C B C ()()()()()()121314232434,,,,,,,,,,,C C C C C C C C C C C C 共15种可能.其中2人年龄都不在第3组的有:(),A B ,共种可能.所以至少有人年龄在第3组的概率为11411515-=.考点:分层抽样,古典概型概率【方法点睛】古典概型中基本事件数的探求方法 (1)列举法.(2)树状图法:适合于较为复杂的问题中的基本事件的探求.对于基本事件有“有序”与“无序”区别的题目,常采用树状图法.(3)列表法:适用于多元素基本事件的求解问题,通过列表把复杂的题目简单化、抽象的题目具体化.(4)排列组合法:适用于限制条件较多且元素数目较多的题目. 19.(Ⅰ)证明见解析;(Ⅱ)EM =;. 【解析】试题分析:(Ⅰ)根据已知条件,易得在等腰梯形ABCD 中,AC BC ⊥;又 平面ACFE ⊥平面ABCD ,交线为AC ,⊥∴BC 平面ACFE ;(Ⅱ)设AC BD N ⋂=,连接FM ,当M 为EF 中点时,//AM FN ,从而//AM BDF 平面;(Ⅲ)以C 为坐标原点,,,CA CB CF 分别为,,x y z 轴建立空间直角坐标系,求出平面BEF 和平面DEF 的法向量,从而求得cos θ=. 试题解析:(Ⅰ)在梯形ABCD 中,CD AB // ,︒=∠===60,ABC a CB DC AD 四边形ABCD 是等腰梯形,且︒︒=∠=∠=∠120,30DCB DAC DCA ︒=∠-∠=∠∴90DCA DCB ACBBC AC ⊥∴ 又 平面⊥ACFE 平面ABCD ,交线为AC ,⊥∴BC 平面ACFE(Ⅱ)当a EM 33=时,//AM 平面BDF , 在梯形ABCD 中,设N BD AC =⋂,连接FN ,则2:1:=NA CNa EM 33=,而a AC EF 3== 2:1:=∴MF EM , AN MF //∴,∴四边形ANFM 是平行四边形,NF AM //∴又⊂NF 平面BDF ,⊄AM 平面BDF //AM ∴平面BDF 分B(Ⅲ) 由(Ⅰ)知,以点C 为原点,CF CB CA ,, 所在直线为坐标轴,建立空间直角坐标系,则)0,0,0(C ,)0,,0(a B , )0,0,3(a A ,),0,0(a F ,),0,3(a a E),,0(a a FB -=→)0,0,3(a EF -=),2,23(a aa -= 平面BEF 的法向量)1,1,0(=,平面EFD 的法向量为n =(0,-2,1), 所以 1010||||,cos -=⋅>=<n m n m又∵二面角B-EF-D 的平面角为锐角,即D EF B --的的余弦值为1010.考点:空间向量与立体几何. 20.(1)x 2+=1;(2)实数m 不存在,理由见解析【解析】 试题分析:(1)运用椭圆的离心率公式和a ,b ,c 的关系,解方程可得a ,b ,进而得到椭圆方程;(2)设A (x 1,y 1),B (x 2,y 2),线段AB 的中点为M (x 0,y 0).联立直线方程和椭圆方程,运用韦达定理和中点坐标公式,求得M 的坐标,代入圆的方程,解方程可得m ,进而判断不存在.解:(1)由题意得e==,a 2=2b ,a 2﹣b 2=c 2,解得a=,b=c=1故椭圆的方程为x 2+=1;(2)设A (x 1,y 1),B (x 2,y 2), 线段AB 的中点为M (x 0,y 0). 联立直线y=x+m 与椭圆的方程得,即3x 2+2mx+m 2﹣2=0,△=(2m )2﹣4×3×(m 2﹣2)>0,即m 2<3, x 1+x 2=﹣,所以x 0==﹣,y 0=x 0+m=,即M (﹣,).又因为M 点在圆x 2+y 2=5上,可得(﹣)2+()2=5,解得m=±3与m 2<3矛盾.故实数m 不存在.考点:椭圆的简单性质.21.(1)2a e >;(2)证明见解析;(3)2. 【解析】试题分析:(1)()'xf x e a =-,当0a ≤时,函数单调递增,不符合题意;当0a >时,要函数图像与x 轴有两个交点,则需要极小值小于零且区间端点函数值大于零,由此可求得2a e >;(2)先将,A B 两点的坐标代入函数中,求出a 的值,然后求出f 的表达式,利用导数证明这个表达式是单调递减的,由此可证明0f <;(3)根据已知条件有122x x e+=,利用等腰三角形求出C 的坐标,代入函数解析式,化简后求得1(1)2a t --=(). 试题解析:(1)∵f (x )=e x﹣ax+a ,∴()f x '=e x﹣a ,若a≤0,则()f x '>0,则函数f (x )是单调增函数,这与题设矛盾. ∴a >0,令()f x '=0,则x=lna ,当()f x '<0时,x <lna ,f (x )单调减,当()f x '>0时,x >lna ,f (x )是单调增函数,于是当x=lna 时,f (x )取得极小值, ∵函数f (x )=e x﹣ax+a (a∈R)的图象与x 轴交于两点A (x 1,0),B (x 2,0)(x 1<x 2),∴f (lna )=a (2﹣lna )<0,即a >e 2,此时,存在1<lna ,f (1)=e >0,存在3lna >lna ,f (3lna )=a 3﹣3alna+a >a 3﹣3a 2+a >0,又由f (x )在(﹣∞,lna )及(lna ,+∞)上的单调性及曲线在R 上不间断,可知a >e 2为所求取值范围.(2)∵12120x x e ax a e ax a ⎧-+=⎪⎨-+=⎪⎩,∴两式相减得2121x x e e a x x -=-.记212x x s -=(0s >), 则()121221212221222x x x x x x s s x x e e ef e s e e x x s ++-+-⎛⎫⎡⎤'=-=--⎪⎣⎦-⎝⎭, 设g (s )=2s ﹣(e s﹣e ﹣s),则g'(s )=2﹣(e s+e ﹣s)<0,∴g (s )是单调减函数,则有g (s )<g (0)=0,而12202x x es +>,∴1202x x f +⎛⎫'< ⎪⎝⎭. 又f'(x )=e x﹣a是单调增函数,且122x x +>∴0f '<.(3)依题意有0i xi e ax a -+=,则()10i xi a x e -=>⇒x i >1(i=1,2).于是122x x e+=,在等腰三角形ABC 中,显然C=90°,∴()12012,2x x x x x +=∈, 即y 0=f (x 0)<0,由直角三角形斜边的中线性质,可知2102x x y -=-,∴21002x xy -+=,即()1221212022x x x x ae x x a +--+++=,∴()2112022x x ax x a --+++=,即()()()()21121111022x x ax x -----+-+=⎡⎤⎣⎦∵x 1﹣1≠0,则2211111110212x x x a x --⎛⎫--++= ⎪-⎝⎭t =, ∴()()22111022a at t t -++-=,即211a t =+-,∴(a ﹣1)(t ﹣1)=2. 考点:函数导数与不等式.【方法点晴】这是一个综合性很强的题目,解决含参数问题及不等式问题注意两个转化:利用导数解决含有参数的单调性问题可将问题转化为不等式恒成立问题,要注意分类讨论和数形结合思想的应用.将不等式的证明、方程根的个数的判定转化为函数的单调性问题处理.简单的分类讨论分类标准主要根据需要来制定. 22.(Ⅰ)证明见解析;(Ⅱ)证明见解析. 【解析】试题分析:(Ⅰ)连接,AB AC ,则PA PD =,故PAD PDA ∠=∠,根据弦切角等于同弦所对的圆周角,可退出 BE EC =,所以BE EC =;(Ⅱ)由切割线定理得:PC PB PA ⋅=2,由相交弦定理得:DC BD DE AD ⋅=⋅,代入已知条件,化简得22AD DE PB ⋅=. 试题解析:(Ⅰ)证明:连接AB ,AC ,由题设知PD PA =, 故PDA PAD ∠=∠因为:DCA DAC PDA ∠+∠=∠,PAB BAD PAD ∠+∠=∠, 由弦切角等于同弦所对的圆周角:PAB DCA ∠=∠,所以:BAD DAC ∠=∠,从而弧BE =弧EC ,因此:EC BE =OPED CBA(Ⅱ)由切割线定理得:PC PB PA ⋅=2,因为DC PD PA ==, 所以:PB DC 2=,PB BD =由相交弦定理得:DC BD DE AD ⋅=⋅ 所以:22PB DE AD =⋅ 考点:几何证明选讲.23.(1)224xy +=,20x +-=;(2)11π26⎛⎫ ⎪⎝⎭,,5π26⎛⎫ ⎪⎝⎭,,π23⎛⎫⎪⎝⎭,.【解析】试题分析:本题主要考查参数方程与普通方程的转化、极坐标方程与直角坐标方程的转化、点到直线的距离、两直线间的距离等基础知识,考查学生的分析问题解决问题的能力、转化能力、计算能力.第一问,先将曲线1C 的方程平方,利用平方关系,消去参数θ,得到曲线1C 的普通方程,将曲线2C 的方程利用两角和的正弦公式展开,再利用sin y ρθ=,cos x ρθ=代换,得到曲线2C 的直角坐标方程;第二问,结合第一问知,曲线1C 为圆,曲线2C 为直线,画出图形,通过图形分析得这三个点分别在平行于直线2C 的两条直线1l ,2l 上,通过直线的位置得到直线1l 和直线2l 的方程,再与圆的方程联立,得到三个点E 、F 、G的坐标.试题解析:(1)由题意,得2222223cos sin cos 3sin cos cos x y θθθθθθθθ⎧=++⎪⎨=+-⎪⎩,,∴曲线1C 的普通方程为224x y +=.∵曲线2C:π1sin sin cos 162ρθθρθ⎛⎫+=+= ⎪⎝⎭, ∴曲线2C的直角坐标方程为20x +-=.(2)∵曲线1C 为圆1C ,圆心1(0,0)C ,半径为2r =,曲线2C 为直线, ∴圆心C 1到直线2C 的距离1d =,∵圆1C 上恰好存在三个不同的点到直线2C 的距离相等, ∴这三个点分别在平行于直线2C 的两条直线1l ,2l 上, 如图所示,设1l 与圆1C 相交于点E ,F , 设2l 与圆1C 相切于点G ,∴直线1l ,2l 分别与直线2C 的距离为211r d -=-=, ∴1l:0x +=, 2l:40x -=.由2240x y x ⎧+=⎪⎨+=⎪⎩,,得1x y ⎧=⎪⎨=-⎪⎩或1x y ⎧=⎪⎨=⎪⎩,即1)E -,(1)F ;由22440x y x ⎧+=⎪⎨+-=⎪⎩,,得1x y =⎧⎪⎨=⎪⎩,即(1G , ∴E ,F ,G 这三个点的极坐标分别为11π26⎛⎫ ⎪⎝⎭,,5π26⎛⎫ ⎪⎝⎭,,π23⎛⎫ ⎪⎝⎭,.考点:参数方程与普通方程的转化、极坐标方程与直角坐标方程的转化、点到直线的距离、两直线间的距离. 【方法点睛】参数方程与普通方程的互化:把参数方程化为普通方程,需要根据其结构特征,选取适当的消参方法,常见的消参方法有:代入消参法;加减消参法;平方和(差)消参法;乘法消参法;混合消参法等.把曲线C 的普通方程(,)0F x y =化为参数方程的关键:一是适当选取参数;二是确保互化前后方程的等价性.注意方程中的参数的变化范围. 24.(Ⅰ)证明见解析;(Ⅱ)33(,][,)22-∞-⋃+∞. 【解析】试题分析:(Ⅰ)由于2222222()2()a b c a b c ab bc ca a b c ++=+++++≤++222222()3222a b b c c a ++++++=,所以a b +;(Ⅱ)由(Ⅰ)可知不等式|1||1|3x x -++≥,利用零点分段法去绝对值,可求得x 的取值范围是33(,][,)22-∞-⋃+∞.试题解析:(Ⅰ) 因为,,a b c R ∈,且2221a b c ++=,所以2222222222222222222()2()()2222()3a b b c c a a b c a b c ab bc ca a b c a b c a b c +++++=+++++≤+++++=+++++=所以2()3||a b c a b c ++≤⇒++≤a b c ==时取得等号方法2:由柯西不等式2222222()(111)()3||a b c a b c a b c ++≤++++=⇒++≤(Ⅱ)由(Ⅰ)可知若不等式|1||1|3x x -++≥,=++-=|1||1|x x y ⎪⎩⎪⎨⎧≥<<--≤-1211212x x x x x 从而解得33(,][,)22-∞-⋃+∞考点:不等式选讲.。
湖北省四校(曾都一中、枣阳一中、襄州一中、宜城一中)2017-2018学年高三上学期期中数学试卷(理科)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题意要求的.1.已知集合M={0,1,2},N={x|x=2a,a∈M},则集合M∩N=( )A.{0} B.{0,1} C.{1,2} D.{0,2}考点:交集及其运算.专题:计算题.分析:集合N的元素需要运用集合M的元素进行计算,经过计算得出M的元素,再求交集解答:解:由题意知,N={0,2,4},故M∩N={0,2},故选D.点评:此题考查学生交集的概念,属于基础题2.下列有关的叙述,错误的个数为( )①若p∨q为真,则p∧q为真②“x>5”是“x2﹣4x﹣5>0”的充分不必要条件③p:∃x∈R,使得x2+x﹣1<0,则¬p:∀x∈R,使得x2+x﹣1≥0④“若x2﹣3x+2=0,则x=1或x=2”的逆否为“若x≠1或x≠2,则x2﹣3x+2≠0”A.1 B.2 C.3 D.4考点:特称;全称.专题:常规题型;计算题.分析:直接利用复合的真假判断①的正误;利用充要条件判断②的正误;特称的否定判断③的正误;四种的逆否关系判断④的正误.解答:解:①若p∨q为真,p或q一真就真,而P∧Q为真,必须两个都是真,所以①不正确.②“x>5”是“x2﹣4x﹣5>0”的充分不必要条件,满足前者推出后者,对数后者推不出前者,所以②正确.③p:∃x∈R,使得x2+x﹣1<0,则﹣p:∀x∈R,使得x2+x﹣1≥0;满足特称的否定形式,所以③正确.④“若x2﹣3x+2=0,则x=1或x=2”的逆否为“若x≠1或x≠2,则x2﹣3x+2≠0”不满足逆否的形式,正确应为“若x≠1且x≠2,则x2﹣3x+2≠0”.所以只有②③正确.故选B.点评:本题考查真假的判断,充要条件关系的判断,的否定等知识,考查基本知识的应用.3.已知△ABC中,a=4,b=4,A=30°,则B等于( )A.30°B.30°或150°C.60°D.60°或120°考点:正弦定理.专题:解三角形.分析:△ABC中由条件利用正弦定理求得sinB的值,再根据及大边对大角求得B的值.解答:解:△ABC中,a=4,b=4,A=30°,由正弦定理可得,即=,解得sinB=.再由b>a,大边对大角可得B>A,∴B=60°或120°,故选D.点评:本题主要考查正弦定理的应用,以及大边对大角、根据三角函数的值求角,属于中档题.4.已知a>0,b>0且ab=1,则函数f(x)=a x与函数g(x)=﹣log b x的图象可能是( )A.B.C.D.考点:对数函数的图像与性质;指数函数的图像与性质.专题:常规题型;数形结合.分析:由条件ab=1化简g(x)的解析式,结合指数函数、对数函数的性质可得正确答案解答:解:∵ab=1,且a>0,b>0∴又所以f(x)与g(x)的底数相同,单调性相同故选B点评:本题考查指数函数与对数函数的图象,以及对数运算,属中档题5.若函数f(x)=x2+(a∈R),则下列结论正确的是( )A.∀a∈R,f(x)在(0,+∞)上是增函数B.∀a∈R,f(x)在(0,+∞)上是减函数C.∃a∈R,f(x)是偶函数D.∃a∈R,f(x)是奇函数考点:函数奇偶性的判断;函数单调性的判断与证明.专题:函数的性质及应用.分析:利用导数考查函数f(x)=x2+(a∈R)的单调性,可对A、B选项进行判断;考查函数f(x)=x2+(a∈R)的奇偶性,可对C、D选项的对错进行判断.解答:解析:∵f′(x)=2x﹣,故只有当a≤0时,f(x)在(0,+∞)上才是增函数,因此A、B不对,当a=0时,f(x)=x2是偶函数,因此C对,D不对.答案:C点评:本题主要考查了利用导数进行函数奇偶性的判断以及函数单调性的判断,属于基础题.6.函数y=Asin(ωx+φ)+B(A>0,φ>0,|φ|<,x∈R)的部分图象如图所示,则函数的表达式为( )A.B.C. D.考点:由y=Asin(ωx+φ)的部分图象确定其解析式.专题:计算题.分析:通过函数的表达式的形式结合图象,求出B,A,求出函数的周期,得到ω,函数经过(2,3)以及φ的范围求出φ的值,得到选项.解答:解:由题意可知A=2,B=1,T==6,ω==,因为函数经过(2,3)所以3=2sin(×2+φ)+1,|φ|<,φ=﹣,所以函数的表达式为;故选A.点评:本题考查三角函数的解析式的求法,函数图象的应用,注意周期的求法以及φ的求法是本题的关键,考查计算能力.7.如图中阴影部分的面积是( )A.B.C.D.考点:定积分在求面积中的应用.专题:计算题.分析:求阴影部分的面积,先要对阴影部分进行分割到三个象限内,分别对三部分进行积分求和即可.解答:解:直线y=2x与抛物线y=3﹣x2解得交点为(﹣3,﹣6)和(1,2)抛物线y=3﹣x2与x轴负半轴交点(﹣,0)设阴影部分面积为s,则==所以阴影部分的面积为,故选C.点评:本题考查定积分在求面积中的应用,解题是要注意分割,关键是要注意在x轴下方的部分积分为负(积分的几何意义强调代数和),属于基础题.8.若α∈(,π),则3cos2α=sin(﹣α),则sin2α的值为( )A.B.﹣C.D.﹣考点:三角函数的化简求值;同角三角函数基本关系的运用;两角和与差的余弦函数;两角和与差的正弦函数.专题:计算题;三角函数的图像与性质.分析:直接利用两角和与差的三角函数以及二倍角的余弦函数化简函数的表达式,利用平方关系式求出结果即可.解答:解:3cos2α=sin(﹣α),可得3cos2α=(sinα﹣cosα),3(cos2α﹣sin2α)═(sinα﹣cosα),∵α∈(,π),∴sinα﹣cosα≠0,上式化为:sinα+cosα=,两边平方可得1+sin2α=.∴sin2α=.故选:D.点评:本题主要考查二倍角的余弦函数,同角三角函数的基本关系的应用,属于中档题.9.如图,△ABC的外接圆的圆心为O,AB=2,AC=3,BC=,则•等于( )A.B.C.2 D.3考点:平面向量数量积的运算.专题:平面向量及应用.分析:作OD⊥AB于D,OE⊥AC于E,根据向量数量积的几何意义•=||||,•=||2,即可得到答案.解答:解:作OD⊥AB于D,OE⊥AC于E,∵⊙O中,OD⊥AB,∴AD=AB,因此,•=||||=||2=2,同理可得•=||2=,∴•=•﹣•=﹣2=.故选B.点评:本小题主要考查向量在几何中的应用等基础知识,解答关键是利用向量数量积的几何意义,属于中档题.10.已知函数f(x)满足﹣f(x)=f(﹣x),且当x∈(﹣∞,0)时,f(x)+xf′(x)<0成立,若a=•f,b=(ln2)•f(ln2),c=(log2)•f(log2),则a,b,c的大小关系是( ) A.a>b>c B.c>b>a C.c>a>b D.a>c>b考点:利用导数研究函数的单调性;导数的运算.专题:综合题;导数的综合应用.分析:令g(x)=xf(x),得g(x)是偶函数;由x∈(﹣∞,0)时,g′(x)=f(x)+xf′(x)<0,得函数g(x)在x∈(﹣∞,0)上单调递减,从而得g(x)在(0,+∞)上单调递增;再由∴函数g(x)在x∈(0,+∞)上单调递增.再由﹣=3>20.1>1>ln2>0,得a,b,c的大小.解答:解:∵﹣f(x)=f(﹣x),∴f(x)是奇函数,∴xf(x)是偶函数.设g(x)=xf(x),当x∈(﹣∞,0)时,g′(x)=f(x)+xf′(x)<0,∴函数g(x)在x∈(﹣∞,0)上单调递减,∴函数g(x)在x∈(0,+∞)上单调递增.∵﹣=3>20.1>1>ln2>0,∴g()>g>g(ln2),故选:C.点评:本题考查了函数的图象与奇偶性关系以及用导数研究函数的单调性等知识,解题的关键是构造函数g(x)并求导,属于易出错的题目.二.填空题:本大题共5小题,每小题5分,共25分.11.已知集合A={x|﹣1<x≤5},B={x|m﹣5<x≤2m+3},且A⊆B,则实数m的取值范围是.考点:集合的包含关系判断及应用.专题:集合.分析:根据子集的概念即可得:,解不等式即得m的取值范围.解答:解:由已知条件得:,解得1≤m≤4;∴m的取值范围是.故答案为:.点评:考查子集的概念,本题也可通过数轴求解.12.函数f(x)=xcosx在点(π,﹣π)处的切线方程是y=﹣x.考点:利用导数研究曲线上某点切线方程.专题:导数的综合应用.分析:求出原函数的导函数,得到函数在x=π时的导数值,然后由直线方程的点斜式得答案.解答:解:由f(x)=xcosx,得y′=cosx﹣xsinx,∴y′|x=π=﹣1.则函数f(x)=xcosx在点(π,﹣π)处的切线方程是y+π=﹣(x﹣π),即y=﹣x.故答案为:y=﹣x.点评:本题考查了利用导数研究过曲线上某点处的切线方程,过曲线上某点处的切线的斜率,就是函数在该点处的导数值,是中档题.13.已知是R上的减函数,则a的取值范围是.考点:对数函数的单调性与特殊点;函数单调性的性质.专题:计算题.分析:由函数f(x)为单调递减函数可得,g(x)=(3a﹣1)x+4a在(﹣∞,1],函数h(x)=log a x在(1,+∞)单调递减,且g(1)≥h(1),代入解不等式可求a的范围解答:解:由函数f(x)为单调递减函数可得,g(x)=(3a﹣1)x+4a在(﹣∞,1],函数h(x)=log a x在(1,+∞)单调递减,且g(1)≥h(1)∴∴故答案为:点评:本题主要考查了分段函数的单调性的应用,解题的关键主要应用一次函数与对数函数的单调性,要注意在端点值1处的处理.14.定义在(0,3)上的函数f(x)的图象如图所示=(f(x),0),=(cosx,0),那么不等式•<0的解集是(0,1)∪(,3).考点:平面向量的综合题.专题:平面向量及应用.分析:由已知得x∈(0,1)时f(x)<0,cosx>0;x∈时,cosx≥0,f(x)≥0;x∈(,3)时,f(x)>0,cosx<0.由此能求出=f(x)cosx<0的解集.解答:解:∵(0,3)上的函数f(x)的图象如图所示,=(f(x),0),=(cosx,0),∴x∈(0,1)时f(x)<0,cosx>0;x∈时,cosx≥0,f(x)≥0;x∈(,3)时,f(x)>0,cosx<0,∴=f(x)cosx<0的解集是(0,1)∪(,3).故答案为:(0,1)∪(,3).点评:本题考查不等式的解集的求法,是中档题,解题时要认真审题,注意余弦函数性质的合理运用.15.已知函数f(x)=xlnx+x2,且x0是函数f(x)的极值点.给出以下几个问题:①0<x0<;②x0>;③f(x0)+x0<0;④f(x0)+x0>0其中正确的是①③.(填出所有正确的序号)考点:利用导数研究函数的极值;利用导数研究函数的单调性.专题:计算题;导数的概念及应用.分析:求导数,利用零点存在定理,可判断①②;f(x0)+x0=x0lnx0+x02+x0=x0(lnx0+x0+1)=﹣x0<0,可判断③④.解答:解:∵函数f(x)=xlnx+x2,(x>0)∴f′(x)=lnx+1+2x,∴f′()=>0,∵x→0,f′(x)→﹣∞,∴0<x0<,即①正确,②不正确;∵lnx0+1+2x0=0∴f(x0)+x0=x0lnx0+x02+x0=x0(lnx0+x0+1)=﹣x0<0,即③正确,④不正确.故答案为:①③.点评:本题考查利用导数研究函数的极值,考查学生的计算能力,比较基础.三、解答题:本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤. 16.设p:函数f(x)=x2﹣ax﹣1在区间上单调递减;q:函数y=ln(x2+ax+1)的定义域是R.如果p或q为真,p且q为假,求a的取值范围.考点:复合的真假.专题:简易逻辑.分析:首先,判断p和q的真假,然后,结合条件:p或q为真,p且q为假,得到两个中,必有一个为假,一个为真,最后,求解得到结论.解答:解:p:函数f(x)=x2﹣ax﹣1在区间上单调递减,∴,∴a≥2,q:函数y=ln(x2+ax+1)的定义域是R,∴x2+ax+1>0,∴△=a2﹣4<0,解得:﹣2<a<2;∵p或q为真,p且q为假,∴两个中,必有一个为假,一个为真,当p为真,q为假时,有,解得:a≥2,即a∈17.已知向量,(1)当∥时,求2cos2x﹣sin2x的值;(2)求在上的值域.考点:正弦函数的定义域和值域;三角函数的恒等变换及化简求值.专题:计算题.分析:(1)利用向量平行的坐标运算,同角三角函数间的关系,得到tanx的值,然后化简2cos2x ﹣sin2x即可(2)先表示出在=(sin2x+),再根据x的范围求出函数f(x)的最大值及最小值.解答:解:(1)∵∥,∴,∴,∴.(2)∵,∴,∵,∴,∴,∴,∴函数f(x)的值域为.点评:本题主要考查平面向量的坐标运算.考查平面向量时经常和三角函数放到一起做小综合题.是2015届高考的热点问题.18.2014年国庆长假期间,各旅游景区人数发生“井喷”现象,给旅游区的管理提出了严峻的考验,国庆后,某旅游区管理部门对该区景点进一步改造升级,提高旅游增加值,经过市场调查,旅游增加值y万元与投入x万元之间满足:y=x﹣ax2﹣ln,x∈(1,t],当x=10时,y=9.2.(1)求y=f(x)的解析式;(2)求旅游增加值y取得最大值时对应的x值.考点:利用导数求闭区间上函数的最值;函数解析式的求解及常用方法.专题:计算题;应用题;导数的综合应用.分析:(1)由题意可知×10﹣a×102﹣ln 1=9.2,从而求出a的值,代入确定f(x)=x﹣﹣ln (x∈(1,t]);(2)求导,由导数确定函数的单调性,从而求最值.解答:解:(1)∵当x=10时,y=9.2,即×10﹣a×102﹣ln 1=9.2,解得a=.∴f(x)=x﹣﹣ln .(x∈(1,t])(2)对f(x)求导得.令f′(x)=0,解得x=50或x=1(舍去).当x∈(1,50)时,f′(x)>0,∴f(x)在(1,50)上是增函数;当x∈(50,+∞)时,f′(x)<0,∴f(x)在(50,+∞)上是减函数.∴当t>50时,当x∈(1,50)时,f′(x)>0,f(x)在(1,50)上是增函数;当x∈(50,t]时,f′(x)<0,f(x)在(50,t]上是减函数.∴当x=50时,y取得最大值;当t≤50时,当x∈(1,t)时,f′(x)>0,f(x)在(1,t)上是增函数,∴当x=t时,y取得最大值.点评:本题考查了学生将实际问题转化为数学问题的能力及导数的综合应用,同时考查了分类讨论的数学思想,属于难题.19.在ABC中,a,b,c为角A,B,C所对的边,sin2C+sinAsinB=sin2A+sin2B(1)求角C的大小;(2)若c=2,且sinC+sin(B﹣A)=2sin2A,求△ABC的面积.考点:余弦定理的应用;正弦定理.专题:解三角形.分析:(1)原式可化简为a2+b2﹣c2=ab,由余弦定理知cosC==,即可求得C=;(2)化简可得sinBcosA=2sinAcosA,分cosA=0或者cosA≠0讨论,由正弦定理、余弦定理和三角形面积公式即可得解.解答:解(1)已知等式sin2C+sinAsinB=sin2A+sin2B,利用正弦定理化简得:c2+ab=a2+b2,即a2+b2﹣c2=ab,∴cosC==,又0<C<π,∴C=;(2)∵sinC+sin(B﹣A)=sin(B+A)+sin(B﹣A)=2sin2A,∴sinBcosA=2sinAcosA,当cosA=0,即A=,此时b=,S△ABC==;当cosA≠0,得到sinB=2sinA,利用正弦定理得:b=2a,由余弦定理知c2=a2+b2﹣2abcosC,代入b=2a,c=2整理可得,即有a=.此时S△ABC==.点评:本题主要考察了正弦定理、余弦定理和三角形面积公式的综合应用,属于中档题.20.已知函数f(x)定义域是{x|x≠,k∈Z,x∈R},且f(x)+f(2﹣x)=0,f(x+1)=﹣,当<x<1时,f(x)=3x.(1)证明:f(x)为奇函数;(2)求f(x)在上的表达式;(3)是否存在正整数k,使得时,log3f(x)>x2﹣kx﹣2k有解,若存在求出k的值,若不存在说明理由.考点:其他不等式的解法;函数解析式的求解及常用方法;函数奇偶性的判断.专题:函数的性质及应用.分析:(1)由f(x+1)=﹣,可求得f(x)的周期为2,再由f(x)+f(2﹣x)=0可证f(x)+f(﹣x)=0,f(x)为奇函数;(2)﹣1<x<﹣时,<﹣x<1,利用f(﹣x)=3﹣x及f(x)=﹣f(﹣x),即可求得f(x)在上的表达式;(3)任取x∈(2k+,2k+1),则x﹣2k∈,利用,可得,从而可知不存在这样的k∈N+.解答:(1)证明:f(x+2)=f(x+1+1)=﹣=f(x),所以f(x)的周期为2…由f(x)+f(2﹣x)=0,得f(x)+f(﹣x)=0,所以f(x)为奇函数.…(2)解:﹣1<x<﹣时,<﹣x<1,则f(﹣x)=3﹣x…因为f(x)=﹣f(﹣x),所以当时,f(x)=3﹣x…(3)解:任取x∈(2k+,2k+1),则x﹣2k∈,所以f(x)=f(x﹣2k)=3x﹣2k…,.∴,∴.所以不存在这样的k∈N+…点评:本题考查函数的周期性与奇偶性的判定,考查函数解析式的求法及解不等式的能力,属于难题.21.已知函数f(x)=ln(x+1)+mx(m∈R).(Ⅰ)当x=1时,函数f(x)取得极大值,求实数m的值;(Ⅱ)已知结论:若函数f(x)=ln(x+1)+mx(m∈R)在区间(a,b)内存在导数,则存在x0∈(a,b),使得f′(x0)=.试用这个结论证明:若函数g(x)=(x﹣x1)+f(x1),(其中x2>x1>﹣1),则对任意x∈(x1,x2),都有f(x)>g(x);(Ⅲ)已知正数λ1,λ2满足λ1+λ2=1,求证:对任意的实数x1,x2,若x2>x1>﹣1时,都有f(λ1x1+λ2x2)>λ1f(x1)+λ2f(x2).考点:利用导数研究曲线上某点切线方程;利用导数研究函数的单调性.专题:导数的综合应用.分析:(Ⅰ)求出原函数的导函数,由f′(1)=0求出m值,再把m值代入原函数,验证原函数在x=1时取得极大值;(Ⅱ)构造辅助函数h(x)=f(x)﹣g(x),求导后得到.由已知函数f(x)在区间(x1,x2)上可导,则存在x0∈(x1,x2)使得.又,则=,然后由x在(x1,x0),(x0,x2)内h′(x)的符号判断其单调性,从而说明对任意x∈(x1,x2),都有f(x)>g(x);(Ⅲ)根据已知条件利用作差法得到λ1x1+λ2x2∈(x1,x2),然后结合(Ⅱ)的结论得答案.解答:(Ⅰ)解:由题设,函数的定义域为(﹣1,+∞),且,∵当x=1时,函数f(x)取得极大值,∴f′(1)=0,得,此时,当x∈(﹣1,1)时,f′(x)>0,函数f(x)在区间(﹣1,1)上单调递增;当x∈(1,+∞)时,f′(x)<0,函数f(x)在区间(1,+∞)上单调递减.∴函数f(x)在x=1处取得极大值时,;(Ⅱ)证明:令h(x)=f(x)﹣g(x)=f(x)﹣(x﹣x1)﹣f(x1),则.∵函数f(x)在区间(x1,x2)上可导,则根据结论可知:存在x0∈(x1,x2),使得.又,∴=,∴当x∈(x1,x0)时,h′(x)>0,从而h(x)单调递增,h(x)>h(x1)=0;当x∈(x0,x2)时,h′(x)<0,从而h(x)单调递减,h(x)>h(x2)=0;故对任意x∈(x1,x2),都有f(x)>g(x);(Ⅲ)证明:∵λ1+λ2=1,且λ1>0,λ2>0,x2>x1>﹣1,∴λ1x1+λ2x2﹣x1=x1(λ1﹣1)+λ2x2=λ2(x2﹣x1)>0,∴λ1x1+λ2x2>x1,同理λ1x1+λ2x2<x2,∴λ1x1+λ2x2∈(x1,x2).由(Ⅱ)知对任意x∈(x1,x2),都有f(x)>g(x),从而f(λ1x1+λ2x2)>=λ1f(x1)+λ2f(x2).点评:本题考查利用导数研究函数的单调性,考查了学生的推理论证能力和逻辑思维能力,构造函数并由函数的导函数的符号判断函数在不同区间上的单调性是解答该题的关键,是难度较大的题目.。
襄阳市优质高中2017届高三联考试题数学(理科)第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,有且只有一项符合题目要求.1.已知集合{}{}2|60,|31x A x x x B x =+-<=>,则()R A C B = A.(]3,1- B. ()1,2 C. (]3,0- D.[)1,22.已知1i +是关于x 的方程()220,x px q p q R ++=∈的一个根,则p qi +B. C.3.设向量()(),2,1,1a m b m ==+,且a 与b 的方向相反,则实数m 的值为A. 2-B. 1C. 2-或1D.m 的值不存在 4.下列说法错误的是( )A. 若2:,10p x R x x ∃∈-+≥,则2:,10p x R x x ⌝∀∈-+< B. “1sin 2θ=”是"30150"θθ== 或的充分不必要条件 C. 命题“若0a =,则0ab =”的否命题是“若0a ≠,则0ab ≠” D.已知2:,cos 1,:,20p x R x q x R x x ∃∈=∀∈-+>,则()""p q ∧⌝为假命题5.在平面直角坐标系xoy 中,双曲线的中心在原点,焦点在y 轴上,一条渐近线与直线210x y +-=垂直,则双曲线的离心率为26.已知121,,,9a a --成等差数列,1239,,,,1b b b --成等比数列,则()221b a a -的值为A. 8B. 8-C. 8±D.98±7.按如下程序框图,若输出结果为170,则判断框内应补充的条件是A. 5i ≥B. 7i ≥C. 9i ≥D. 11i ≥8.已知某几何体的三视图如图所示(正视图的弧线是半圆),根据图中标出的数据,这个几何体的表面积是A. 36288π+B. 36216π+C. 33288π+D. 33216π+ 9.已知函数()2ln xf x x x=-,则函数()y f x =的大致图象为10.已知1203x dx λ=⎰,在矩形ABCD 中,2,1AB AD ==,点P 为矩形ABCD 内一点,则使得AP AC λ⋅≥的概率为A.18 B. 14 C. 34 D.7811.已知函数()()()()()sin ,0cos ,0x x f x x x αβ+≤⎧⎪=⎨->⎪⎩是偶函数,则下列结论可能成立的是A. ,48ππαβ==B. 2,36ππαβ==C. ,36ππαβ==D. 52,63ππαβ==12.抛物线()220y px p =>的焦点为F,准线为l ,A,B 是抛物线上的两个动点,且满足23AFB π∠=,设线段AB 的中点M 在l 上的投影为N ,则MN AB 的最大值是第Ⅰ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题5分,共20分.13.从某校高三年级随机抽取一个班,对该班50名学生的高校招生体检表中的视力情况进行统计,其频率分布直方图如图所示.若某高校A 专业对视力的要求在0.9以上,则该班学生中能报A 专业的人数为 .14.已知函数()()sin 0,02f x x πωϕωϕ⎛⎫=+><< ⎪⎝⎭的图象经过点10,2⎛⎫⎪⎝⎭,且相邻两条对称轴的距离为2π,则函数()f x 在[]0,π上的单调递减区间为 .15.将三项式()21nx x ++展开,当0,1,2,3,n = 时,得到以下等式:()0211x x ++=()12211x x x x ++=++()2243212321x x x x x x ++=++++()32654321367631xx x x x x x x ++=++++++观察多项式系数之间的关系,可以仿照杨辉三角构造如图所示的广义杨辉三角形,其构造方法为:第0行为1,以下各行每个数是它正头顶上与左右两肩上3个数(不足3个数的,缺少的数记为0)的和,第k 行共有21k +个数,若()()5211x x ax +++在的展开式中,7x项的系数为75,则实数a 的值为 .16.若11a =,对任意的n N *∈,都有0n a >,且()22112120n n n n na n a a a ++---=.设()M x 表示整数x 的个位数字,则()2017M a = .三、解答题:本大题共6小题,共70分.解答应写出必要的文字说明或推理、验算过程. 17.(本题满分12分)在ABC ∆中,角,,A B C 的的对边分别为,,a b c (1)若,,a b c 成等比数列,12cos 13B =,求cos cos sin sin A C A C+的值; (2)若,,A B C 成等差数列,且2b =,设A α=,ABC ∆的周长为l ,求()l f α=的最大值.18.(本题满分12分)近年来我国电子商务行业迎来蓬勃发展新机遇,2016年双11期间,某网络购物平台推销了A,B,C 三种商品,某网购者决定抢购这三种商品,假设该名网购者都参与了A,B,C 三种商品的抢购,抢购成功与否相互独立,且不重复抢购同一种商品,对A,B,C三件商品抢购成功的概率分别为()1,,4a b a b >,已知三件商品都被抢购成功的概率为124,至少有一件商品被抢购成功的概率为34.(1)求,a b 的值;(2)若购物平台准备对抢购成功的A,B,C 三件商品进行优惠减免,A 商品抢购成功减免2百元,B 商品抢购成功减免4比百元,C 商品抢购成功减免6百元.求该名网购者获得减免总金额(单位:百元)的分别列和数学期望.19.(本题满分12分)如图,在四棱锥P ABCD -中,1//,90,.2AD BC ADC PAB BC CD AD ∠=∠===E 为棱AD 的中点,异面直线PA 与CD 所成的角为90 .(1)在平面PAB 内找一点M ,使得直线//CM 平面PBE ,并说明理由; (2)若二面角P CD A --的大小为45 ,求二面角P CE B --的余弦值.20.(本题满分12分)已知椭圆()2222:10x y C a b a b+=>>的一个焦点为()3,0F ,其左顶点A 在圆22:12O x y +=上. (1)求椭圆C 的方程;(2)直线():30l x my m =+≠交椭圆C 于,M N 两点,设点N 关于x 轴的对称点为1N(点1N 与点M 不重合),且直线1N M 与x 轴的交于点P ,试问PMN ∆的面积是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由.21.(本题满分12分)已知函数()()()()22ln ,.g x a x a R f x x g x x=-∈=+ (1)试判断()g x 的单调性;(2)若()f x 在区间()0,1上有极值,求实数a 的取值范围;(3)当0a >时,若()f x 有唯一的零点0x ,试求[]0x 的值.(注:[]x 为取整函数,表示不超过x 的最大整数,如[][][]0.30,2.62, 1.42==-=-;以下数据供参考:ln 20.6931,ln 3 1.099,ln 5 1.609,ln 7 1.946====)请考试在第(22)、(23)两题中任选一题作答,如果多选,则按所做的第一题记分. 22.(本题满分10分)选修4-4:坐标系与参数方程在直角坐标系xoy 中,直线的参数方程为1cos sin x t t t αα=+⎧⎨=⎩(t 为参数),以原点O 为极点,x 轴的非负半轴为极轴建立极坐标系,曲线C 的极坐标方程为.4πρθ⎛⎫=+ ⎪⎝⎭(1)求曲线C 的直角坐标方程,并指出其表示何种曲线;(2)设直线l 与曲线C 交于,A B 两点,若点P 的直角坐标为()1,0,试求当4πα=时,PA PB +的值.22.(本题满分10分)选修4-5:不等式选讲 已知函数() 1.f x x x =++(1) 若x R ∀∈,恒有()f x λ≥成立,求实数λ的取值范围;(2) 若m R ∃∈,使得()220m m f t ++=成立,试求实数t 的取值范围.襄阳市优质高中2017届高三联考试题数学(理科)(参考答案)13、20 14、[,]6315、1 16、6 17、解:(Ⅰ)135sin ,1312cos =∴=B B 由c b a ,,成等比数列,得ac b =2. …………………………………2分 又由正弦定理,得C A B sin sin sin 2=C A A C C A A C A C C C A A sin sin )sin(sin sin sin cos cos sin sin cos sin cos +=+=+∴B B2sin sin =………………4分 513sin 1==B ………………6分 (Ⅱ)由角C B A ,,成等差数列,得3π=B .又2=b ,由正弦定理C c B b A a sin sin sin ==,及αππα-=+-==32)(,B A C A 得)32sin(3sin 2sin αππα-==c a∴)32sin(34,sin 34απα-==c a ………………8分 ∴ABC ∆周长)32sin(342sin 34)(απαα-++=++==c b a f l 2)sin 21cos 23(sin 34+++=ααα 2)cos 23sin 23(34++=αα 2)cos 21sin 23(334++=αα2)6sin(4++=πα ………………10分∵320πα<< ∴当26ππα=+即3πα=时624)3(max =+==πf l所以ABC ∆周长)(αf l =的最大值为6. ………………12分18、解:(Ⅰ)由题意,得⎪⎩⎪⎨⎧=----=43)1)(411)(1(124141b a ab ,因为b a >,解得⎪⎩⎪⎨⎧==3121b a . …………………4分 (Ⅱ)由题意,令网购者获得减免的总金额为随机变量X (单位:百元), 则X 的值可以为0,2,4,6,8,10,12. …………………5分 而41433221)0(=⨯⨯==X P ;41433221)2(=⨯⨯==X P ; 81433121)4(=⨯⨯==X P ;245433121413221)6(=⨯⨯+⨯⨯==X P ; 121413221)8(=⨯⨯==X P ;241413121)10(=⨯⨯==X P ; 241413121)12(=⨯⨯==X P . …………………9分 所以X 的分布列为:于是有623241122411012182456814412410)(=⨯+⨯+⨯+⨯+⨯+⨯+⨯=X E …12分 19、解:(I )延长AB 交直线CD 于点M , ∵点E 为AD 的中点,∴AD ED AE 21==, ∵AD CD BC 21==,∴BC ED =, ∵AD ∥BC ,即ED ∥BC .∴四边形BCDE 为平行四边形,即EB ∥CD . ∵M CD AB =⋂,∴CD M ∈,∴CM ∥BE ,∵⊂BE 平面PBE ,CM ⊄PBE ∴CM ∥平面PBE , …………4分 ∵AB M ∈,⊂AB 平面PAB ,∴∈M 平面PAB ,故在平面PAB 内可以找到一点)(CD AB M M ⋂=,使得直线CM ∥平面PBE ………………………6分(II )法一、如图所示,∵︒=∠=∠90PAB ADC ,异面直线PA 与CD 所成的角为90︒,即AP ⊥CD 又M CD AB =⋂,∴AP ⊥平面ABCD . 又90ADC ∠=︒即CD ⊥AD ∴CD ⊥平面PAD ∴CD ⊥PD .因此PDA ∠是二面角A CD P --的平面角,其大小为45︒.∴AD PA =. ……………………8分 建立如图所示的空间直角坐标系,不妨设2=AD ,则121===AD CD BC . ∴)2,0,0(P ,)0,1,0(E ,)0,2,1(-C ,)0,1,1(-B∴(1,1,0)EC =- ,PE (0,1,2)=-,(0,0,2)AP =,易知平面BCE 的法向量为1(0,0,2)n AP ==设平面PCE 的法向量为2(,,)n x y z = ,则220n PE n EC ⎧⋅=⎪⎨⋅=⎪⎩ ,可得:⎩⎨⎧=+-=-002y x z y . 令2=y ,则1,2==z x ,∴2(2,2,1)n =. …………………………10分设二面角B CE P --的平面角为,则12cos |cos ,|n n θ=<> =1212||||||n n n n ⋅=⋅13=. ∴ 二面角B CE P --的余弦值为31. ………………12分 法二、同法一可得AP ⊥平面ABCD , AD PA = 过A 点作AH CE ⊥交CE 的延长线于H ,连接PH ∵AP ⊥平面ABCD CE ⊂平面ABCD∴AP CE ⊥ 又AH CE ⊥,∴CE ⊥平面PAH∴CE PH ⊥∴PHA ∠即为二面角B CE P --的平面角.……………10分 在Rt PAH ∆中1cos 45o AH =⨯=2PA =∴PH ==∴1cos 3PHA ∠==∴ 二面角B CE P --的余弦值为31. ………………12分 20、解:(Ⅰ )∵椭圆C 的左顶点A 在圆2212x y +=上,∴32=a又∵椭圆的一个焦点为)0,3(F ,∴3=c ∴3222=-=c a b∴椭圆C 的方程为131222=+y x ………………4分(Ⅱ )设),(),,(2211y x N y x M ,则直线与椭圆C 方程联立223,1,123x my x y =+⎧⎪⎨+=⎪⎩化简并整理得036)4(22=-++my y m ,∴12264m y y m +=-+,12234y y m =-+ ………………5分 由题设知),(221y x N - ∴直线NM 的方程为)(121211x x x x y y y y --+=- 令0=y 得211221211*********)3()3()(y y y my y my y y y x y x y y x x y x x ++++=++=+--=43464622=++-+-=m m m m∴点)0,4(P ………………7分 21221214)(121||||21y y y y y y PF S PMN -+⨯⨯=-⋅=∆222222)4(132)43(4)46(21++=+--+-=m m m m m ………………9分 166132619)1(213261911322222=+=+++≤++++=m m m m(当且仅当19122+=+m m 即2±=m 时等号成立) ∴PMN ∆的面积存在最大值,最大值为1. ………………12分21、解:(Ⅰ))0(ln 2)(>-=x x a x x g ,2222)(x ax x a x x g +-=--=' ①当0≥a 时,0)(<'x g ,∴函数)(x g 在区间),0(+∞上单调递减;②当0<a 时,由0)(='x g ,解得ax 2-= 当)2,0(ax -∈时,0)(<'x g ,此时函数g (x )单调递减;当),2(+∞-∈a x 时,0)(>'x g ,此时函数)(x g 单调递增. ………………3分(Ⅱ))()(2x g x x f +=,其定义域为),0(+∞. 2322)(2)(xax x x g x x f --='+=', ………………4分 令),0(,22)(3+∞∈--=x ax x x h ,a x x h -='26)(,当0<a 时,0)(>'x h 恒成立,∴)(x h 在),0(+∞上为增函数,又0)1(,02)0(>-=<-=a h h ,∴函数)(x h 在)1,0(内至少存在一个变号零点0x ,且0x 也是)(x f '的变号零点,此时)(x f 在区间)1,0(内有极值. ………………5分当0≥a 时,0)1(2)(3<--=ax x x h ,即)1,0(∈x 时,0)(<'x f 恒成立, ∴函数)(x f 在)1,0(单调递减,此时函数)(x f 无极值 …………………6分 综上可得:)(x f 在区间)1,0(内有极值时实数的取值范围是)0,(-∞ ……7分(Ⅲ)∵0>a 时,函数)(x f 的定义域为),0(+∞由(Ⅱ)可知:3)1(=f 知)1,0(∈x 时,0)(>x f ,∴10>x .又)(x f 在区间),1(+∞上只有一个极小值点记为1x ,且),1(1x x ∈时,0)(<'x f ,函数)(x f 单调递减,),(1+∞∈x x 时,0)(>'x f ,函数)(x f 单调递增,由题意可知:1x 即为0x . …………………………9分∴⎩⎨⎧='=0)(0)(00x f x f ,∴⎪⎩⎪⎨⎧=--=-+0220ln 20300020ax x x a x x 消去可得:131ln 2300-+=x x , 即0)131(ln 2300=-+-x x 令)1(131ln 2)(3>---=x x x x t ,则)(x t 在区间),1(+∞上单调递增 又∵035173110727316973.0212312ln 2)2(3<-=--⨯<--⨯=---=t 026232631122631099.1213313ln 2)3(3>=--⨯>--⨯=---=t 由零点存在性定理知 0)3(,0)2(><t t∴320<<x ∴2][0=x . ………………12分22、解:(Ⅰ)曲线2C :)4cos(22πθρ+=,可以化为)4cos(222πθρρ+=,θρθρρsin 2cos 22-=,因此,曲线C 的直角坐标方程为02222=+-+y x y x ………………4分它表示以)1,1(-为圆心、2为半径的圆. ………………5分 (Ⅱ)法一:当4πα=时,直线的参数方程为⎪⎪⎩⎪⎪⎨⎧=+=t y t x 22221(为参数) 点P )0,1(在直线上,且在圆C 内,把⎪⎪⎩⎪⎪⎨⎧=+=t y t x 22221 代入02222=+-+y x y x中得210t -= ………………6分设两个实数根为21,t t ,则B A ,两点所对应的参数为21,t t ,则12t t +=,121-=t t ………………8分 64)(||||||2122121=-+=-=+∴t t t t t t PB PA ………………10分法二:由(Ⅰ)知圆的标准方程为2)1()1(22=++-y x即圆心C 的坐标为)1,1(-半径为2,点P )0,1(在直线01:=-+y x l 上,且在圆C 内 ||||||AB PB PA =+∴ ………………6分圆心C 到直线的距离2211|1)1(1|22=+--+=d ………………8分 所以弦||AB 的长满足621222||22=-=-=d r AB 6||||=+∴PB PA ………………10分23、解:(Ⅰ)由1|)1(||1|||)(=+-≥++=x x x x x f 知,1)(min =x f欲使R x ∈∀,恒有λ≥)(x f 成立,则需满足min )(x f ≤λ……………4分所以实数λ的取值范围为]1,(-∞ ………………5分(Ⅱ)由题意得)0()01()1(12112|1|||)(>≤≤--<⎪⎩⎪⎨⎧+--=++=t t t t t t t t f ……………6分,R m ∈∃使得0)(22=++t f m m 成立即有0)(44≥-=∆t f 1)(≤∴t f ……………8分又1)(≤t f 可等价转化为⎩⎨⎧≤---<1121t t 或⎩⎨⎧≤≤≤-1101t 或⎩⎨⎧≤+>1120t t所以实数的取值范围为]0,1[- ……………10分。
【关键字】数学—2017学年上学期高三期中考试时间:120分钟分值:150分命题牵头学校:枣阳一中命题学校:曾都一中枣阳一中襄州一中宜城一中命题教师:第Ⅰ卷(选择题共60分)一、选择题(本大题共12小题,每小题5分,共60分.请把答案填在答题卷上)1.设,,则图中阴影部分表示的集合为()A.B.C.D.2.已知,,那么有()A.B.C.D.3.平面向量满足,,,则向量与夹角的余弦值为()A. B. C. D.4.角的终边在第一象限,则的取值集合为( )A.B.C.D.5.设函数,则是()A. 奇函数,且在上是增函数B. 奇函数,且在上是减函数C. 偶函数,且在上是增函数D. 偶函数,且在上是减函数6.先将函数的图像纵坐标不变,横坐标压缩为原来一半,再将得到的图像向左平移个单位,则所得图像的对称轴可以为()A.B.C.D.7.下列命题的叙述:①若,则②三角形三边的比是,则最大内角为③若,则④是的充分不必要条件,其中真命题的个数为()A.1 B..3 D.48. 已知函数,则的图象大致为()A . B. C . D.9.为锐角,,则()A.B.C.D.10.已知函数的定义域为.当时, ;当 时, ;当时, ,则=( ) A .-2 B ..0D .211.在中,分别为内角所对的边,若,则的最大 值为( )A .4B .C .D .2 12.奇函数定义域为,其导函数是.当时,有 ,则关于的不等式的解集为( ) A . B . C .D .第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4小题,每小题5分,共20分.请把答案填在答题卷上) 13.已知,,向量在方向上的投影为,则= . 14.已知函数,且,则 .15.若点P 是曲线上任意一点,则点P 到直线的最小距离为_______.16.若函数=x3+ax2+bx +c 有极值点,,则关于x 的方 程 +的不同实数根的个数是 .三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分10分)设实数满足:(), 实数满足:,若,且为真,求实数的取值范围; 是的充分不必要条件,求实数的取值范围. 18.(本小题满分12分)已知向量cos m ⎛= ,3sin n ⎛= ,函数()1f x m n =⋅+ ()I 若,求()x f 的最小值及对应的x 的值; ()II 若,求sin x 的值.19.(本小题满分12 ()I 求()f x 的单调区间;()II 关于x 的不等式21m ->()f x 有解,求m 的取值范围.20.(本小题满分12分)高速公路为人民出行带来极大便利,但由于高速上车速快,一旦出事故往往导致生命或财产的重大损失,我国高速公路最高限速120/km h ,最低限速60/km h .()I 当驾驶员以120千米../.小时..速度驾车行驶,驾驶员发现前方有事故,以原车速行驶......大约需要0.9(:t 秒.,()v t :米./.秒)..规律变化直到完全停止,求驾驶员从发现前方事故到车辆完全停止时,车辆行驶的距离;()ln5 1.6=取()II 国庆期间,高速免小车通行费,某人从襄阳到曾都自驾游,只需承担油费.已知每小时油费w ()元与车速有关,上为匀速行驶,高速上共行驶了S 千米,当高速上行驶的这S 千米油费最少时,求速度v 应为多少/km h ?21.(本小题满分12分)ABC ∆中,角C B A ,,的对边分别为c b a ,,,,D 为BC 边中点,1=AD()I 求的值;()II 求ABC ∆的面积22.(本小题满分12 ()I 当1a ≤时,求()f x 的单调区间;()II 当(0,+)x ∈∞时,()y f x '=的图象恒在32(1)y ax x a x =+--的图象上方,求a 的取值范围.2016—2017学年上学期高三期中考试 数学试题(理科)参考答案分)二、填空题(每题5分,共20分) 三、解答题(共70分)17.解:()I ()03:><<a a x a p …(1分) …(2分) q p ∧ 为真 p ∴真且q 真 …(3分),即实数x 的取值范围为5分) ()II q 是p 的充分不必要条件,记 则A 是B 的真子集 …(7分)…(9分),即a 的取值范围为 …(10分) 18. …(2分) …(3分)…(4分),即π=x 时,()1min =x f …(6分)…(7分)…(8分)10分)…(12分) 19.解:()I ∵,∴()()0f x f x +-=恒成立…(1分) ()20a b x a ∴++=恒成立,0,0a b ∴== …(3分)…(4分) 由'()0f x >,得-1<x <1;由'()0f x <,得x >1或x <-1 …(5分) 故函数()f x 的增区间为()1,1-,()f x 的减区间为(,1)(1,)-∞-+∞和…(6分) ()II ∵2m —1>()f x 有解,∴2m —1>min ()f x 即可 …(7分) 当()()()0,0;0,00;00x f x x f x f x >>==<<时当时当时, …(8分) 由()I 知()f x 在(),1-∞-上为减函数,在()1,0-上为增函数()()min 11f x f ∴=-=- …(10分) ∴2m —1>1-,∴m >0 …(12分) 20.解:()I 令,解得()45t t ==-秒或秒舍 …(2分)从发现前方事故到车辆完全停止行驶距离为ss =…(4分)=70()米 …(6分) ()II 设高速上油费总额为y ,速度v 满足60120v ≤≤,则 …(7分)…(9分),100v=时取等号 …(10分)由[]10060120v=∈,,即100/v km h =时,高速上油费最少 …(12分)21.解:()I ABC ∆中…(2分)4分) 25…(6分) ()II D 为BC 中点,2AD AB AC ∴=+ …(7分)22242AD AB AB AC AC =+⋅+即…(8分) 由()I 知②,联立①②解得2=b ,…(10分)…(12分)(注:用其他方法求解酌情给分.............) 22.解:()I ()()x x f x xe ax x e a '=-=- …(1分) 当0a ≤时,0x e a ->,∴(,0)x ∈-∞时,()0f x '<,()f x 单调递减(0,)x ∈+∞时,()0f x '>,()f x 单调递增 …(2分)当01a <≤时,令()0f x '=得0ln x x a ==或 (i) 当01a <<时,ln 0a <,故:(,ln )x a ∈-∞时,()0f x '>,()f x 单调递增, (ln ,0)x a ∈ 时,()0f x '<,()f x 单调递减,(0,)x ∈+∞时,()0f x '>,()f x 单调递增; …(4分) (ii) 当1a =时,ln 0a =, ()(1)xxf x xe ax x e '=-=-0≥恒成立, ()f x 在(,)-∞+∞上单调递增,无减区间; …(5分) 综上,当0a ≤时,()f x 的单调增区间是(0,)+∞,单调减区间是(,0)-∞;当01a <<时,()f x 的单调增区间是(,ln )a -∞(0,)+∞和,单调减区间是(ln ,0)a ;当1a =时,()f x 的单调增区间是(,)-∞+∞,无减区间. …(6分)()II 由()I 知()xf x xe ax '=-当(0,+)x ∈∞时,()y f x '=的图象恒在32(1)y ax x a x =+--的图象上方 即32(1)xxe ax ax x a x ->+--对(0,+)x ∈∞恒成立即 210x e ax x --->对(0,+)x ∈∞恒成立 …(7分)记 2()1x g x e ax x =--- (0)x >,∴()()21xg x e ax h x '=--=()'2xh x e a ∴=- …(8分)(i) 时,()'20xh x e a =->恒成立,()g x '在(0,)+∞上单调递增, ∴()'(0)0g x g '>= ∴()g x 在(0,)+∞上单调递增∴()(0)0g x g >=,符合题意; …(10分) (ii) 时,令()'0h x =得ln(2)x a = (0,ln(2))x a ∴∈时,()'0h x <,∴()g x '在(0,ln(2))a 上单调递减 ∴(0,ln(2))x a ∈时,()'(0)0g x g '<= ∴()g x 在(0,ln(2))a 上单调递减, ∴ (0,ln(2))x a ∈时,()(0)0g x g <=,不符合题意 …(11分) 综上可得a 的取值范围是 …(12分)此文档是由网络收集并进行重新排版整理.word 可编辑版本!。
湖北省襄阳市第四中学等八校2017届高三数学1月联考试题理(扫描版)襄阳市优质高中2017届高三联考试题数学(理科)(参考答案)13、20 14、[,]63 15、1 16、617、解:(Ⅰ)135sin ,1312cos =∴=B B 由c b a ,,成等比数列,得ac b =2. …………………………………2分又由正弦定理,得C A B sin sin sin 2=CA A C C A A C A C C C A A sin sin )sin(sin sin sin cos cos sin sin cos sin cos +=+=+∴ BB 2sin sin = ………………4分 513sin 1==B ………………6分 (Ⅱ)由角C B A ,,成等差数列,得3π=B .又2=b ,由正弦定理C c B b A a s i n s i n s i n ==,及αππα-=+-==32)(,B A C A 得)32sin(3sin2sin αππα-==c a ∴)32sin(34,sin 34απα-==c a ………………8分 ∴ABC ∆周长)32sin(342sin 34)(απαα-++=++==c b a f l 2)sin 21cos 23(sin 34+++=ααα 2)cos 23sin 23(34++=αα 2)cos 21sin 23(334++=αα2)6sin(4++=πα ………………10分∵320πα<< ∴当26ππα=+即3πα=时624)3(max =+==πf l 所以ABC ∆周长)(αf l =的最大值为6. ………………12分18、解:(Ⅰ)由题意,得⎪⎩⎪⎨⎧=----=43)1)(411)(1(124141b a ab , 因为b a >,解得⎪⎩⎪⎨⎧==3121b a . …………………4分 (Ⅱ)由题意,令网购者获得减免的总金额为随机变量X (单位:百元),则X 的值可以为0,2,4,6,8,10,12. …………………5分 而41433221)0(=⨯⨯==X P ;41433221)2(=⨯⨯==X P ; 81433121)4(=⨯⨯==X P ;245433121413221)6(=⨯⨯+⨯⨯==X P ; 121413221)8(=⨯⨯==X P ;241413121)10(=⨯⨯==X P ; 241413121)12(=⨯⨯==X P . …………………9分 所以X 的分布列为:于是有 623241122411012182456814412410)(=⨯+⨯+⨯+⨯+⨯+⨯+⨯=X E …12分 19、解:(I )延长AB 交直线CD 于点M , ∵点E 为AD 的中点,∴AD ED AE 21==, ∵AD CD BC 21==,∴BC ED =, ∵AD ∥BC ,即ED ∥BC .∴四边形BCDE 为平行四边形,即EB ∥CD .∵M CD AB =⋂,∴CD M ∈,∴CM ∥BE ,∵⊂BE 平面PBE ,CM ⊄PBE ∴CM ∥平面PBE , …………4分∵AB M ∈,⊂AB 平面PAB ,∴∈M 平面PAB ,故在平面PAB 内可以找到一点)(CD AB M M ⋂=,使得直线CM ∥平面PBE ………………………6分 (II )法一、如图所示,∵︒=∠=∠90PAB ADC ,异面直线PA 与CD 所成的角为90︒,即AP ⊥CD 又M CD AB =⋂,∴AP ⊥平面ABCD .又90ADC ∠=︒即CD ⊥AD∴CD ⊥平面PAD∴CD ⊥PD .因此PDA ∠是二面角A CD P --的平面角,其大小为45︒.∴AD PA =. ……………………8分 建立如图所示的空间直角坐标系,不妨设2=AD ,则121===AD CD BC . ∴)2,0,0(P ,)0,1,0(E ,)0,2,1(-C ,)0,1,1(-B∴(1,1,0)EC =-, PE (0,1,2)=-,(0,0,2)AP =,易知平面BCE 的法向量为1(0,0,2)n AP == 设平面PCE 的法向量为2(,,)n x y z =,则2200n PE n EC ⎧⋅=⎪⎨⋅=⎪⎩,可得:⎩⎨⎧=+-=-002y x z y . 令2=y ,则1,2==z x ,∴2(2,2,1)n =. …………………………10分设二面角B CE P --的平面角为θ,则12cos |cos ,|n n θ=<>=1212||||||n n n n ⋅=⋅13=. ∴ 二面角B CE P --的余弦值为31. ………………12分 法二、同法一可得AP ⊥平面ABCD , AD PA =过A 点作AH CE ⊥交CE 的延长线于H ,连接PH∵AP ⊥平面ABCD CE ⊂平面ABCD∴AP CE ⊥ 又AH CE ⊥,∴CE ⊥平面PAH∴CE PH ⊥∴PHA ∠即为二面角B CE P --的平面角.……………10分在Rt PAH ∆中1cos 45o AH =⨯= 2PA =∴2PH ==∴1cos 32PHA ∠== ∴ 二面角B CE P --的余弦值为31. ………………12分 20、解:(Ⅰ )∵椭圆C 的左顶点A 在圆2212x y +=上,∴32=a 又∵椭圆的一个焦点为)0,3(F ,∴3=c ∴3222=-=c a b∴椭圆C 的方程为131222=+y x ………………4分 (Ⅱ )设),(),,(2211y x N y x M ,则直线l 与椭圆C 方程联立223,1,123x my x y =+⎧⎪⎨+=⎪⎩化简并整理得036)4(22=-++my y m , ∴12264m y y m +=-+,12234y y m =-+ ………………5分 由题设知),(221y x N - ∴直线NM 的方程为)(121211x x x x y y y y --+=- 令0=y 得211221211221212111)3()3()(y y y my y my y y y x y x y y x x y x x ++++=++=+--= 43464622=++-+-=m mm m∴点)0,4(P ………………7分 21221214)(121||||21y y y y y y PF S PMN -+⨯⨯=-⋅=∆222222)4(132)43(4)46(21++=+--+-=m m m m m ………………9分 166132619)1(213261911322222=+=+++≤++++=m m m m (当且仅当19122+=+m m 即2±=m 时等号成立) ∴PMN ∆的面积存在最大值,最大值为1. ………………12分21、解:(Ⅰ))0(ln 2)(>-=x x a x x g ,2222)(xax x a x x g +-=--=' ①当0≥a 时,0)(<'x g ,∴函数)(x g 在区间),0(+∞上单调递减;②当0<a 时,由0)(='x g ,解得ax 2-= 当)2,0(ax -∈时,0)(<'x g ,此时函数g (x )单调递减;当),2(+∞-∈a x 时,0)(>'x g ,此时函数)(x g 单调递增. ………………3分(Ⅱ))()(2x g x x f +=,其定义域为),0(+∞. 2322)(2)(xax x x g x x f --='+=', ………………4分 令),0(,22)(3+∞∈--=x ax x x h ,a x x h -='26)(,当0<a 时,0)(>'x h 恒成立,∴)(x h 在),0(+∞上为增函数,又0)1(,02)0(>-=<-=a h h ,∴函数)(x h 在)1,0(内至少存在一个变号零点0x ,且0x 也是)(x f '的变号零点,此时)(x f 在区间)1,0(内有极值. ………………5分当0≥a 时,0)1(2)(3<--=ax x x h ,即)1,0(∈x 时,0)(<'x f 恒成立,∴函数)(x f 在)1,0(单调递减,此时函数)(x f 无极值 …………………6分 综上可得:)(x f 在区间)1,0(内有极值时实数a 的取值范围是)0,(-∞ ……7分(Ⅲ)∵0>a 时,函数)(x f 的定义域为),0(+∞由(Ⅱ)可知:3)1(=f 知)1,0(∈x 时,0)(>x f ,∴10>x .又)(x f 在区间),1(+∞上只有一个极小值点记为1x ,且),1(1x x ∈时,0)(<'x f ,函数)(x f 单调递减,),(1+∞∈x x 时,0)(>'x f ,函数)(x f 单调递增,由题意可知:1x 即为0x . …………………………9分∴⎩⎨⎧='=0)(0)(00x f x f ,∴⎪⎩⎪⎨⎧=--=-+0220ln 20300020ax x x a x x 消去a 可得:131ln 2300-+=x x , 即0)131(ln 2300=-+-x x 令)1(131ln 2)(3>---=x x x x t ,则)(x t 在区间),1(+∞上单调递增 又∵035173110727316973.0212312ln 2)2(3<-=--⨯<--⨯=---=t 026232631122631099.1213313ln 2)3(3>=--⨯>--⨯=---=t 由零点存在性定理知 0)3(,0)2(><t t∴320<<x ∴2][0=x . ………………12分22、解:(Ⅰ)曲线2C :)4cos(22πθρ+=,可以化为)4c o s (222πθρρ+=,θρθρρsin 2cos 22-=, 因此,曲线C 的直角坐标方程为02222=+-+y x y x ………………4分 它表示以)1,1(-为圆心、2为半径的圆. ………………5分 (Ⅱ)法一:当4πα=时,直线l 的参数方程为⎪⎪⎩⎪⎪⎨⎧=+=t y t x 22221(t 为参数) 点P )0,1(在直线l 上,且在圆C 内,把⎪⎪⎩⎪⎪⎨⎧=+=t y t x 22221 代入02222=+-+y x y x中得210t -= ………………6分 设两个实数根为21,t t ,则B A ,两点所对应的参数为21,t t ,则12t t +=121-=t t ………………8分 64)(||||||2122121=-+=-=+∴t t t t t t PB PA ………………10分 法二:由(Ⅰ)知圆的标准方程为2)1()1(22=++-y x即圆心C 的坐标为)1,1(-半径为2,点P )0,1(在直线01:=-+y x l 上,且在圆C 内 ||||||AB PB PA =+∴ ………………6分圆心C 到直线l 的距离2211|1)1(1|22=+--+=d ………………8分 所以弦||AB 的长满足621222||22=-=-=d r AB 6||||=+∴PB PA ………………10分23、解:(Ⅰ)由1|)1(||1|||)(=+-≥++=x x x x x f 知,1)(min =x f 欲使R x ∈∀,恒有λ≥)(x f 成立,则需满足min )(x f ≤λ……………4分 所以实数λ的取值范围为]1,(-∞ ………………5分(Ⅱ)由题意得)0()01()1(12112|1|||)(>≤≤--<⎪⎩⎪⎨⎧+--=++=t t t t t t t t f ……………6分,R m ∈∃使得0)(22=++t f m m 成立即有0)(44≥-=∆t f 1)(≤∴t f ……………8分 又1)(≤t f 可等价转化为⎩⎨⎧≤---<1121t t 或⎩⎨⎧≤≤≤-1101t 或⎩⎨⎧≤+>1120t t 所以实数t 的取值范围为]0,1[- ……………10分。
2016—2017学年上学期高三期中考试襄州一中 枣阳一中 宜城一中 曾都一中数学(理科)试 题★祝考试顺利★第I 卷(选择题,共50分)一、选择题(本大题共10小题,每小题5分,共50分;在每小题给出的四个选项中,只有一个选项是符合题目要求的.)1、已知a 、b 、c 为实数,则ac 2>bc 2是a>b 的( ).A. 充分不必要条件B.必要不充分 条件C. 充要条件D.既不充分也不必要条件2、已知xx f )21()(=,命题[)1)(,,0:≤+∞∈∀x f x P ,则( )A. P 是假命题,[)1)(,,0:00>+∞∈∃⌝x f x PB. P 是假命题,[)1)(,,0:≥+∞∈∀⌝x f x PC. P 是真命题,[)1)(,,0:00>+∞∈∃⌝x f x PD. P 是真命题,[)1)(,,0:≥+∞∈∀⌝x f x PA. 设{}{}{}Zn n x x P Z n n x x N Z n n x x M ∈-==∈+==∈==,13,,13,,3,且M a ∈,N b ∈,P c ∈,设c b a d +-=,则( )A. M d ∈B. N d ∈C. P d ∈D. 以上均不对4、定义在R 上的奇函数)1()1()(x f x f x f y -=+=满足,且当[]1,1-∈x 时,)2011(,)(3f x x f 则=的值是( ) A.1-B.0C.1D. 25、设函数ax x x f m+=)(的导函数12)(+='x x f ,则()21f x dx -⎰的值等于( )A. 65 B.21 C.32 D.616、如右图所示的程序框图,运行后输出结果为( )A. 1B.2009C. 2010D.20117、若02≠=a b ,b a c+=,且a c ⊥,则向量a 与b的夹角为( )A 30°B 60°C 120°D 150°8、设函数00,1)(,2,322,3)(x x f x x x x x f x 则若>⎪⎩⎪⎨⎧≥+<=的取值范围是( )A .),3()2,0(+∞⋃B .),3(+∞C .),2()1,0(+∞⋃D .)2,0(9、函数d cx bx ax x f +++=23)(的图象如图所示,则)1()1(-+f f 的值一定( )A. 等于0B. 大于0C. 小于0D. 不大于010、已知定义域为R 的函数)(x f 满足1)1(=f ,且)(x f 的导函数()21<'x f ,则212)(+<x x f 的解集为( ) A .{}11x x -<<B .{}1x x <-C .{}11x x x <->或D .{}1x x >第II 卷(非选择题 共100分)二、填空题(本大题共5小题,每小题5分,共25分)11、已知复数1,12--=z z i z 则的值是12、周长为30cm 的矩形,绕一条边旋转成一个圆柱,则圆柱体积的最大值为 3cm13、已知1cos2sin cos 0,22sin 4a πααααπ⎛⎫-=∈ ⎪⎛⎫⎝⎭- ⎪⎝⎭,且,则的值为 14、对于函数)(x f 定义域中任意的)(,2121x x x x ≠,有如下结论:①)()()(2121x f x f x x f +=⋅ ②)()()(2121x f x f x x f ⋅=+ ③[]0)()()(2121>--x f x f x x④2)()()2(2121x f x f x x f +>+当x x f ln )(=时,上述结论中正确结论的序号是 (写出全部正确结论的序号). 15、在锐角ABC ∆中,角C B A ,,的对边分别为c b a ,,,若C abb ac o s 6=+,则BCA C t an t an t an t an +的值是 1. 计算题(本大题共 6小题,共计75分) 16..(本小题满分12分)设命题p :174<-a ;命题q :函()342+-=x x x f 在[0,a ]上的值域为[-1,3],若p ∨q 为真命题,p ∧q 为假命题,求实数a 的取值范围.17.(本小题满分12分)已知向量),sin ,(cos ),sin ),2(sin(x x b x x a -=+= π函数())2sin 3(x b a m x f +⋅=,(m 为正实数). (1)求函数()x f 的最小正周期及单调递减区间;(2)将函数()x f 的图象的纵坐标保持不变,横坐标扩大到原来的两倍,然后再向右平移6π个单位得到y=g(x)的图象,试探讨:当],0[π∈x 时,函数y=g(x)与y=1的图象的交点个数.18.(本小题满分12分)工厂生产某种产品,次品率p 与日产量x(万件)间的关系为:⎪⎩⎪⎨⎧≤<->=c x xcx p 06132 (c 为常数, 且0<c <6).已知每生产1件合格产品盈利3元,每出现1件次品亏损1.5元.(1)将日盈利额y (万元)表示为日产量x (万件)的函数;(2)为使日盈利额最大,日产量应为多少万件?(注:次品率=次品数产品总数×100%)第一节 (本小题满分12分) 设函数()b x a ax x x f +-+-=2233231(0<a <1). (1)求函数()x f 的单调区间;(2)若当]2,1[++∈a a x 时,恒有()a x f ≤'成立,试确定a 的取值范围.20.(本小题满分13分)在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,向量 (1,sin )m A λ=,(sin ,1cos )n A A =+.已知 //m n .(1)若2λ=,求角A 的大小;(2)若b c +=,求λ的取值范围.21.(本小题满分14分)若存在常数k 和b ()均为实数和b k ,使得函数()x f 和()x g 对其定义域上的任意实数x 分别满足()b kx x f +≥和()b kx x g +≤,则称直线l :b kx y +=为()x f 和()x g 的“隔离直线”.已知()2x x h =,()x e x ln 2=ϕ. (1)求()()()x x h x F ϕ-=的极值;(2)函数()x h 和()x ϕ是否存在隔离直线?若存在,求出此隔离直线;若不存在, 请说明理由.17、解:(1)⎥⎦⎤⎢⎣⎡+-+=+⋅=x x x x m x m x f 2sin 3sin cos )2sin()2sin 3()(2π)2sin 32(cos )2sin 3sin (cos 22x x m x x x m +=+-=)62sin(2π+=x m ……………………………………2分由m>0知,ππ==22T ………………………………………………4分 又由Z k k x k ∈+≤+≤+,2326222πππππ,得Z k k x k ∈+≤≤+,326ππππ 故递减区间为)(32,6Z k k k ∈⎥⎦⎤⎢⎣⎡++ππππ …………………………………6分 (2)由题意得x m x g sin 2)(= …………………………………7分 由m x g m x 2)(000≤≤>≤≤得及π ……………………………………8分所以当1)(,210==<<y x g y m 与时无交点当1)(,21===y x g y m 与时有唯一公共点当1)(,21==>y x g y m 与时有两个公共点 ……………………………12分另解: (2)当()245)696(3)6293,0+-+--=--=≤<x x x x x y c x ………7分令245)9(3666++-=∴<≤-∴-=t t y t c x t ……………8分若时取等号。
2017届湖北荆荆襄宜四地七校联盟高三理上联考一数学试卷考试范围:xxx ;考试时间:100分钟;命题人:xxx注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上1.已知复数z 满足264z z i +=-(i 是虚数单位),则复数z 在复平面内对应的点位于A .第一象限B .第二象限C .第三象限D .第四象限2.设集合{}2430A x x x =-+≤,集合201x B xx ⎧-⎫=>⎨⎬+⎩⎭,则R A B =ð A .[]1,3- B .[]1,2 C .(]1,3- D.[)(,1)1,-∞-+∞3.若n S 是等差数列{}n a 的前n 项和,且484a a +=,则11S 的值为A .44B .22C .18D .124.函数x x x f 2log )(+=π的零点所在区间为A .1142⎡⎤,⎢⎥⎣⎦B .1184⎡⎤,⎢⎥⎣⎦C .108⎡⎤,⎢⎥⎣⎦D .112⎡⎤,⎢⎥⎣⎦ 5.下列选项中,说法正确的是A .命题“0x R ∃∈,2000x x -≤”的否定为“x R ∃∈,20x x ->” B .命题“在ABC ∆中,30A >,则1sin 2A >”的逆否命题为真命题 C .若非零向量a 、b 满足a b a b +=-,则a 与b 共线[来源:学科网]D .设{}n a 是公比为q 的等比数列,则“1q >”是“{}n a 为递增数列”的充分必要条件6.设函数3(1)()3(1)x x bx f x x -<⎧=⎨≥⎩,若1(())92f f =,则实数b 的值为 A .32- B .98-C .34-D .12- 7.已知角ϕ的终边经过点(3,4)P -,函数()sin()(0)f x x ωϕω=+>图像的相邻两条对称轴之间的距离等于2π,则()4f π= A .35- B .35C .45-D .458.若点(,,)P x y 的坐标满足1ln1x y =-,则点P 的轨迹图像大致是9.如图,在直角梯形ABCD 中,22AB AD DC ==,E 为BC 边上一点,3BC EC =,F 为AE 的中点,则BF =A .1233AB AD - B .2133AB AD - C .1233AB AD -+ D .2133AB AD -+ 10.已知函数32()2(1)2f x x x f '=++,函数()f x 在点(2,(2))f 处的切线的倾斜角为α,则23sin ()sin()cos()22πππααα+-+-的值为A .917B .2017C .316D .211911.已知在ABC ∆内有一点P ,满足0PA PB PC ++=,过点P 作直线l 分别交AB 、AC 于M 、N ,若AM mAB =,(0,0)AN nAC m n =>>,则m n +的最小值为 A .43 B .53C .2D .3 12.已知函数2()2cos x f x x x π=-+,设12,(0,)x x π∈,12x x ≠且12()()f x f x =,若1x 、0x 、2x 成等差数列,则A .0()0f x '>B .0()0f x '=C .0()0f x '<D .0()f x '的符号不确定13.已知平面向量(1,2)a =,(2,)b m =-,若//a b ,则23a b +=__________.14.已知()f x 是定义在R 上的奇函数,且当0x <时, ()2x f x =,则4(log 9)f 的值为__________.15.三国魏人刘徽,自撰《海岛算经》,专论测高望远.其中有一题:今有望海岛,立两表齐,高三丈,前後相去千步,令後表与前表相直。
本试题卷共4页,23题(含选考题)。
全卷满分150分。
考试用时120分钟。
★祝考试顺利★注意事项:1、答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B铅笔将答题卡上试卷类型A后方框涂黑。
2、选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3、非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B铅笔涂黑。
答案写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
5、考试结束后,请将答题卡上交。
第Ⅰ卷一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.请将正确的答案填涂在答题卡上.1.已知复数错误!未找到引用源。
满足错误!未找到引用源。
(错误!未找到引用源。
是虚数单位),则复数错误!未找到引用源。
在复平面内对应的点位于A.第一象限 B.第二象限 C.第三象限 D.第四象限【答案】D【解析】考点:复数的运算与几何意义.2.设集合错误!未找到引用源。
,集合错误!未找到引用源。
,则错误!未找到引用源。
A .错误!未找到引用源。
B .错误!未找到引用源。
C .错误!未找到引用源。
D.错误!未找到引用源。
【答案】A【解析】考点:集合的运算.3.若错误!未找到引用源。
是等差数列错误!未找到引用源。
的前错误!未找到引用源。
项和,且错误!未找到引用源。
,则错误!未找到引用源。
的值为 A .错误!未找到引用源。
B .错误!未找到引用源。
C .错误!未找到引用源。
D .错误!未找到引用源。
【答案】B【解析】试题分析:由题意错误!未找到引用源。
,错误!未找到引用源。
.故选B .考点:等差数列的性质.4.函数错误!未找到引用源。
—2017学年上学期高三期中考试 数学试题(理科)时间:120分钟 分值:150分 命题牵头学校:枣阳一中 命题学校:曾都一中 枣阳一中 襄州一中 宜城一中 命题教师:第Ⅰ卷(选择题 共60分)一、选择题(本大题共12小题,每小题5分,共60分.请把答案填在答题卷上)1.设A ={}2430x x x -+≤,B ={}230x x -<,则图中阴影部分表示的集合为( )A .3(3,)2-- B .3(3,)2- C .3[1,)2 D .3(,3)22.已知110x <<,()()22lg ,lg lg ,lg a x b x c x ===,那么有( )A .c a b >>B .c b a >>C .a c b >>D .a b c >>3.平面向量,a b满足()3a a b ⋅+= ,2a = ,1b = ,则向量a 与b 夹角的余弦值为( )A.21B. 21-C. 23-D.23 4.角α的终边在第一象限,则sin cos 22sincos22αααα+的取值集合为( ) A .{}2,2- B .{}0,2 C .{}2 D .{}0,2,2- 5.设函数()()()ln 2ln 2f x x x =++-,则()x f 是( )A. 奇函数,且在()0,2上是增函数B. 奇函数,且在()0,2上是减函数C. 偶函数,且在()0,2上是增函数D. 偶函数,且在()0,2上是减函数6.先将函数2sin y x =的图像纵坐标不变,横坐标压缩为原来一半,再将得到的图像向左平 移12π个单位,则所得图像的对称轴可以为( )A .12x π=- B .1112x π=C .6x π=-D .6x π=7.下列命题的叙述:①若:p 20,10x x x ∀>-+>,则:p ⌝20000,10x x x ∃≤-+≤②三角形三边的比是3:5:7,则最大内角为23π③若a b b c ⋅=⋅ ,则a c =④22ac bc <是a b <的充分不必要条件,其中真命题的个数为( )A .1B .2C .3D .4 8. 已知函数()ln ||f x x x =-,则()f x 的图象大致为( )A . B. C . D.9.θ为锐角,sin 4πθ⎛⎫-= ⎪⎝⎭,则1tan tan θθ+=( ) A .2512 B .724 C .247 D .122510.已知函数()f x 的定义域为R .当0x <时,5()1f x x =- ;当11x -≤≤ 时,()()f x f x -=-;当0x >时,()()1f x f x += ,则()2016f =( ) A .-2 B .-1 C .0 D .211.在ABC ∆中,,,a b c 分别为内角,,A B C 所对的边,若3a A π==,则b c +的最大值为( )A .4B ...212.奇函数()f x 定义域为()(),00,ππ- ,其导函数是()'f x .当0x π<<时,有()()'sin cos 0f x x f x x -<,则关于x 的不等式()sin 4f x x π⎛⎫< ⎪⎝⎭的解集为( )A .,4ππ⎛⎫⎪⎝⎭ B .,,44ππππ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭C .,00,44ππ⎛⎫⎛⎫-⎪ ⎪⎝⎭⎝⎭ D .,0,44πππ⎛⎫⎛⎫-⎪ ⎪⎝⎭⎝⎭第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4小题,每小题5分,共20分.请把答案填在答题卷上)13.已知(3,4)a =- ,(2,)b t = ,向量b 在a方向上的投影为3-,则t = .14.已知函数()()222,1log 1,1xx f x x x ⎧-≤⎪=⎨-+>⎪⎩,且()3-=a f ,则()6f a -= .15.若点P 是曲线2ln y x x =-上任意一点,则点P 到直线4y x =-的最小距离为_______. 16.若函数()f x =13x 3+ax 2+bx +c 有极值点12,x x ()12x x <,()11f x x =,则关于x 的方 程 ()2f x ⎡⎤⎣⎦+()20af x b +=的不同实数根的个数是 .三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)设:p 实数x 满足:03422<+-a ax x (0>a ),:q 实数x 满足:121-⎪⎭⎫⎝⎛=m x ,()2,1∈m()I 若41=a ,且q p ∧为真,求实数x 的取值范围;()II q 是p 的充分不必要条件,求实数a 的取值范围.18.(本小题满分12分)已知向量cos ,12x m ⎛⎫=- ⎪⎝⎭,2,cos 22x x n ⎫=⎪⎭ ,函数()1f x m n =⋅+()I 若,2x ππ⎡⎤∈⎢⎥⎣⎦,求()x f 的最小值及对应的x 的值; ()II 若⎥⎦⎤⎢⎣⎡∈2,0πx ,()1011=x f ,求sin x 的值.19.(本小题满分12分)已知22()()1x a f x x bx -=++是奇函数()I 求()f x 的单调区间;()II 关于x 的不等式21m ->()f x 有解,求m 的取值范围.20.(本小题满分12分)高速公路为人民出行带来极大便利,但由于高速上车速快,一旦出事故往往导致生命或财产的重大损失,我国高速公路最高限速120/km h ,最低限速60/km h .()I 当驾驶员以120千米../.小时..速度驾车行驶,驾驶员发现前方有事故,以原车速行驶......大约需要0.9秒后才能做出紧急刹车,做出紧急刹车后,车速依()()1005313v t t t =-+(:t 秒.,()v t :米./.秒)..规律变化直到完全停止,求驾驶员从发现前方事故到车辆完全停止时,车辆行驶的距离; ()ln5 1.6=取()II 国庆期间,高速免小车通行费,某人从襄阳到曾都自驾游,只需承担油费.已知每小时油费w ()元与车速有关,240250v w =+():/v km h ,高速路段必须按国家规定限速内行驶,假定高速上为匀速行驶,高速上共行驶了S 千米,当高速上行驶的这S 千米油费最少时,求速度v 应为多少/km h ?21.(本小题满分12分)ABC ∆中,角C B A ,,的对边分别为c b a ,,,43π=A ,1010sin =B ,D 为BC 边中点,1=AD()I 求cb的值;()II 求ABC ∆的面积.22.(本小题满分12分)已知函数21()(1)2xf x x e ax =--()a R ∈ ()I 当1a ≤时,求()f x 的单调区间;()II 当(0,+)x ∈∞时,()y f x '=的图象恒在32(1)y ax x a x =+--的图象上方,求a 的取值范围.C2016—2017学年上学期高三期中考试 数学试题(理科)参考答案一、选择题(每题5分,共60分)二、填空题(每题5分,共20分) 13.214 14. 32- 15. 三、解答题(共70分)17.解:()I ()03:><<a a x a p ,41=a 时 ,4341:<<x p …(1分) 121:<<x q …(2分) q p ∧ 为真 p ∴真且q 真 …(3分)⎪⎪⎩⎪⎪⎨⎧<<<<1214341x x ,得4321<<x ,即实数x 的取值范围为⎭⎬⎫⎩⎨⎧<<4321x x …(5分) ()II q 是p 的充分不必要条件,记⎭⎬⎫⎩⎨⎧<<=121x x A ,{}0,3><<=a a x a x B则A 是B 的真子集 …(7分)⎪⎩⎪⎨⎧>=∴1321a a 或⎪⎩⎪⎨⎧≥<1321a a …(9分) 得2131≤≤a ,即a 的取值范围为1132⎡⎤⎢⎥⎣⎦,…(10分) 18.解:()I ()12cos 2cos 2sin 32+-=x x x x f21cos 21sin 2312cos 1sin 23+-=++-=x x x x …(2分) 216sin +⎪⎭⎫ ⎝⎛-=πx …(3分) ⎥⎦⎤⎢⎣⎡∈ππ,2x πππ6563≤-≤∴x …(4分)ππ656=-∴x ,即π=x 时,()1min =x f …(6分) ()II ()1011=x f ,即1011216sin =+⎪⎭⎫ ⎝⎛-πx ,得536sin =⎪⎭⎫ ⎝⎛-πx …(7分)20π≤≤x , 366πππ≤-≤-∴x ,546cos =⎪⎭⎫⎝⎛-∴πx …(8分)1sin sin sin cos 666262x x x x ππππ⎛⎫⎛⎫⎛⎫=-+=-⋅+-⋅ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭…(10分)3414552=+⨯ …(12分) 19.解:()I ∵22()()1x a f x x bx -=++是奇函数,∴()()0f x f x +-=恒成立…(1分)()20a b x a ∴++=恒成立,0,0a b ∴== …(3分) 22()1xf x x ∴=+, 222(1)(1)'()(1)x x f x x -+=+ …(4分) 由'()0f x >,得-1<x <1;由'()0f x <,得x >1或x <-1 …(5分) 故函数()f x 的增区间为()1,1-,()f x 的减区间为(,1)(1,)-∞-+∞和…(6分) ()II ∵2m —1>()f x 有解,∴2m —1>min ()f x 即可 …(7分) 当()()()0,0;0,00;00x f x x f x f x >>==<<时当时当时, …(8分) 由()I 知()f x 在(),1-∞-上为减函数,在()1,0-上为增函数()()m i n 11f x f ∴=-=- …(10分) ∴2m —1>1-,∴m >0 …(12分) 20.解:()I 令()()1005=0313v t t t =-+,解得()45t t ==-秒或秒舍 …(2分)从发现前方事故到车辆完全停止行驶距离为ss =3120100.93600⨯⨯+()401005313t dt t ⎛⎫-⎪+⎝⎭⎰ …(4分)=30+()2401005ln 136t t ⎡⎤+-⎢⎥⎣⎦=30+1005ln 51636-⨯=70()米 …(6分) ()II 设高速上油费总额为y ,速度v 满足60120v ≤≤,则 …(7分)S y w v=⨯=40250v S v ⎛⎫+ ⎪⎝⎭≥=45S…(9分)当且仅当40250vv=,100v=时取等号 …(10分)由[]10060120v =∈,,即100/v km h =时,高速上油费最少 …(12分) 21.解:()I ABC ∆中 1010sin =B ,π43=A22cos ,22sin ,10103cos -===∴A A B …(2分) ()55202021010221010322sin sin ==⨯-⨯=+=B A C …(4分)sinsin b B c C ∴===…(6分) ()II D 为BC 中点,2AD AB AC ∴=+…(7分)22242AD AB AB AC AC =+⋅+ 即2242c b bc ⎛=++⋅ ⎝⎭化简:bc c b 2422-+=① …(8分) 由()I 知22=c b ②,联立①②解得2=b ,22=c …(10分) 2sin 21==∴∆A bc S ABC …(12分) (注:用其他方法求解酌情给分.............) 22.解:()I ()()xxf x xe ax x e a '=-=- …(1分)当0a ≤时,0xe a ->,∴(,0)x ∈-∞时,()0f x '<,()f x 单调递减(0,)x ∈+∞时,()0f x '>,()f x 单调递增 …(2分)当01a <≤时,令()0f x '=得0ln x x a ==或 (i) 当01a <<时,ln 0a <,故:(,ln )x a ∈-∞时,()0f x '>,()f x 单调递增, (ln ,0)x a ∈ 时,()0f x '<,()f x 单调递减,(0,)x ∈+∞时,()0f x '>,()f x 单调递增; …(4分) (ii) 当1a =时,ln 0a =, ()(1)x x f x xe ax x e '=-=-0≥恒成立, ()f x 在(,)-∞+∞上单调递增,无减区间; …(5分) 综上,当0a ≤时,()f x 的单调增区间是(0,)+∞,单调减区间是(,0)-∞;当01a <<时,()f x 的单调增区间是(,ln )a -∞(0,)+∞和,单调减区间是(ln ,0)a ;当1a =时,()f x 的单调增区间是(,)-∞+∞,无减区间. …(6分)()II 由()I 知()xf x xe ax '=-当(0,+)x ∈∞时,()y f x '=的图象恒在32(1)y ax x a x =+--的图象上方 即32(1)x xe ax ax x a x ->+--对(0,+)x ∈∞恒成立即 210x e ax x --->对(0,+)x ∈∞恒成立 …(7分)记 2()1x g x e ax x =--- (0)x >,∴()()21xg x e ax h x '=--=()'2xh x e a ∴=- …(8分)(i) 当12a ≤时,()'20xh x e a =->恒成立,()g x '在(0,)+∞上单调递增, ∴()'(0)0g x g '>= ∴()g x 在(0,)+∞上单调递增∴()(0)0g x g >=,符合题意; …(10分) (ii) 当12a >时,令()'0h x =得ln(2)x a = (0,ln(2))x a ∴∈时,()'0h x <,∴()g x '在(0,ln(2))a 上单调递减 ∴(0,ln(2))x a ∈时,()'(0)0g x g '<= ∴()g x 在(0,ln(2))a 上单调递减, ∴ (0,ln(2))x a ∈时,()(0)0g x g <=,不符合题意 …(11分)综上可得a 的取值范围是1(,]2. …(12分)。