多面体与球的组合体问题的求解策略
- 格式:pdf
- 大小:243.67 KB
- 文档页数:3
关于球与多面体的组合体解题方法探讨球与多面体的组合体是三维几何中的一个重要概念,解题方法也有多种。
在此简要探讨一下关于球与多面体组合体的解题方法。
首先,对于球与多面体的组合体,我们可以将问题进行分解,分开考虑球和多面体的特性和性质,然后再综合起来考虑问题。
下面我们结合具体例题进行探讨。
例题1:一个正方体的棱长为2,一个半径为1的球被正方体完全包围住,且完全在正方体内,求球与正方体相交的面积。
解题思路:首先我们可以知道正方体的一个面上的对角线等于正方体的棱长,所以正方体的对角线长度为2√2由题目可知,球在正方体内,球的半径为1,则球心到正方体一些顶点的距离不会超过1,所以球心到正方体一些面的距离也不会超过1我们可以考虑球心到正方体各个面的距离,不难发现,球心到一个面的距离不超过1,球心到相对的面的距离不超过√2,球心到相对的对角面的距离不超过2综上所述,可以得到以下结论:1)若球心在正方体内部,则球与每一面都有交点;2)若球心在正方体边界上,即球心到一面的距离为1,则球与其对边的面无交点;3)若球心在正方体的角点上,即球心到对角面的距离为2,则球与对角面无交点。
在本题中,球心到正方体各个面的距离都不会超过1,所以球与每一面都有交点。
球与正方体的每一面的交线是一个圆,球与三个相邻的面的交线上的圆心在正方体的三个对角线的交点上,球与相对的两个面的交线上的圆心在每个对角面的对角线的交点上。
由于正方体是对称的,所以球与三个相邻的面的交线上的圆互相等价,同理,球与相对的两个面的交线上的圆互相等价。
因此,求球与正方体相交的面积,只需计算球与一个面的交线上的一个圆的面积即可。
球与面的交线上的圆的半径可以通过勾股定理得到,即球心到正方体其中一个面的距离。
在本题中,球心到正方体的一个面的距离为1,所以球与该面的交线上的圆的半径为1-1=0。
因此,球与该面的交线上的圆的面积为0。
综上所述,球与正方体相交的面积为0。
通过以上分析我们可以看出,在解这类球与多面体的组合体题目时,关键是找到球与多面体各个面的交线的性质和关系来进行求解。
多面体外接球问题突破策略作者:曹丹育来源:《中学课程辅导·教师通讯》2018年第14期【内容摘要】直观想象的核心素养的考查主要反映在立体几何中空间想象能力的考查,近几年全国高考题中立体几何客观题对组合体的考查热度不减,其中外接球问题是重中之重,如何求外接球的半径、表面积或体积,关键在于寻找外接球的球心,非特殊几何体通过寻找球的两个不平行的截面的圆心就可以确定球心,这样将空间问题化为平面问题,化抽象为直观,便于分析和解决问题。
【关键词】直观想象多面体外接球球心随着基础教育课程改革的不断深入,数学教学更加关注核心素养的培养,首都师范大学王尚志教授指出:“核心素养相对具体学科是抽象的,但它能以不变应万变,中国学生应培养好数学抽象、逻辑推理、数学建模、直观想象、数学运算、数据分析六大数学核心素养。
”从近几年全国高考新课标卷对立几的考查来看,对空间想象能力的要求提高了,特别是球的组合体问题的考查,着重考查学生直观想象的学科素养。
而人教版高中数学必修二只是简单介绍球的概念和体积、表面积公式,对球的性质及与其它几何体结合的组合体问题只字未提,而球的组合体的考察显然是热点问题,该如何解决几何体外接球的半径、体积和表面积问题呢?笔者根据教学经验,对立体几何中的外接球问题进行一些探索补充,希望对解决这类问题有所帮助。
笔者认为解决球的问题,关键量——半径,也就是球心到球面的距离,那么寻找球心就是重中之重,如何解决球心的位置问题呢?一、球心位置概述1.球的大圆的直径的中点;2.过球的两个不平行的小圆的圆心且垂直小圆面的两直线交点。
如图(1),(2)。
显然第一种方法确定球心不方便,因为题意往往只给出一个多面体,外接球不易画,当然更无法通过球的大圆来找圆心,所以笔者认为第二种方法适用,只要寻找两个不平行的截面的圆心就可以确定球心,这样将空间几何问题降维为平面几何问题,便于想象和分析,再把条件集中到某个直角三角形,利用方程思想破解。
人教版高中数学必修第二册专题强化训练二与球有关的内切、外接问题同步精练技巧归纳1.多面体与球接、切问题求解策略(1)截面法:过球心及多面体中的特殊点(一般为接、切点)或线作截面,利用平面几何知识寻找几何体中元素间的关系.(2)补形法:“补形”成为一个球内接长方体,则利用4R 2=a 2+b 2+c 2求解.2.球的切、接问题的常用结论(1)长、宽、高分别为a ,b ,c 的长方体的体对角线长等于外接球的直径,即a 2+b 2+c 2=2R .(2)若直棱柱(或有一条棱垂直于一个面的棱锥)的高为h ,底面外接圆半径为x ,则该几何体外接球半径R 满足R 2=h 22+x 2.(3)外接球的球心在几何体底面上的投影,即为底面外接圆的圆心.(4)球(半径为R )与正方体(棱长为a )有以下三种特殊情形:一是球内切于正方体,此时2R =a ;二是球与正方体的十二条棱相切,此时2R =2a ;三是球外接于正方体,此时2R =3a .题型归纳题型一:直接法(公式法)1.(2022·全国·模拟预测)一个正方体的内切球的表面积和它的外接球的表面积之和是16π,则该正方体的体积为()A .22B .8C .4D .162.(2022·四川成都·高三阶段练习(文))长方体1111ABCD A B C D -的底面ABCD 为正方形,1AB =,直线1AD 与直线1CC 所成的角为30°,则该长方体外接球的表面积为()A .4πB .6πC .5πD .8π3.(2022·湖南·高一课时练习)若一个球的外切正方体的表面积等于6cm 2,则此球的体积为()A .6πcm 3B .68πcm 3C .43πcm 3D .66πcm 3题型二:构造法(补形法)4.(2022·陕西西安·一模)在《九章算术》中,将底面为矩形且有一条侧棱与底面垂直的四棱锥称之为阳马.如图,若四棱锥P ABCD -为阳马,侧棱PA ⊥底面ABCD ,且22PA =,2AB BC ==,则该阳马的外接球的表面积为()A .4πB .8πC .16πD .32π5.(2022·江西上饶·高三阶段练习(文))已知三棱维A BCD -中,侧面ABC ⊥底面BCD ,△ABC 是边长为6的正三角形,△BCD 是直角三角形,且,42BCD CD π∠==,则此三棱锥外接球的表面积为()A .36πB .48πC .64πD .128π6.(2022·陕西·武功县普集高级中学一模(理))已知正四面体S ABC -的外接球表面积为6π,则正四面体S ABC -的体积为()A .223B .233C .23D .324题型三:确定球心位置法7.(2022·全国·模拟预测)如图,已知三棱锥P ABC -的四个顶点都在球O 的表面上,PA ⊥平面ABC ,2AC BC ==,2AB =,球心O 到平面ABC 的距离为3,则球O 的体积为()A .323πB .163πC .16πD .32π8.(2022·陕西陕西·一模)四面体D ABC -内接于球O ,(O 为球心),2BC =,4AC =,60ACB ∠=︒.若四面体D ABC -体积的最大值为4,则这个球的体积为()A .256327πB .1639πC .128πD .128327π9.(2022·云南师大附中高三阶段练习)三棱锥P ABC -的四个顶点在球О的球面上,PC ⊥平面ABC ,4PC =,10AB =,32AC =,点M 是BC 的中点,13AM =,则球О的表面积为()A .24πB .28πC .36πD .40π题型四:球表面积和体积最值问题10.(2021·重庆·西南大学附中高一期末)已知正方形ABCD 中,2AB =,E 是CD 边的中点,现以AE 为折痕将ADE 折起,当三棱锥D ABE -的体积最大时,该三棱锥外接球的表面积为()A .525π48B .5π4C .25π4D .25π11.(2021·四川成都·高一期末(理))已知A ,B 是球O 的球面上两点,23AOB π∠=,P 为该球面上动点,若三棱锥O PAB -体积的最大值为233,则球O 的表面积为()A .12πB .16πC .24πD .36π12.(2021·山东莱西·高一期末)已知ABC 是面积为934的等边三角形,其顶点均在球O 的表面上,当点P 在球O 的表面上运动时,三棱锥P ABC -的体积的最大值为934,则球O 的表面积为()A .16πB .323πC .274πD .4π专题精选强化一、单选题13.(2021·黑龙江鸡西·高一期末)已知三棱锥P ABC -的顶点都在球O 的球面上,2AB AC ==,22BC =,PB ⊥平面ABC ,若球O 的体积为36π,则该三棱锥的体积是()A .473B .5C .873D .8314.(2022·全国·高一)在体积为722的直三棱柱111ABC A B C -中,ABC 为等边三角形,且ABC 的外接圆半径为213,则该三棱柱外接球的表面积为()A .12πB .8πC .6πD .3π15.(2021·全国·高一课时练习)已知A ,B 是球O 的球面上两点,90AOB ∠=︒,C 为该球面上的动点,若三棱锥O ABC -体积的最大值为36,则球O 的表面积为()A .36πB .64πC .128πD .144π16.(2021·全国·高一课时练习)长方体的三个相邻面的面积分别是2,3,6,这个长方体的顶点都在同一个球面上,则这个球的表面积为()A .72πB .56πC .14πD .16π17.(2021·广东顺德·高一期末)已知三棱锥P ABC -的底面是正三角形,3AB =,2PA =,PA BC ⊥,PB AC ⊥,PC AB ⊥,则三棱锥P ABC -的外接球的表面积为()A .43πB .32327πC .4πD .163π18.(2021·江苏常州·高一期末)如图,在四棱锥P ABCD -中,已知PA ⊥底面,,ABCD AB BC AD CD ⊥⊥,且120,2BAD PA AB AD ∠=︒===,则该四棱锥外接球的表面积为()A .8πB .20πC .205πD .205π319.(2021·江苏·金陵中学高一期末)前一段时间,高一年级的同学们参加了几何模型的制作比赛,大家的作品在展览中获得了一致好评.其中一位同学的作品是在球当中放置了一个圆锥,于是就产生了这样一个有趣的问题:已知圆锥的顶点和底面圆周都在球O 面上,若圆锥的侧面展开图的圆心角为23π,面积为3π,则球O 的表面积等于()A .818πB .812πC .1218πD .1212π20.(2021·云南省昆明市第十中学高一期中)已知三棱锥P ABC -,PA ,PB 、PC 两两垂直,1PA =,3PB =,2PC =,则三棱锥P ABC -的外接球表面积为()A .πB .5πC .6πD .8π21.(2021·黑龙江·哈师大附中高一期末)矩形ABCD 中,3,1AB BC ==,现将ACD △沿对角线AC 向上翻折,得到四面体D ABC -,则该四面体外接球的体积为()A .5103πB .10πC .510πD .40π22.(2021·重庆八中高一期中)设直三棱柱111ABC A B C -的所有顶点都在一个球面上,且球的体积是2053π,1AB AC AA ==,120BAC ∠=︒,则此直三棱柱的高是()A .1B .2C .22D .423.(2020·江苏宿迁·高一期末)在直三棱柱111ABC A B C -中,2AB =,3AC =,30BAC ∠=,15AA =,则其外接球的体积是()A .6πB .92πC .823πD .132π24.(2021·吉林·高一期中)蹴鞠(如图所示),又名蹴球、蹴圆、筑球、踢圆等,蹴有用脚蹴、踢的含义,鞠最早系外包皮革、内实米糠的球.因而蹴鞠就是指古人以脚蹴、塌、踢皮球的活动,类似今日的足球.2006年5月20日,蹴鞠已作为非物质文化遗产经国务院批准列入第一批国家非物质文化遗传名录.已知某蹴鞠的表面上有四个点S 、A 、B 、C ,满足S ABC -为正三棱锥,M 是SC 的中点,且AM SB ⊥,侧棱2SA =,则该蹴鞠的表面积为()A .6πB .12πC .32πD .36π二、多选题25.(2021·全国·高一课时练习)已知三棱柱111ABC A B C -的6个顶点全部在球O 的表面上,AB AC =,120BAC ∠=,三棱柱111ABC A B C -的侧面积为843+,则球O 体积可能是()A .12πB .32π3C .28π3D .10π26.(2021·江苏·无锡市第一中学高一期中)一个圆锥的底面圆周和顶点都在一个球面上,已知圆锥的底面面积与球面面积比值为29,则这个圆锥体积与球体积的比值为()A .427B .827C .49D .8927.(2020·江苏连云港·高一期末)正方体的外接球与内切球上各有一个动点M ,N ,若线段MN 的最小值为31-,则()A .正方体的外接球的表面积为12πB .正方体的内切球的体积为3πC .正方体的棱长为1D .线段MN 的最大值为31+28.(2021·辽宁·高一期末)在菱形ABCD 中,23AB =,60ABC ∠=,将菱形ABCD 沿对角线AC 折成大小为()0180θθ<<的二面角B AC D --,若折成的四面体ABCD 内接于球O ,则下列说法正确的是().A .四面体ABCD 的体积的最大值是33B .BD 的取值范围是()32,6C .四面体ABCD 的表面积的最大值是1263+D .当60θ=时,球O 的体积为523927π三、填空题29.(2022·全国·高一)点A ,B ,C 在球O 表面上,2AB =,23BC =,90ABC ∠=︒,若球心O 到截面ABC 的距离为22,则该球的体积为___________.30.(2021·天津·高一期末)已知正四棱锥P ABCD -中,底面边长为2,侧面积为45,若该四棱锥的所有顶点都在球O 的表面上,则球O 的体积为______.31.(2021·江苏溧阳·高一期末)《九章算术》是我国古代数学名著,它在几何学中的研究比西方早1000多年.在《九章算术》中,将底面为矩形且一侧棱垂直于底面的四棱锥称为阳马.如图P ABCD -是阳马,PA ⊥平面ABCD ,5PA =,4AB =,3AD =,则该阳马的外接球的表面积为___________.32.(2021·广东惠州·高一期中)在三棱锥D ABC -中,已知平面BCD ⊥平面ABC ,90CBD ∠=︒,45BCA ∠=︒,22AB =,2BD =,则三棱锥A BCD -的外接球的表面积为______.参考答案1.B 【解析】【分析】设正方体的边长为2a ,分别求出正方体内切球与外接球的半径,再建立等式求得正方体的棱长即可求其体积.【详解】设正方体的边长为2a ,则正方体的内切球的半径为a ,外接球的半径为3a ,依题意得()2244316a aπππ+=,解得1a =,∴正方体的体积为()33288a a ==.故选:B .2.C 【解析】【分析】根据条件求出长方体外接球的半径即可求解.【详解】直线1AD 与直线1CC 所成的角,即直线1BC 与直线1CC 所成的角,从而可知在1Rt C CB △中,130BC C ︒∠=,所以13C C =,设长方体外接球的半径为r ,则有()222225411354r r =++=⇒=,该长方体外接球的表面积为245r ππ=.故选:C 3.A 【解析】【分析】设球的半径为R cm ,正方体棱长为a cm ,根据表面积和棱长的关系求出棱长,进而可得半径,再用体积公式求球的体积即可.【详解】设球的半径为R cm ,正方体棱长为a cm ,∴6a 2=6,∴a =1cm ,即2R =1,∴R 12=cm ,∴球的体积333441cm .3326V R πππ⎛⎫==⨯= ⎪⎝⎭故选:A.4.C 【解析】【分析】补全该阳马所得到的长方体,则该长方体的体对角线即为该阳马外接球的直径,求出外接球半径,即可得出答案.【详解】解:因为四棱锥P ABCD -为阳马,侧棱PA ⊥底面ABCD ,如图,补全该阳马所得到的长方体,则该长方体的体对角线即为该阳马外接球的直径,设外接球半径为R ,则()2222244816R AB BC PA =++=++=,所以2R =,所以该阳马的外接球的表面积为2416R ππ=.故选:C.5.C 【解析】【分析】把三棱锥放置在长方体中,根据长方体的结构特征求出三棱锥外接球的半径,再由三棱锥外接球的表面积公式计算.【详解】三棱锥A BCD -中,侧面ABC ⊥底面BCD ,把该三棱锥放入长方体中,如图所示3332AM AB ==,设三棱锥外接球的球心为O ,则22332333AG AM ==⨯=,122OG CD ==,∴三棱锥外接球的半径2222(23)42R OA OG AG ==+=+=,则三棱锥外接球的表面积为2244464S R πππ==⨯=,故选:C .6.A 【解析】【分析】由题意求出外接球的半径,将正四面体补成正方体,求出其棱长,用正方体的体积减去四个小的三棱锥体积即为所求.【详解】设外接球半径为R ,则246S R ππ==,解得62R =,将正四面体S ABC -恢复成正方体,知正四面体的棱为正方体的面对角线,则正四面体S ABC -的外接球即为正方体的外接球,则正方体的体对角线等于外接球的直径,故2326AB ⨯⨯=,解得2AB =,正方体棱长为2222⨯=,故该正四面体的体积为3122(2)42223213-⨯⨯⨯⨯⨯=,故选:A .7.A 【解析】【分析】由已知可证得PA AB ⊥,BC PC ⊥,从而可得球心O 是PB 的中点,取AB 的中点D ,连接OD ,然后在Rt ODB △中可求得球的半径,进而可求得球的体积【详解】如图,因为2AC BC ==,2AB =,所以222AC BC AB +=,所以AC BC ⊥.因为PA ⊥平面ABC ,,AB BC ⊂平面ABC ,所以PA AB ⊥,PA BC ⊥.又AC PA A ⋂=,所以BC ⊥平面PAC ,所以BC PC ⊥,所以球心O 是PB 的中点.取AB 的中点D ,连接OD ,则OD ∥PA ,所以OD ⊥平面ABC ,所以3OD =.设球O 的半径为R ,在Rt ODB △中,()2222312R OB OD DB ==+=+=,所以球O 的体积为3344322333R πππ=⨯⨯=,故选:A.8.A 【解析】【分析】在ABC 中利用余弦定理求得第三边,并判断ABC 为直角三角形且面积为定值,由面积公式求得ABC 的面积,从而分析知当D 到平面ABC 的距离取得最大值时球的体积最大.在ABC 中,∵2BC =,4AC =,60ACB ∠=︒,∴22212cos 164242122BA AC BC AC BC ACB =+-⋅⋅∠=+-⨯⨯⨯=,∴222AC AB BC =+,90ABC ∠=︒.∴ABC 外接圆半径122r AC ==.∴1223232ABCS=⨯⨯=.如图所示,设AC 的中点为1O ,则1O 为过ABC 的截面圆的圆心,设球的半径为R ,所以球心O 到平面ABC 的距离为22214OO R r R =-=-当点1DO ⊥平面ABC 时,四面体D ABC -体积的最大即:1111()23()433ABC S R OO R OO ⋅+=⨯+=△,解得433R =,34432563=()3327V ππ⨯=球.故选:A.9.C 【解析】【分析】先求得ABC 的外接圆的半径r ,再由222PC R r ⎛⎫=+ ⎪⎝⎭求得外接球的半径求解.如图所示:由余弦定理可得222222(13)(10)(13)(32)2221321322BC BC BC BC ⎛⎫⎛⎫+-+- ⎪ ⎪⎝⎭⎝⎭=-⨯⨯⨯⨯,解得2BC =.故222(10)(32)22cos 210325BAC +-∠==⨯⨯,1sin 5BAC ∠=.设ABC 的外接圆半径为r ,由正弦定理可得2sin BCr BAC=∠,故52sin BCr BAC==∠,所以球O 的半径为2232PC R r ⎛⎫=+= ⎪⎝⎭,球O 的表面积为24π36πS R ==,故选:C .10.C 【解析】【分析】设棱锥D ABE -的外接球球心为O ,半径为R ,则OM ⊥平面BCEF ,因为ABE △的面积为定值,所当高最大时,三棱锥D ABE -的体积最大,过D 作DF AE ⊥于F ,设点M 为ABE △的外心,则有222222(),DF OM FM R OM EM R -+=+=通过计算可得点M 为外接球的球心,从而可求得结果【详解】解:过D 作DF AE ⊥于F ,设点M 为ABE △的外心,G 为AE 的中点,连接,MG MF ,因为正方形ABCD 中,2AB =,E 是CD 边的中点,所以1DE =,则22125AE BE ==+=,52EG =,22555AD DE DF AE ⋅===,所以2245155EF DE DF =-=-=,1524MG EG ==,54EM =,所以55352510FG EG EF =-=-=,所以225453051610020FM MG FG =+=+=,设棱锥D ABE -的外接球球心为O ,半径为R ,则OM ⊥平面BCEF ,设OM x =,因为ABE △的面积为定值,所当高最大时,三棱锥D ABE -的体积最大,此时平面ADE ⊥平面BCEF ,因为DF AE ⊥,平面ADE 平面BCEF AE =,所以DF ⊥平面BCEF ,所以222222(),DF OM FM R OM EM R -+=+=,所以2222()DF OM FM OM EM -+=+,所以2222DF DF OM FM EM -⋅+=,所以42561252558016OM -⨯⋅+=,解得0OM =,所以ABE △的外心为三棱锥D ABE -外接球的球心,所以54R EM ==所以三棱锥外接球的表面积为2252544164R πππ=⨯=故选:C11.B 【解析】【分析】当点P 位于垂直于面AOB 的直径端点时,三棱锥O PAB -的体积最大,利用三棱锥O PAB -体积的最大值为233求出半径,即可求出球O 的表面积.【详解】解:如图所示,当点P 位于垂直于面AOB 的直径端点时,三棱锥O PAB -的体积最大,设球O 的半径为R ,此时2113233223O PAB P AOB V V R R --==⨯⨯⨯=,解得2R =,则球O 的表面积为2416R ππ=,故选:B .12.A 【解析】【分析】作出图形,结合图形知,当点P 与球心O 以及△ABC 外接圆圆心M 三点共线且P 与△ABC 外接圆圆心位于球心的异侧时,三棱锥P ABC -的体积取得最大值,结合三棱锥的体积求出三棱锥P ABC -的高h ,并注意到此时该三棱锥为正三棱锥,利用Rt OAM ,求出球O 的半径R ,最后利用球体的表面积公式可求出答案.【详解】如图所示,设点M 为ABC 外接圆的圆心,当点P O M 、、三点共线时,且P M 、分别位于点O 的异侧时,三棱锥P ABC -的体积取得最大值.因为ABC 的面积为934,所以边长为3,由于三棱锥P ABC -的体积的最大值为41939334PM ⨯=⨯,得3PM =,易知SM ⊥平面ABC ,则三棱锥P ABC -为正三棱锥,ABC 的外接圆直径为3223sin3AM π==,所以3AM =,设球O 的半径为R ,则22222()3(3)R OA AM PM PO R ==+-=+-,解得2R =,所以球的表面积为2416S R ππ==.故选:A 13.A 【解析】【分析】三棱锥P ABC -放入长方体内,所以长方体的体对角线即为外接球直径,即PC 为球直径,由球的体积求出PC 的长度,再求出PB ,由三棱锥体积公式求解即可.【详解】因为2AB AC ==,22BC =,易知三角形ABC 为等腰直角三角形,又PB ⊥平面ABC ,所以PB 为三棱锥P ABC -的高,则可将三棱锥P ABC -放入长方体内,如图,长方体的体对角线即为外接球直径,即PC 为球直径,343632PC V ππ⎛⎫∴== ⎪⎝⎭,6PC ∴=又22268PC PB BC PB =+=+=,解得27PB =,所以三棱锥的体积11472227323V =⨯⨯⨯⨯=,故选:A 14.A 【解析】【分析】由棱柱体积求得棱柱的高,然后求得外接球的半径,得表面积.【详解】设ABC 的边长为a ,由ABC 的外接圆半径为213可得212π3sin3a =⨯,故7a =,则ABC 的面积237344S a ==.由三棱柱的体积为722可得11737242S AA AA ⋅=⋅=,故1263AA =,设三棱柱外接球的半径为R ,则2221217233233AA R ⎛⎫⎛⎫=+=+= ⎪ ⎪ ⎪⎝⎭⎝⎭,故该三棱柱外接球的表面积为24π12πR =.故选:A .15.D 【解析】【分析】根据给定条件确定出三棱锥O ABC -体积最大时的点C 位置,再求出球半径即可得解.【详解】设球的半径为R ,因90AOB ∠=︒,则AOB 的面积212△AOB S R =,而O ABC C AOB V V --=,且AOB 面积为定值,则当点C 到平面AOB 的距离最大时,O ABC V -最大,于是,当C 是与球的大圆面AOB 垂直的直径的端点时,三棱锥O ABC -体积最大,最大值为3113632R ⨯=,解得6R =,所以球O 的表面积为22446144R πππ=⨯=.故选:D 16.C 【解析】【分析】根据题意可得长方体的三条棱长,再结合题意与有关知识可得外接球的直径就是长方体的对角线,求出长方体的对角线,即可得到球的直径,进而可根据球的表面积公式求出球的表面积.【详解】解析:设长方体的三条棱长分别为a ,b ,c ,由题意得236ab ac bc =⎧⎪=⎨⎪=⎩,得123a b c =⎧⎪=⎨⎪=⎩∴长方体的体对角线长为22212314++=,∴其外接球的半径为142∴2414S R ππ球==.故选:C 17.D 【解析】【分析】根据题意画出图形,证得三棱锥P ABC -为正三棱锥,结合球的截面性质求得外接球的半径,利用球的表面积公式,即可求解.【详解】如图所示,过点P 作PG ⊥平面ABC ,连接AG 交BC 于D ,所以PG BC ⊥,又由PA BC ⊥且PAPB P =,所以BC ⊥平面PAG ,可得BC AD ⊥,同理可证AB CG ⊥,则G 为等边ABC 的垂心,即中心,则三棱锥P ABC -为正三棱锥,设其外接球的球心为O ,则O 再PG 上,连接OA ,在等边ABC 中,由3AB =,可得2233()132AG =-=,则223PG PA AG =-=,设三棱锥P ABC -的外接球的半径为R ,则222(3)1R R =-+,解得233R =,所以三棱锥P ABC -的外接球的表面积为22231644()33S R πππ==⨯=.故选:D.18.B 【解析】【分析】取PC 中点O ,连接,,.OA OB OD BD ,先证明点O 就是四棱锥外接球的球心,再求出外接球的半径即得解.【详解】取PC 中点O ,连接,,.OA OB OD BD ,由题得PA AC ⊥,又OP OC =,所以OP OC OA ==,因为,,,,CD AD CD PA ADPA A AD PA ⊥⊥=⊂平面PAD ,所以CD ⊥平面PAD ,又PD ⊂平面PAD ,所以CD PD ⊥,又,PO OC OP OC OD =∴==.同理OP OC OB ==,所以OP OC OA OB OD ====,所以点O 就是四棱锥外接球的球心.因为120,2BAD AB AD ∠=︒==,所以60,30,4DAC DCA AC ∠=∴∠=∴=.所以224225,PC =+=所以外接球的半径为5.所以该四棱锥外接球的表面积24(5)20S ππ==.故选:B 19.A 【解析】【分析】设球半径为R ,圆锥的底面半径为r ,利用扇形的弧长和面积公式求得R ,即可求解.【详解】圆锥的顶点和底面圆周都在球O 面上,圆锥的侧面展开图的圆心角为23π,面积为3π,设母线为l ,则212323l ππ⨯⨯=,可得:3l =,由扇形的弧长公式可得:223r l ππ=,所以1r =,圆锥的高2213122OO =-=,由()22222r RR +-=,解得:942R =,所以球O 的表面积等于2818144328R πππ=⨯=,故选:A 20.D 【解析】【分析】若三棱锥从一个顶点出发的三条棱互相垂直,则该三棱锥的外接球与以这三条棱为邻边的长方体的外接球相同.【详解】因为三棱锥P ABC -中,PA ,PB 、PC 两两垂直,所以其外接球半径R 满足222222R PA PB PC =++=,2R =.故三棱锥P ABC -的外接球表面积为()2428ππ⨯=.故选:D.21.A 【解析】【分析】设AC 的中点为O ,连接,OB OD ,则由矩形的性质可知OA OC OB OD ===,所以可得O 为四面体D ABC -外接球的球心,求出OA 的长可得球的半径,从而可求出球的体积【详解】解:设AC 的中点为O ,连接,OB OD ,因为四边形ABCD 为矩形,所以OA OC OB OD ===,90ABC ∠=︒,所以O 为四面体D ABC -外接球的球心,因为3,1AB BC ==,所以22223110AC AB BC =+=+=,所以11022OA AC ==,所以面体D ABC -外接球的半径为102,所以该四面体外接球的体积为3344105103323R πππ⎛⎫== ⎪ ⎪⎝⎭,故选:A 22.B 【解析】【分析】先确定底面ABC 的外接圆圆心及半径,再确定球心位置,并利用球心和圆心的连线垂直于底面,得到直角三角形,利用勾股定理求解.【详解】设12AB AC AA m ===,三角形ABC 外接圆1O 的半径为r ,直三棱柱111ABC A B C -外接球O 的半径为R .因为120BAC ∠=︒,所以30ACB ∠=︒,于是24sin 30r ABm ==︒,2r m =,12O C m =.又球心O 到平面ABC 的距离等于侧棱长1AA 的一半,所以1OO m =.在1Rt OO C 中,由22211OC OO O C =+,得2224R m m =+,5R m =.所以球的体积34205(5)33V m ππ==,解得1m =.于是直三棱柱的高是122AA m ==.故选:B.23.B【解析】【分析】首先在ABC 中利用余弦定理求出BC 的长,进一步可判断ABC 为直角三角形,根据直角三角形和直棱柱的性质即可求出球心和半径,由体积公式即可求解.【详解】在ABC 中,2AB =,3AC =,30BAC ∠=,由余弦定理可得:22232cos 30344312BC AC AB AC AB =+-⋅⨯=+-⨯=,所以1BC =,所以222BC AC AB +=,可得ABC 为直角三角形,所以AB 的中点D 即为ABC 外接圆的圆心,设11A B 的中点为E ,则DE 的中点O 即为直三棱柱111ABC A B C -外接球的球心,设外接球的半径为R ,11522OD AA ==,112CD AB ==,所以222253122R OD CD ⎛⎫=+=+= ⎪ ⎪⎝⎭,所以外接球的体积是3344393322R πππ⎛⎫=⨯= ⎪⎝⎭,故选:B.24.B【解析】【分析】推导出SA 、SB 、SC 两两垂直,然后将正三棱锥S ABC -补成正方体SADB CEFG -,计算出正方体SADB CEFG -的体对角线长,即为三棱锥S ABC -的外接球直径,利用球体的表面积公式可得结果.【详解】取AC 中点N ,连接BN 、SN ,N Q 为AC 中点,SA SC =,AC SN ∴⊥,同理AC BN ⊥,SN BN N =,AC ∴⊥平面SBN ,SB ⊂平面SBN ,AC SB ∴⊥,SB AM ⊥且AC AM A ⋂=,SB ∴⊥平面SAC ,SA 、SC ⊂平面SAC ,SA SB ∴⊥,SB SC ⊥,三棱锥S ABC -是正三棱锥,SA ∴、SB 、SC 三条侧棱两两互相垂直.将正三棱锥S ABC -补成正方体SADB CEFG -,如下图所示:因为2SA =,所以正方体SADB CEFG -的体对角线长为323SF SA ==,所以,正三棱锥S ABC -的外接球的直径223R =,所以,正三棱锥S ABC -的外接球的表面积是()224212S R R πππ==⨯=,故选:B.【点睛】方法点睛:求空间多面体的外接球半径的常用方法:①补形法:侧面为直角三角形,或正四面体,或对棱二面角均相等的模型,可以还原到正方体或长方体中去求解;②利用球的性质:几何体中在不同面均对直角的棱必然是球大圆直径,也即球的直径;③定义法:到各个顶点距离均相等的点为外接球的球心,借助有特殊性底面的外接圆圆心,找其垂线,则球心一定在垂线上,再根据带其他顶点距离也是半径,列关系求解即可.25.AB【解析】【分析】设三棱柱111ABC A B C -的高为h ,AB AC a ==,三棱柱侧面积得()23ah +843=+,可得4ah =,设N ,M 分别是三棱柱上下底面的外心,则三棱柱外接球球心O 是MN 中点,由正弦定理求得ABC 外接圆的半径r ,由勾股定理结合基本不等式求得外接球半径R 的最小值,再由球的体积公式结合选项即可求解.【详解】设三棱柱111ABC A B C -的高为h ,AB AC a ==.因为120BAC ∠=,所以2cos303BC AB a =⋅=,则该三棱柱的侧面积为()23843ah +=+,故4ah =,设,N M 分别是三棱柱上下底面的外心,则三棱柱外接球球心O 是MN 中点,设ABC 的外接圆半径为r ,则MC =32sin 2sin120BC a r a BAC ===∠⨯,设球O 的半径为R ,则22222222164244h h h OC R r a h ⎛⎫==+=+=+≥ ⎪⎝⎭,所以2R ≥,故球O 的体积为:334432ππ2π333R ≥⋅=.结合选项可知:球O 体积可能是12π,32π3,故选:AB .26.AB 【解析】【分析】设圆锥的底面半径为r,球的半径为R,由圆锥的底面面积与球面面积比值为29,得到r与R的关系,计算出圆锥的高,从而求出圆锥体积与球体积的比.【详解】设圆锥的底面半径为r,球的半径为R,∵圆锥的底面面积与球面面积比值为2 9,∴22249rRππ=,则223r R=;设球心到圆锥底面的距离为d ,则221 3d R r R =-=,所以圆锥的高为43h d R R=+=或23h R d R=-=,设圆锥体积为1V与球体积为2V,当43h R=时,圆锥体积与球体积的比为2213321224133383442733R Rr hVV R Rππππ⎛⎫⎪⎝⎭===,当23h R=时,圆锥体积与球体积的比为2213321222133343442733R Rr hVV R Rππππ⎛⎫⎪⎝⎭===.故选:AB 27.AD 【解析】【分析】设正方体的棱长为a ,由线段MN 的最小值为31-求出a ,按照球的性质逐一判断每个选项即可.【详解】设正方体的棱长为a ,则其外接球的半径为32R a =,内切球的半径为2a R '=,正方体的外接球与内切球上各有一个动点M ,N ,由于两球球心相同,可得MN 的最小值为33122a a -=-,解得2a =,故C 错误;所以外接球的半径为3,表面积为4312ππ⨯=,故A 正确;内切球的半径为1,体积为43π,故B 错误;MN 的最大值为31R R '+=+,故D 正确;故选:AD.【点睛】本题考查正方体的外接球与内切球,正确求出正方体的外接球与内切球的半径是关键,考查了学生的空间想象能力,属于中档题.28.ACD【解析】【分析】求出当90θ=时,四面体ABCD 的体积最大,利用锥体的体积公式可判断A 选项的正误;利用余弦定理可判断B 选项的正误;利用90BAD ∠=时,四面体ABCD 的表面积的最大,可判断C 选项的正误;求出球O 的半径,利用球体的体积公式可判断D 选项的正误.【详解】对于A 选项,23AC AB ==,60ABC ∠=,则ABC 为等边三角形,取AC 的中点E ,则BE AC ⊥,同理可知,ACD △为等边三角形,所以,DE AC ⊥,且23sin 603BE DE ===,1332ABC S AC BE =⋅=△,所以,二面角B AC D --的平面角为BED θ=∠,设点D 到平面ABC 的距离为d ,则sin 3sin d DE θθ==,11333sin 33sin 3333D ABC ABC V S d θθ-=⋅=⨯⨯=≤,当且仅当90θ=时,等号成立,即四面体ABCD 的体积的最大值是33,A 选项正确;对于B 选项,由余弦定理可得()2222cos 1818cos 0,36BD BE DE BE DE θθ=+-⋅=-∈,所以,()0,6BD ∈,B 选项错误;对于C 选项,33ACD ABC S S ==△△,AB AD BC CD ===,BD BD =,ABD CBD ∴≅△△,所以,1sin 6sin 62CBD ABD S S AB AD BAD BAD ==⋅∠=∠≤△△,因此,四面体ABCD 的表面积的最大值是233261263⨯+⨯=+,C 选项正确;对于D 选项,设M 、N 分别为ABC 、ACD △的外心,则113EN EM BE ===,在平面BDE 内过点M 作BE 的垂线与过点N 作DE 的垂线交于点O ,BE AC ⊥,DE AC ⊥,BE DE E ⋂=,AC ∴⊥平面BDE ,OM ⊂平面BDE ,OM AC ∴⊥,OM BE ⊥,BE AC E ⋂=,OM ∴⊥平面ABC ,同理可得ON ⊥平面ACD ,则O 为四面体ABCD 的外接球球心,连接OE ,EM EN =,OE OE =,90OME ONE ∠=∠=,OME ONE ∴≅△△,所以,302OEM θ∠==,23cos303EM OE ∴==,AC ⊥平面BDE ,OE ⊂平面BDE ,OE AC ∴⊥,22393OA OE AE ∴=+=,即球O 的半径为393R =,因此,球O 的体积为345239327V R ππ==,D 选项正确.故选:ACD.【点睛】方法点睛:求空间多面体的外接球半径的常用方法:①补形法:侧面为直角三角形,或正四面体,或对棱二面角均相等的模型,可以还原到正方体或长方体中去求解;②利用球的性质:几何体中在不同面均对直角的棱必然是球大圆直径,也即球的直径;③定义法:到各个顶点距离均相等的点为外接球的球心,借助有特殊性底面的外接圆圆心,找其垂线,则球心一定在垂线上,再根据带其他顶点距离也是半径,列关系求解即可.29.323π【解析】【分析】根据截面圆性质,先求出截面圆半径,然后由求得球半径,从而求得体积.【详解】因为2AB =,23BC =,90ABC ∠=︒,所以224AC AB BC =+=,所以三角形外接圆半径22AC r ==,又球心O 到截面ABC 的距离为22,所以球的半径为()2222223R =+=.球体积为()33442332333V R πππ==⨯=.故答案为:323π.30.92π【解析】【分析】由正四棱锥的底边长与侧面积可得侧棱长,求出正四棱锥的高,球心在高所在直线上,利用勾股定理求半径,则球的体积可求.【详解】设正四棱锥的侧棱长为b ,又侧面积为45,∴21421452b ⨯⨯⨯-=,解得6b =,∴正四棱锥P ABCD -的高622h =-=,正四棱锥P ABCD -的外接球的球心O 在正四棱锥P ABCD -的高所在直线上,设球O 的半径为R ,则()()22222R R -+=,解得32R =,则球O 的体积为334439R 3322V πππ⎛⎫==⨯= ⎪⎝⎭.故答案为:92π.31.50π【解析】【分析】把四棱锥P ABCD -放置在长方体中,求出长方体外接球的表面积得答案.【详解】把四棱锥P ABCD -放置在长方体中,则长方体的外接球即为四棱锥的外接球,5PA =,4AB =,3AD =,∴长方体的对角线长为22254352++=,则长方体的外接球的半径522R =,∴该阳马的外接球的表面积为225244()502S R πππ==⋅=.故答案为:50π.32.20π【分析】如图,由题意可得BD ⊥平面ABC ,E 为三角形ABC 的外心,则三棱锥A BCD -的外接球的球心在过E 垂直于平面ABC 的直线上,设为点O ,则外接球的半径为OB ,然后利用已知的数据求出半径,进而可求出表面积【详解】解:因为平面BCD ⊥平面ABC ,平面BCD 平面ABC BC =,90CBD ∠=︒,所以BD ⊥平面ABC ,设E 为三角形ABC 的外心,连接,AE BE ,则290AEB BCA ∠=∠=︒,因为22AB =,所以2AE BE ==,过E 作垂直于平面ABC 的直线,则三棱锥A BCD -的外接球的球心在此直线上,设外接球的球心为O ,连接,OB OD ,设外接球的半径为R ,则OB OD R ==,因为2BD =,所以22215OB =+=,即5R =,所以三棱锥A BCD -的外接球的表面积为()2244520R πππ=⋅=,故答案为:20π。
专题七 不等式问题一:多面体与球的组合体问题一、考情分析纵观近几年高考对于组合体的考查,重点放在与球相关的外接与内切问题上.要求学生有较强的空间想象能力和准确的计算能力,才能顺利解答.从实际教学来看,这部分知识是学生掌握最为模糊,看到就头疼的题目.分析原因,除了这类题目的入手确实不易之外,主要是学生没有形成解题的模式和套路,以至于遇到类似的题目便产生畏惧心理.二、经验分享(1)求解球与棱柱、棱锥的接、切问题时,一般过球心及接、切点作截面,把空间问题转化为平面图形与圆的接、切问题,再利用平面几何知识寻找几何中元素间的关系求解.(2)若球面上四点P ,A ,B ,C 构成的三条线段P A ,PB ,PC 两两互相垂直,且P A =a ,PB =b ,PC =c ,一般把有关元素“补形”成为一个球内接长方体,利用4R 2=a 2+b 2+c 2求解. (3)研究有一条侧棱垂直于底面的三棱锥的外接球,可把该三棱锥补成直三棱柱三、知识拓展(1)正方体的棱长为a ,球的半径为R , ①若球为正方体的外接球,则2R =3a ; ②若球为正方体的内切球,则2R =a ; ③若球与正方体的各棱相切,则2R =2a .(2)若长方体的同一顶点的三条棱长分别为a ,b ,c ,外接球的半径为R ,则2R =a 2+b 2+c 2. (3)正四面体的外接球与内切球的半径之比为3∶1四、题型分析(一) 球与柱体的组合体规则的柱体,如正方体、长方体、正棱柱等能够和球进行充分的组合,以外接和内切两种形态进行结合,通过球的半径和棱柱的棱产生联系,然后考查几何体的体积或者表面积等相关问题. 1.1 球与正方体如图1所示,正方体1111ABCD A B C D -,设正方体的棱长为a ,,,,E F H G 为棱的中点,O 为球的球心.常见组合方式有三类:一是球为正方体的内切球,截面图为正方形EFGH 和其内切圆,则2aOJ r ==;二是与正方体各棱相切的球,截面图为正方形EFGH 和其外接圆,则22GO R a ==;三是球为正方体的外接球,截面图为长方形11ACA C 和其外接圆,则132AO R a '==.通过这三种类型可以发现,解决正方体与球的组合问题,常用工具是截面图,即根据组合的形式找到两个几何体的轴截面,通过两个截面图的位置关系,确定好正方体的棱与球的半径的关系,进而将空间问题转化为平面问题.【例1】 棱长为1的正方体1111ABCD A B C D -的8个顶点都在球O 的表面上,E F ,分别是棱1AA ,1DD 的中点,则直线EF 被球O 截得的线段长为( ) A .22B .1C .212+D .2【分析】本题求解关键是得出直线EF 被球O 截得的线段为球的截面圆的直径 【解析】由题意可知,球为正方体的外接球.平面11AA DD 截面所得圆面的半径12,22AD R ==11EF AA DD ⊂面,∴直线EF 被球O 截得的线段为球的截面圆的直径22R =.【小试牛刀】【2017届广东省深圳市高三下学期第一次调研】已知棱长为2的正方体,球与该正方体的各个面相切,则平面截此球所得的截面的面积为( )A. B. C. D.1.2 球与长方体长方体各顶点可在一个球面上,故长方体存在外切球.但是不一定存在内切球.设长方体的棱长为,,,a b c 其体对角线为l .当球为长方体的外接球时,截面图为长方体的对角面和其外接圆,和正方体的外接球的道理是一样的,故球的半径222.22l a b c R ++==【例2】在长、宽、高分别为2,2,4的长方体内有一个半径为1的球,任意摆动此长方体,则球经过的空间部分的体积为( ) A.10π3B.4πC.8π3D.7π3【分析】转化为求正方体的内切球【解析】利用运动的观点分析在小球移动的过程中,进过部分的几何体.因半径为1的小球恰好为棱长为2的正方体的内切球,故小球经过空间由上往下看为:半个小球、高为2的圆柱和半个小球,三部分的体积为:3241101212=.323πππ⨯⨯⨯+⨯⨯ 【小试牛刀】已知正四棱柱的底边和侧棱长均为32,则该正四棱锥的外接球的表面积为 . 1.3 球与直棱柱球与一般的直棱柱的组合体,常以外接形态居多.下面以正三棱柱为例,介绍本类题目的解法构造直角三角形法.设正三棱柱111ABC A B C -的高为,h 底面边长为a ,如图2所示,D 和1D 分别为上下底面的中心.根据几何体的特点,球心必落在高1DD 的中点O ,3,,,23h OD AO R AD a ===借助直角三角形AOD 的勾股定理,可求223()()23h R a =+.【例3】已知直三棱柱ABC -A 1B 1C 1的6个顶点都在球O 的球面上,若AB =3,AC =4,AB ⊥AC ,AA 1=12,则球O 的半径为( )A.3172 B .210 C.132D .310【分析】先确定球心位置,再利用222R r d =+确定球的半径 【解析】如图所示,由球心作平面ABC 的垂线,则垂足为BC 的中点M .又AM =12BC =52,OM =12AA 1=6,所以球O 的半径R =OA =522+62=132. 【点评】直棱柱的外接球的球心是上下底面外接圆圆心连线的中点.【小试牛刀】直三棱柱111ABC A B C -的六个顶点都在球O 的球面上,若1AB BC ==,0120ABC ∠=,123AA =,则球O 的表面积为( )A .4πB .8πC .16πD .24π (二) 球与锥体的组合体规则的锥体,如正四面体、正棱锥、特殊的一些棱锥等能够和球进行充分的组合,以外接和内切两种形态进行结合,通过球的半径和棱锥的棱和高产生联系,然后考查几何体的体积或者表面积等相关问题. 2.1 球与正四面体正四面体作为一个规则的几何体,它既存在外接球,也存在内切球,并且两心合一,利用这点可顺利解决球的半径与正四面体的棱长的关系.如图4,设正四面体S ABC -的棱长为a ,内切球半径为r ,外接球的半径为R ,取AB 的中点为D ,E 为S 在底面的射影,连接,,CD SD SE 为正四面体的高.在截面三角形SDC ,作一个与边SD 和DC 相切,圆心在高SE 上的圆,即为内切球的截面.因为正四面体本身的对称性可知,外接球和内切球的球心同为O .此时,,CO OS R OE r ===,23,,33SE a CE ==则有2222233a R r a R r CE +=-=,=,解得:66,.412R r ==这个解法是通过利用两心合一的思路,建立含有两个球的半径的等量关系进行求解.同时我们可以发现,球心O 为正四面体高的四等分点.如果我们牢记这些数量关系,可为解题带来极大的方便.【例4】将半径都为1的四个钢球完全装入形状为正四面体的容器里,这个正四面体的高的最小值为 ( ) A.3263+ B. 2+263 C. 4+263 D. 43263+【小试牛刀】【2017届云南曲靖一中高三上学期月考】正四面体的棱长为a ,其内接球与外接球的体积比为 .2.2 球与三条侧棱互相垂直的三棱锥球与三条侧棱互相垂直的三棱锥组合问题,主要是体现在球为三棱锥的外接球.解决的基本方法是补形法,即把三棱锥补形成正方体或者长方体.常见两种形式:一是三棱锥的三条侧棱互相垂直并且相等,则可以补形为一个正方体,它的外接球的球心就是三棱锥的外接球的球心.如图5,三棱锥111A AB D -的外接球的球心和正方体1111ABCD A B C D -的外接球的球心重合.设1AA a =,则32R =.二是如果三棱锥的三条侧棱互相垂直并且不相等,则可以补形为一个长方体,它的外接球的球心就是三棱锥的外接球的球心.2222244a b c l R ++==(l 为长方体的体对角线长).【例5】在正三棱锥S ABC -中,M N 、分别是棱SC BC 、的中点,且AM MN ⊥,若侧棱23SA =,则正三棱锥S ABC -外接球的表面积是 .【解析】如图6,正三棱锥对棱相互垂直,即,AC SB ⊥又,,,.SB MN MN AC MN AM MN SAC ∴⊥⊥∴⊥∥又平面于是,,,SB SAC SB SA SB SC ⊥∴⊥⊥平面从而.SA SC ⊥此时正三棱锥S ABC -的三条侧棱互相垂直并且相等,故将正三棱锥补形为正方体.球的半径23,3,436.2R SA R S R ππ=∴=∴==【小试牛刀】一个几何体的三视图如图所示,其中主视图和左视图是腰长为1的两个全等的等腰直角三角形,则该几何体的外接球的表面积为( )A .12πB .43πC .3πD .123π 2.3 球与正棱锥球与正棱锥的组合,常见的有两类,一是球为三棱锥的外接球,此时三棱锥的各个顶点在球面上,根据截面图的特点,可以构造直角三角形进行求解.二是球为正棱锥的内切球,例如正三棱锥的内切球,球与正三棱锥四个面相切,球心到四个面的距离相等,都为球半径R .这样求球的半径可转化为球球心到三棱锥面的距离,故可采用等体积法解决,即四个小三棱锥的体积和为正三棱锥的体积.【例6】在三棱锥P -ABC 中,PA =PB=PC=3,侧棱PA 与底面ABC 所成的角为60°,则该三棱锥外接球的体积为( ) A .π B.3πC. 4πD.43π【解析】如图7所示,过P 点作底面ABC 的垂线,垂足为O ,设H 为外接球的球心,连接,,AH AO 因60,3,PAO PA ∠==故32AO =,32PO =,又△AHO 为直角三角形,222,,AH PH r AH AO OH ==∴=+22233344()(),1,1.2233r r r V ππ∴=+-∴=∴=⨯=【小试牛刀】【河北省邯郸市2018届高三第一次模拟】设正三棱锥P ABC -的高为H ,且此棱锥的内切球的半径为R ,若二面角P AB C --35,则HR=( ) A. 5 B. 6 C. 7 D. 8 2.4 球与特殊的棱锥球与一些特殊的棱锥进行组合,一定要抓住棱锥的几何性质,可综合利用截面法、补形法等进行求解.例如,四个面都是直角三角形的三棱锥,可利用直角三角形斜边中点几何特征,巧定球心位置.如图8,三棱锥S ABC -,满足,,SA ABC AB BC ⊥⊥面取SC 的中点为O ,由直角三角形的性质可得:,OA OS OB OC ===所以O 点为三棱锥S ABC -的外接球的球心,则2SCR =.【例7】矩形ABCD 中,4,3,AB BC ==沿AC 将矩形ABCD 折成一个直二面角B AC D --,则四面体ABCD 的外接球的体积是( )A.π12125 B.π9125 C.π6125 D.π3125【解析】由题意分析可知,四面体ABCD 的外接球的球心落在AC 的中点,此时满足,OA OD OB OC ===522AC R ∴==,343V R π=1256π=. 【小试牛刀】【2017届山西省临汾一中、忻州一中、长治二中等五校高三上学期联考】已知三棱锥内接与球,且,若三棱锥体积的最大值为,则球的表面积为( )A.B.C.D.(三) 球与球的组合体对个多个小球结合在一起,组合成复杂的几何体问题,要求有丰富的空间想象能力,解决本类问题需掌握恰当的处理手段,如准确确定各个小球的球心的位置关系,或者巧借截面图等方法,将空间问题转化平面问题求解. 【例8】 在半径为R 的球内放入大小相等的4个小球,则小球半径r 的最大值为( ) A. (2-1)R B . (6-2)R C. 14R D.1 3R 【解析】要使得小球的半径最大,需使得4个小球的球心为一个正四面体的四个顶点,如图9所示,此时正四面体A BCD -的外接球的球心为O ,即为半径为R 的球的球心,则,AO R r =-又因O 为1AO 的四分点,故14(),3AO R r =-在1Rt ABO ∆中,22212422,3,[()](2)(3),333(62).AB r BO r R r r r r R ==∴-⨯=-∴=-【小试牛刀】如图,在一个正方体内放入两个半径不相等的球O 1,O 2,这两个球外切,且球O 1与正方体共顶点A 的三个面相切,球O 2与正方体共顶点B 1的三个面相切,则两球在正方体的面AA 1C 1C 上的正投影是( )(四) 球与几何体的各条棱相切球与几何体的各条棱相切问题,关键要抓住棱与球相切的几何性质,达到明确球心的位置为目的,然后通过构造直角三角形进行转换和求解.如与正四面体各棱都相切的球的半径为相对棱的一半:24r '=.【例9】把一个皮球放入如图10所示的由8根长均为20 cm 的铁丝接成的四棱锥形骨架内,使皮球的表面与8根铁丝都有接触点,则皮球的半径为( )A .l03cmB .10 cmC .102cmD .30cm【解析】如图11所示,由题意球心在AP 上,球心为O,过O 作BP 的垂线ON 垂足为N,ON=R,OM=R,因为各个棱都为20,所以AM=10,BP=20,BM=10,AB=102,设BPA α∠=,在Rt ∆BPM 中,222BP BM PM =+,所以103PM =.在Rt ∆PAM 中, 222PM AM AP =+,所以102PA =.在Rt ∆ABP 中, 1022sin 202AB BP α===,在Rt ∆ONP 中, sin ON ROP OPα==,所以22R OP =,所以2OP R =.在Rt ∆OAM 中, 222OM AO AM =+,所以,22(1022)100R R =-+,解得,10R =或30(舍),所以,10,R cm =故选B.(五) 与三视图相结合的组合体问题本类问题一般首先给出三视图,然后考查其直观图的相关的组合体问题.解答的一般思路是根据三视图还 原几何体,根据几何体的特征选择以上介绍的方法进行求解.【例10】【湖南G10教育联盟2018年4月高三联考】一个几何体的三视图如图所示,其中正视图和侧视图是腰长为1的两个全等的等腰直角三角形,若该几何体的所有顶点在同一球面上,则该球的表面积是( )A.32π B. 34π C. 3π D. 3π【小试牛刀】【2017届河北省正定中学高三上学期期中)】如图,网格纸上小正方形的边长为1,粗实线及粗虚线画出的是某多面体的三视图,则该多面体外接球的表面积为( )A.B.C.D.综合上面的五种类型,解决与球的外切问题主要是指球外切多面体与旋转体,解答时首先要找准切点,通过作截面来解决.如果外切的是多面体,则作截面时主要抓住多面体过球心的对角面来作;把一个多面体的几个顶点放在球面上即为球的内接问题.解决这类问题的关键是抓住内接的特点,即球心到多面体的顶点的距离等于球的半径.发挥好空间想象力,借助于数形结合进行转化,问题即可得解.如果是一些特殊的几何体,如正方体、正四面体等可以借助结论直接求解,此时结论的记忆必须准确.五、迁移运用1.【河南省六市2018届高三一模】在三棱锥S ABC -中, SB BC ⊥, SA AC ⊥, SB BC =, SA AC =,12AB SC =,且三棱锥S ABC -932,则该三棱锥的外接球半径是( )A. 1B. 2C. 3D. 4 【答案】C【解析】取SC 中点O ,则OA=OB=OC=OS,即O 为三棱锥的外接球球心,设半径为r,则2139323,342r r r ⨯⨯=∴=选C. 2.【贵州省凯里市第一中学2018届高三下学期模拟】图是棱长为2的正八面体(八个面都是全等的等边三角形),球O 是该正八面体的内切球,则球O 的表面积为( )A.83π B. 43πC. 8627πD. 4627π【答案】A【解析】如图所示,设已知的正八面体为SABCDI ,可知SI ⊥平面ABCD 于球心O ,且点O 为正方形ABCD 的中心,设球O 与正四棱锥S ABCD -的侧面SBC 相切于点F ,连接SF 并延长,交BC 于点E ,可知E 为BC 的中点,连接,OE OF ,则1,3OE SE == 2SO =,由1122SOE S SE OF SO OE ∆=⨯⨯=⨯⨯,得63OF =,即正八面体内切球的半径为63,所以内切球的表面积为268433O S ππ⎛⎫=⨯⨯= ⎪ ⎪⎝⎭,故选A. 3.【宁夏吴忠市2018届高三下学期高考模拟】半径为R 的球O 中有一内接圆柱.当圆柱的侧面积最大时,球的表面积与该圆柱的侧面积之差是( ) A. 22R π B. 252R π C. 23R π D. 272R π 【答案】A【解析】设圆柱的上底面半径为r ,球的半径与上底面夹角为α,则cos r R α=圆柱的高为2sin R α,圆柱的侧面积为22sin 2R πα,当且仅当4πα=时, sin 21α=,圆柱的侧面积最大,圆柱的侧面积为22R π球的表面积为24R π,球的表面积与该圆柱的侧面积之差为22R π,故选A4.【河南省中原名校(即豫南九校)2018届高三第六次质量考评】已知,,,A B C D 是球O 表面上四点,点E 为BC 的中点,若,,120AE BC DE BC AED ⊥⊥∠=︒, 3,2AE DE BC ===,则球O 的表面积为( ) A.73π B.283πC. 4πD. 16π 【答案】B5.【四川省德阳市2018届高三二诊】如图所示的三视图表示的几何体的体积为323,则该几何体的外接球的表面积为( )A. 12πB. 24πC. 36πD. 48π 【答案】C6.【四川省雅安中学2018届高三下学期第一次月考】已知三棱锥A BCD -中, ,,AB AC AB AC =⊥BD DC ⊥, 6DBC π∠=,若三棱锥A BCD -的最大体积为32,则三棱锥外接球的表面积为A. 43πB. 8πC. 12πD. 123π 【答案】C【解析】取BC 的中点O ,连接AO , DO ,作DE BC ⊥于点E ,设AB AC x ==. ∵,AB AC ⊥ BD DC ⊥∴AO OB OC OD ===,即O 三棱锥A BCD -外接球的球心. ∵,AB AC AB AC =⊥,∴22AO OB OC OD x ====∵6DBC π∠=,∴22CD x =,∴64DE = ∵三棱锥A BCD -的最大体积为32∴当DE 为三棱锥A BCD -的高时,三棱锥A BCD -的体积最大,即211633242x x ⨯=. ∴6x =,则三棱锥A BCD -2632=.∴三棱锥A BCD -的外接球的表面积为()24312ππ⨯=.故选C.7.【四川省成都市龙泉驿区第一中学校2018届高三3月“二诊”】如图,在四棱锥C -ABOD 中,CO⊥平面ABOD ,AB∥OD,OB⊥OD,且AB =2OD =12,AD =62,异面直线CD 与AB 所成角为30°,点O ,B ,C ,D 都在同一个球面上,则该球的表面积为 A. 72π B. 84π C. 128π D. 168π【答案】B8.【2017届河北省石家庄市高三第二次质量检测】四棱锥的底面是边长为6的正方形,且,若一个半径为1的球与此四棱锥所有面都相切,则该四棱锥的高是( )A. 6B. 5C.D.【答案】D【解析】由题知,四棱锥是正四棱锥,球的球心在四棱锥的高上,过正四棱锥的高作组合体的轴截面如图:其中是斜高,为球面与侧面的切点.设,易知,所以,即,解得,故选D .9.【2017届辽宁省沈阳市郊联体高三上学期期末】如图,有一个水平放置的透明无盖的正方体容器,容器高8,将一个球放在容器口,再向容器注水,当球面恰好接触水面时测得水深为6,如不计容器的厚度,则球的表面积为()A. B. C. D.【答案】A【解析】设正方体上底面所在平面截球得小圆,则圆心为正方体上底面正方形的中心. 如图,设球的半径为,根据题意得球心到上底面的距离等于,而圆的半径为,由球的截面圆性质,得,解得.球的表面积为,故选A.10.【2017届云南省云南师范大学附属中学高三高考适应性月考】四面体的四个顶点都在球的球面上,,且平面平面,则球的表面积为()A. B. C. D.【答案】B【解析】如图,分别为的中点,易知球心点在线段上,因为,则.又∵平面平面,平面平面=BC,∴平面ABC,∴,∴.因为点是的中点,∴,且.设球心的半径为,,则,在中,有,在中,有,解得,所以,故选B.11.【2017届湖南省衡阳市高三上学期期末考试】一个四面体的三视图如图所示,则该四面体的外接球的表面积为()A. B. C. D.【答案】B【解析】由题意可知,几何体为三棱锥,底面等腰直角三角形的底边长为2,底面三角形的高为1,棱锥的一条侧棱垂直底面的三角形的一个顶点,棱锥的高为1,其外接球的球心是底面斜边的中点,故外接球的半径,故外接球的表面积为,故选B.12.【2017学年湖北省黄冈市黄冈中学上学期期末】在矩形中,,现将沿对角线折起,使点到达点的位置,得到三棱锥,则三棱锥的外接球的表面积为( )A. B. C. D. 大小与点的位置有关【答案】C【解析】由题意,的中点为三棱锥的外接球的球心, ∵, ∴球的半径为, ∴三棱锥的外接球的表面积为.故选C.13.【湖北省部分重点中学2017届高三上学期第二次联考】一个几何体的三视图如图所示,则该几何体的外接球的表面积为()A. B. C. D.【答案】B14.【2017届甘肃省高台县第一中学高三上学期期末】已知三棱锥,在底面中,,,面,,则此三棱锥的外接球的体积为()A. B. C. D.【答案】A【解析】依题意,利用正弦定理有,其中为三角形的外接圆半径.设球的半径为,则,故球的体积为.15.【2017届甘肃天水一中高三12月月考】如图,直三棱柱111ABC A B C -的六个顶点都在半径为1的半球面上,AB AC =,侧面11BCC B 是半球底面圆的内接正方形,则侧面11ABB A 的面积为 .【答案】1【解析】由图可得⇒==21,21AB AA 111112ABB A S AA AB =⨯=. 16.【2017届河北武邑中学高三上学期调研四】已知某棱锥的三视图如图(最左侧是正视图)所示,俯视图为正方形及一条对角线,根据图中所给的数据,该棱锥外接球的体积是_____.【答案】823π 【解析】由该棱锥的三视图可知,该棱锥是以边长为2的正方形为底面,高为2的四棱锥,做出其直观图所示,则2222PA AC PC ===,, ,PA ⊥面ABCD ,所以PC 即为该棱锥的外接球的直径,则2R =,即该棱锥外接球的体积3(2)482•33V ππ==,故答案为823π.17.【2016届陕西省渭南市白水中学高三上第三次月考】一个空间几何体的三视图如图所示,且这个空间几何体的所有顶点都在同一个球面上,则这个球的表面积是 .【答案】16π-, 18.【2016届黑龙江省哈尔滨师大附中高三12月考】利用一个球体毛坯切削后得到一个四棱锥P ABCDPA=,且PA⊥平面ABCD,则球体毛坯体积的最小值应为.其中底面四边形是边长为1的正方形,132.【解析】如图,将四棱锥CD 补全为一个正方体,则:当正方体为球的内接正方体时球的体积最小,此时正方体的体对角线为球的直径,长为222321113,2R R =++==∴球的体积为:3344333322V R πππ⎛⎫==⨯= ⎪ ⎪⎝⎭;故答案应填:32.19.【2016届河北省邯郸市一中高三一轮收官考试】如图,在四面体CD AB 中,AB ⊥平面CD B ,CD ∆B 是边长为6的等边三角形.若4AB =,则四面体CD AB 外接球的表面积为 .【答案】64π【解析】该四面体的外接球与下面的正三棱柱的外接球是同一个球,因为底面是正三角形,边长为6,所以26sin 60233AE =⨯⨯︒=,122OE AB ==,所以22216R OE AE =+=,表面积2464S r ππ==. OD'C'B C AE。
纵观近几年高考对于组合体的考查,与球相关的外接与内切问题是高考命题的热点之一•高考命题小题综合化倾向尤为明显,要求学生有较强的空间想象能力和准确的计算能力,才能顺利解答•从实际教学来看,这部分知识学生掌握较为薄弱、认识较为模糊,看到就头疼的题目•分析原因,除了这类题目的入手确实不易之外,主要是学生没有形成解题的模式和套路,以至于遇到类似的题目便产生畏惧心理•下面结合近几年高考题对球与几何体的切接问题作深入的探究,以便更好地把握高考命题的趋势和高考的命题思路,力争在这部分内容不失分•从近几年全国高考命题来看,这部分内容以选择题、填空题为主,大题很少见首先明确定义1:若一个多面体的各顶点都在一个球的球面上,则称这个多面体是这个球的内接多面体,这个球是这个多面体的外接球。
定义2:若一个多面体的各面都与一个球的球面相切,则称这个多面体是这个球的外切多面体,这个球是这个多面体的内切球•1球与柱体的切接规则的柱体,如正方体、长方体、正棱柱等能够和球进行充分的组合,以外接和内切两种形态进行结合,通过球的半径和棱柱的棱产生联系,然后考查几何体的体积或者表面积等相关问题•1.1 球与正方体如图所示,正方体ABCD-A1B1C1D1,设正方体的棱长为a,E,F,H,G为棱的中点,0为球的球心.常见组合方式有三类:一是球为正方体的内切球,截面图为正方形EFGH和其内a切圆,则0J = r ;二是与正方体各棱相切的球,截面图为正方形EFGH和其外接圆,2则Go| =R =乎a ;三是球为正方体的外接球,截面图为长方形ACAG和其外接圆,则73AO =R -a・通过这三种类型可以发现,解决正方体与球的组合问题,常用工具是截面2图,即根据组合的形式找到两个几何体的轴截面,通过两个截面图的位置关系,确定好正方体的棱与球的半径的关系,进而将空间问题转化为平面问题(1)正方体的内切球,如图1. 位置关系:正方体的六个面都与一个球都相切,正方体中心与球心重合; 数据关系:设正方体的棱长为a,球的半径为r,这时有2r =a.(2)正方体的外接球,如图2. 位置关系:正方体的八个顶点在同一个球面上;正方体中心与球心重合;数据关系:设正方体的棱长为a,球的半径为r,这时有2r = -、3a.(3)正方体的棱切球,如图3.位置关系:正方体的十二条棱与球面相切,正方体中心与球心重合;数据关系:设正方体的棱长为a,球的半径为r,这时有2r —、2a._l c例1 棱长为1的正方体ABCD-AB I G。
专题多面体与球的组合体问题综述11.球与柱体的组合体21.1 球与正方体21.2球与长方体21.3球与正棱柱22球与锥体的组合体32.1 球与正四面体32.2 球与三条侧棱互相垂直的三棱锥32.4 球与其他棱锥43三视图相结合的组合体问题44.球的截面问题5专项训练题球与几何体的组合体问题5综述在各类考试中,与球有关的问题往往是:(1)外接球一个几何体的所有顶点在球上,此球即为外接球,确定其半径的方法主要是:A.将几何体补为长方体或正方体,化为这两种特殊几何体的外接球问题;B.利用外接球的球心的特点〔到几何体所有顶点的距离相等,先确定球心的轨迹,再列等式,解得半径〕解此类题的关键是:球心到多面体的顶点的距离都相等,都等于球的半径,这是确定球心位置的根本依据要知道以下知识:〔1〕正方体,长方体的外接球的球心在体对角线的中点处;〔2〕直棱柱的外接球的球心在高的中点;〔3〕对于底面是三角形的棱锥,需要知道:在空间,到三角形三个顶点距离相等的点,在经过该三角形外心且与该三角形平面垂直的直线上;〔4〕对某些特殊的三棱锥,可以将其补成为正〔长〕方体,三棱锥的外接球就是正〔长〕方体的外接球(2)切球也即球在几何体部,与其所有侧面均相切,这种球的半径往往用体积公式来确定,类似于求三角形接圆的半径问题。
1.球与柱体的组合体1.1 球与正方体如图1所示,正方体1111ABCD A B C D -,设正方体的棱长为a ,,,,E F H G 为棱的中点,O 为球的球心.常见组合方式有三类:一是球为正方体的切球,截面图为正方形EFGH 和其切圆,那么2a OJ r ==; 二是与正方体各棱相切的球,截面图为正方形EFGH 和其外接圆,那么22GO R ==; 三是球为正方体的外接球,截面图为长方形11ACAC 和其外接圆,那么13AO R '==. 例将棱长为2的正方体木块削成一个体积最大的球,那么这个球的外表积为〔〕 A .2πB .4πC .8πD .16π1.2球与长方体长方体必有外接球,不一定存在切球〔只有为正方体时才有〕. 设长方体的棱长为,,,a b c 其体对角线为l ,那么22222(2)l R a b c ==++,外接球的半径2222l a b c R ++==1.3球与正棱柱下面以正三棱柱为例。
21 3 多面体与球切、接的问题(二)3 球与球相切问题对于球与球的相切组合成复杂的几何体问题,要根据丰富的空间想象力,通过准确确定各个 小球的球心的位置,或者巧借截面图等方法,将空间问题转化平面问题求解.例 8 已知有半径分别为 2、3 的球各两个,且这四个球彼此相外切,现有一个球与此四个球都相外切,则此球的半径为.思路分析:结合图形,分析四个球的球心 A 、B 、C 、D 的位置,知 AD=AC=BD=BC=5,AB=6,CD=4.设 AB 中点为 E 、CD 中点为 F ,连结 EF.在△ABF 中可得 BF = ,在△EBF 中可得 EF = 2 .由于对称性可得第五个球的球心 O 在 EF 上,连结 OA 、OD.设第五个球的半径为 r ,根据 OE+OF=EF 建立r 的方程.3例 9 把四个半径都是 1 的球中的三个放在桌面上,使它两两外切,然后在它们上面放上第四个球,使它与前三个都相切,求第四个球的最高点与桌面的距离.思路分析:关键在于能根据要求构造出相应的几何体,由于四个球半径相等,故四个球一定 组成正四面体的四个顶点且正四面体的棱长为两球半径之和 2.4 球与几何体的各条棱相切问题球与几何体的各条棱相切问题,关键要抓住棱与球相切的几何性质,达到明确球心的位置为目的,然后通过构造直角三角形进行转换和求解.如与正四面体各棱都相切的球的半径为相对 棱的一半: r ' =2 a .4 例 10 把一个皮球放入如图 10 所示的由 8 根长均为 20 cm 的铁丝接成的四棱锥形骨架内,使皮球的表面与 8 根铁丝都有接触点,则皮球的半径为()A .l0 cmB .10 cm23222C.10 cm D.30cm思路分析:根据题意球心O 在图中AP 上,过O 作BP 的垂线ON 垂足为N,ON=R,OM=R,由各个棱都为20,得到AM=10,BP=20,BM=10,AB=10 ,设∠BPA =α,在Rt∆BPM 中,由BP2 =BM 2 +PM 2 ,得PM =10 .在Rt∆PAM 中, 由PM 2 =AM 2 +AP2 ,得PA =10 2 .在Rt∆ABP 中得,sinα=AB=10 2=,在Rt∆ONP 中得, BP 20 2sinα=ON=R, 从而R=,OP =2R .在Rt∆OAM 中, 由OM 2 =AO2 +AM 2 , OP OP OP 2建立方程R2 = (10 -2R)2 +100即可得解.25 球与旋转体切接问题首先画出球及其它旋转体的公共轴截面,然后寻找几何体与几何体几何元素之间的关系.例11 求球与它的外切圆柱、外切等边圆锥的体积之比.思路分析:首先画出球及它的外切圆柱、等边圆锥,它们公共的轴截面,然后寻找几何体与几何体之间元素的关系.例12在棱长为1的正方体内有两个球相外切且又分别与正方体内切.(1)求两球半径之和;(2)球的半径为多少时,两球体积之和最小.思路分析:此题的关键在于作截面,一个球在正方体内,学生一般知道作对角面,而两个球的球心连线也应在正方体的体对角线上,故仍需作正方体的对角面,得如图的截面图,在图中,观察R 与r 和棱长间的关系即可.综合上面的五种类型,解决与球的外切问题主要是指球外切多面体与旋转体,解答时首先要找准切点,通过作截面来解决.如果外切的是多面体,则作截面时主要抓住多面体过球心的对角面来作;把一个多面体的几个顶点放在球面上即为球的内接问题.解决这类问题的关键是抓住内接的特点,即球心到多面体的顶点的距离等于球的半径.发挥好空间想象力,借助于数形结合进行转化,问题即可得解.如果是一些特殊的几何体,如正方体、正四面体等可以借助结论直接求解,此时结论的记忆必须准确.高考题往往与三视图相结合,题目的难易不一,在复习中切忌好高骛远,应重视各种题型的备考演练,重视高考信息的搜集,不断充实题目的类型,升华解题的境界.。
第7节几何体的展开、折叠、切、截问题【基础知识】解决球与其他几何体的切、接问题,关键在于仔细观察、分析,弄清相关元素的关系和数量关系,选准最佳角度作出截面(要使这个截面尽可能多地包含球、几何体的各种元素以及体现这些元素之间的关系),达到空间问题平面化的目的.【规律技巧】有关折叠问题,一定要分清折叠前后两图形(折前的平面图形和折叠后的空间图形)各元素间的位置和数量关系,哪些变,哪些不变.研究几何体表面上两点的最短距离问题,常选择恰当的母线或棱展开,转化为平面上两点间的最短距离问题.om【典例讲解】例1、如图所示,平面四边形ABCD 中,AB =AD =CD =1,BD =2,BD ⊥CD ,将其沿对角线BD 折成四面体ABCD ,使平面ABD ⊥平面BCD ,若四面体ABCD 的顶点在同一个球面上,则该球的体积为()A.32πB .3π C.23πD .2π所以该球的体积V =43π=32π.故选A.【答案】A【变式探究】已知一个正方体的所有顶点在一个球面上.若球的体积为9π2,则正方体的棱长为________.【针对训练】1、已知矩形ABCD 的面积为8,当矩形ABCD 周长最小时,沿对角线AC 把△ACD 折起,则三棱锥外接球表面积等于()A .8πB .16πC .482πD .50π【答案】B 2、已知某一多面体内接于球构成一个简单组合体,如果该组合体的正视图、侧视图、俯视图均如图所示,且图中的四边形是边长为2的正方形,则该球的表面积是______________.【答案】【解析】由三视图知,棱长为2的正方体内接于球,故正方体的体对角线长为23,即为球的直径.所以球的表面积为S ==12π.3、如图,在三棱柱A 1B 1C 1-ABC 中,D ,E ,F 分别是AB ,AC ,AA 1的中点.设三棱锥F -ADE 的体积为V 1,三棱柱A 1B 1C 1-ABC 的体积为V 2,则V 1∶V 2=________.【答案】1∶24【解析】V 1V 2=13×12AD ·AE ·sin ∠EAD ·AF 12AC ·AB ·sin ∠CAB ·AA 1=13AD AB ·AE AC ·AF AA 1=13×12×12×12=124.4、已知一个球与一个正三棱柱的三个侧面和两个底面相切,若这个球的体积是32π3,则这个三棱柱的体积是________.【答案】4835、如图所示,在边长为4的正方形纸片ABCD中,AC与BD相交于O,剪去△AOB,将剩余部分沿OC,OD折叠,使OA,OB重合,则以A,B,C,D,O为顶点的四面体的体积为________.【答案】6、一块石材表示的几何体的三视图如图2所示,将石材切削、打磨、加工成球,则能得到的最大球的半径等于()A.1B.2C.3D.4【答案】B7、在棱长为的正方体中,点和分别是矩形和的中心,则过点、、的平面截正方体的截面面积为.【答案】【解析】过点、、的平面截面的等边,其边长为,面积为.8、正四面体ABCD的棱长为4,E为棱BC的中点,过E作其外接球的截面,则截面面积的最小值为.【答案】8、把边长为1的正方形ABCD沿对角线BD折起,形成三棱锥C-ABD,它的主视图与俯视图如右上图所示,则二面角C-AB-D的正切值为.主视图俯视图【答案】9、如图1,在直角梯形ABCD中,∠ADC=90°,CD∥AB,AB=4,AD=CD=2,将△ADC沿AC折起,使平面ADC⊥平面ABC,得到几何体DABC,如图2所示.(Ⅰ)求证:BC⊥平面ACD;(Ⅱ)求几何体DABC的体积.【练习巩固】1.(2014·湖南卷)一块石材表示的几何体的三视图如图12所示,将该石材切削、打磨,加工成球,则能得到的最大球的半径等于()图12A .1B .2C .3D .4【答案】B2.(2014·全国卷)正四棱锥的顶点都在同一球面上.若该棱锥的高为4,底面边长为2,则该球的表面积为()A.81π4B .16πC .9π D.27π4【答案】A3.(2014·陕西卷)已知底面边长为1,侧棱长为2的正四棱柱的各顶点均在同一个球面上,则该球的体积为()A.32π3B .4πC .2π D.4π3【答案】D4.正三棱锥的高为1,底面边长为26,内有一个球与四个面都相切,求棱锥的表面积和球的半径.5.如图1,在直角梯形ABCD 中,∠ADC =90°,CD ∥AB ,AB =4,AD =CD =2,将△ADC 沿AC 折起,使平面ADC ⊥平面ABC ,得到几何体D -ABC ,如图2所示.(1)求证:BC ⊥平面ACD ;(2)求几何体D -ABC 的体积.6.如图,△ABC 中,∠ACB =90°,∠ABC =30°,BC =3,在三角形内挖去一个半圆(圆心O 在边BC 上,半圆与AC 、AB 分别相切于点C 、M ,与BC 交于点N ),将△ABC 绕直线BC 旋转一周得到一个旋转体.(1)求该几何体中间一个空心球的表面积的大小;(2)求图中阴影部分绕直线BC 旋转一周所得旋转体的体积.【解析】(1)连接OM ,则OM ⊥AB ,设OM =r ,OB =3-r ,在△BMO 中,sin ∠ABC =r 3-r =12⇒r =33.∴S =4πr 2=43π.。
问题一:多面体与球的组合体问题 纵观近几年高考对于组合体的考查,重点放在与球相关的外接与内切问题上.要求学生有较强的空间想象能力和准确的计算能力,才能顺利解答.从实际教学来看,这部分知识是学生掌握最为模糊,看到就头疼的题目.分析原因,除了这类题目的入手确实不易之外,主要是学生没有形成解题的模式和套路,以至于遇到类似的题目便产生畏惧心理.本文就高中阶段出现这类问题加以类型的总结和方法的探讨.一、球与柱体的组合体规则的柱体,如正方体、长方体、正棱柱等能够和球进行充分的组合,以外接和内切两种形态进行结合,通过球的半径和棱柱的棱产生联系,然后考查几何体的体积或者表面积等相关问题. 1.1 球与正方体如图1所示,正方体1111ABCD A B C D -,设正方体的棱长为a ,,,,E F H G 为棱的中点,O 为球的球心.常见组合方式有三类:一是球为正方体的内切球,截面图为正方形EFGH 和其内切圆,则2a OJ r ==; 二是与正方体各棱相切的球,截面图为正方形EFGH 和其外接圆,则22GO R a ==; 三是球为正方体的外接球,截面图为长方形11ACA C 和其外接圆,则13A O R '==. 通过这三种类型可以发现,解决正方体与球的组合问题,常用工具是截面图,即根据组合的形式找到两个几何体的轴截面,通过两个截面图的位置关系,确定好正方体的棱与球的半径的关系,进而将空间问题转化为平面问题.例1棱长为1的正方体1111ABCD A B C D -的8个顶点都在球O 的表面上,E F ,分别是棱1AA ,1DD 的中点,则直线EF 被球O 截得的线段长为() A .22 B .1 C .212+ D .2【牛刀小试】将棱长为2的正方体木块削成一个体积最大的球,则这个球的表面积为()A .2πB .4πC .8πD .16π1.2 球与长方体长方体各顶点可在一个球面上,故长方体存在外切球.但是不一定存在内切球.设长方体的棱长为,,,a b c 其体对角线为l .当球为长方体的外接球时,截面图为长方体的对角面和其外接圆,和正方体的外接球的道理是一样的,故球的半径222.22l a b c R ++==例2在长、宽、高分别为2,2,4的长方体内有一个半径为1的球,任意摆动此长方体,则球经过的空间部分的体积为()A. B.4π C. D.【牛刀小试】已知正四棱柱的底边和侧棱长均为32,则该正四棱锥的外接球的表面积为.1.3 球与正棱柱球与一般的正棱柱的组合体,常以外接形态居多.下面以正三棱柱为例,介绍本类题目的解法构造直角三角形法.设正三棱柱111ABC A B C -的高为,h 底面边长为a ,如图2所示,D 和1D 分别为上下底面的中心.根据几何体的特点,球心必落在高1DD 的中点O ,3,,,23h OD AO R AD a ===借助直角三角形AOD 的勾股定理,可求223()()23h R a =+. 例3正四棱柱1111ABCD A B C D -的各顶点都在半径为R 的球面上,则正四棱柱的侧面积有最值,为.【牛刀小试】直三棱柱111ABC A B C -的六个顶点都在球O 的球面上,若1AB BC ==,0120ABC ∠=,123AA =,则球O 的表面积为()A .4πB .8πC .16πD .24π二、球与锥体的组合体规则的锥体,如正四面体、正棱锥、特殊的一些棱锥等能够和球进行充分的组合,以外接和内切两种形态进行结合,通过球的半径和棱锥的棱和高产生联系,然后考查几何体的体积或者表面积等相关问题.2.1球与正四面体正四面体作为一个规则的几何体,它既存在外接球,也存在内切球,并且两心合一,利用这点可顺利解决球的半径与正四面体的棱长的关系.如图4,设正四面体S ABC -的棱长为a ,内切球半径为r ,外接球的半径为R ,取AB 的中点为D ,E 为S 在底面的射影,连接,,CD SD SE 为正四面体的高.在截面三角形SDC ,作一个与边SD 和DC 相切,圆心在高SE 上的圆,即为内切球的截面.因为正四面体本身的对称性可知,外接球和内切球的球心同为O .此时,,CO OS R OE r ===,23,,3SE a CE ==则有2222233a R r a R r CE +=-=,=,解得:66,.R r a ==这个解法是通过利用两心合一的思路,建立含有两个球的半径的等量关系进行求解.同时我们可以发现,球心O为正四面体高的四等分点.如果我们牢记这些数量关系,可为解题带来极大的方便.例4将半径都为1的四个钢球完全装入形状为正四面体的容器里,这个正四面体的高的最小值为()【牛刀小试】一个几何体的三视图如图所示,其中主视图和左视图是腰长为1的两个全等的等腰直角三角形,则该几何体的外接球的表面积为()A.12πB.C.3πD.2.3球与正棱锥球与正棱锥的组合,常见的有两类,一是球为三棱锥的外接球,此时三棱锥的各个顶点在球面上,根据截面图的特点,可以构造直角三角形进行求解.二是球为正棱锥的内切球,例如正三棱锥的内切球,球与正三棱锥四个面相切,球心到四个面的距离相等,都为球半径R .这样求球的半径可转化为球球心到三棱锥面的距离,故可采用等体积法解决,即四个小三棱锥的体积和例7矩形ABCD 中,4,3,AB BC ==沿AC 将矩形ABCD 折成一个直二面角B AC D --,则四面体ABCD 的外接球的体积是()A.π12125B.π9125C.π6125D.π3125例8三棱锥A BCD -中,AB CD ====AC AD BD BC ==A BCD -的外接球的半径是.三、球与球的组合体对个多个小球结合在一起,组合成复杂的几何体问题,要求有丰富的空间想象能力,解决本类问题需掌握恰当的处理手段,如准确确定各个小球的球心的位置关系,或者巧借截面图等方法,将空间问题转化平面问题求解.例9在半径为R的球内放入大小相等的4个小球,则小球半径r的最大值为()A.(-1)RB.(-2)RC.RD.R四、球与几何体的各条棱相切球与几何体的各条棱相切问题,关键要抓住棱与球相切的几何性质,达到明确球心的位置为目的,然后通过构造直角三角形进行转换和求解.如与正四面体各棱都相切的球的半径为相对棱的一半:24r a '=.例10把一个皮球放入如图10所示的由8根长均为20cm的铁丝接成的四棱锥形骨架内,使皮球的表面与8根铁丝都有接触点,则皮球的半径为()A.l03cm B.10cmC.102cm D.30cm五、与三视图相结合的组合体问题本类问题一般首先给出三视图,然后考查其直观图的相关的组合体问题.解答的一般思路是根据三视图还原几何体,根据几何体的特征选择以上介绍的方法进行求解.例11【河北省唐山市2014-2015学年度高三年级摸底考试】某几何体的三视图如图所示,则该几何体的外接球的球面面积为()A .5πB .12πC .20πD .8π 【牛刀小试】若一个底面是正三角形的三棱柱的正视图如图所示,其顶点都在一个球面上,则该球的表面积为( )A.πB.πC.πD.π综合上面的五种类型,解决与球的外切问题主要是指球外切多面体与旋转体,解答时首先要找准切点,通过作截面来解决.如果外切的是多面体,则作截面时主要抓住多面体过球心的对角面来作;把一个多面体的几个顶点放在球面上即为球的内接问题.解决这类问题的关键是抓住内接的特点,即球心到多面体的顶点的距离等于球的半径.发挥好空间想象力,借助于数形结合进行转化,问题即可得解.如果是一些特殊的几何体,如正方体、正四面体等可以借助结论直接求解,此时结论的记忆必须准确.【针对训练】1.【2016届云南省玉溪市一中高三第四次月考】直三棱柱111ABC A B C -的各顶点都在同一球面上,若12AB AC AA ===,120BAC ∠=︒则此球的表面积等于()A .952πB .π20C .π8D .352π 2.【2016届河北省衡水二中高三上学期期中】已知四面体P -ABC 的外接球的球心O 在AB 上,且PO ⊥平面ABC,23AC =,若四面体P -ABC 的体积为32,则该球的体积为() A .3πB .433C .83πD .8333.【2016届河北省衡水二中高三上学期期中考试】某几何体的三视图如右图,若该几何体的所有顶点都在一个球面上,则该球面的表面积为()A .4πB .283πC .443πD .20π4.【2016届福建省三明一中高三上第二次月考】如图,直三棱柱111ABC A B C -的六个顶点都在半径为1的半球面上,AB AC =,侧面11BCC B 是半球底面圆的内接正方形,则侧面11ABB A 的面积为()A .2B .22C .2D .1 5.如图,一个几何体的三视图(正视图、侧视图和俯视图)为两个等腰直角三角形和一个边长为1的正方形,则其外接球的表面积为()(A )π(B )2π(C )3π(D )4π6.【河北省“五个一名校联盟”2015届高三教学质量监测(一)】一个几何体的三视图及尺寸如图所示,则该几何体的外接球半径为( )A. B. C. D.7.【2016届贵州省贵阳市六中高三元月月考】表面积为π60的球面上有四点C B A S 、、、且ABC ∆是等边三角形,球心O 到平面ABC 的距离为3,若ABC SAB 面⊥,则棱锥ABC S -体积的最大值为.8.【2016届陕西省渭南市白水中学高三上第三次月考】一个空间几何体的三视图如图所示,且这个空间几何体的所有顶点都在同一个球面上,则这个球的表面积是.9.【2016届重庆市巴蜀中学高三上学期一诊模拟】已知S A B C ,,,都是球O 表面上的点,SA ⊥平面ABC ,AB BC ⊥,2SA =,3AB =,4BC =,则球O 的表面积等于______.10.【2016届黑龙江省哈尔滨师大附中高三12月考】利用一个球体毛坯切削后得到一个四棱锥P ABCD -,其中底面四边形是边长为1的正方形,1PA =,且PA ⊥平面ABCD ,则球体毛坯体积的最小值应为.11.【2016届河北省邯郸市一中高三一轮收官考试】如图,在四面体CD AB 中,AB ⊥平面CD B ,CD ∆B 是边长为6的等边三角形.若4AB =,则四面体CD AB 外接球的表面积为.12.正四面体ABCD 的棱长为4,E 为棱BC 的中点,过E 作其外接球的截面,则截面面积的最小值为.13.已知正三棱锥P -ABC ,点P ,A ,B ,C 都在半径为3的球面上,若P A,PB,PC 两两互相垂直,则球心到截面ABC 的距离为____________.14.一个球与一个正三棱柱的三个侧面和两个底面都相切,已知这个球的体积是?,则这个三棱柱的体积为.15.若圆锥的内切球与外接球的球心重合,且内切球的半径为1,则圆锥的体积为.。
5.立体几何1.几何体的三视图排列规则:俯视图放在正(主)视图下面,侧(左)视图放在正(主)视图右面,“长对正,高平齐,宽相等.”由几何体的三视图确定几何体时,要注意以下几点:(1)还原后的几何体一般为较熟悉的柱、锥、台、球的组合体. (2)注意图中实、虚线,实际是原几何体中的可视线与被遮挡线.(3)想象原形,并画出草图后进行三视图还原,把握三视图和几何体之间的关系,与所给三视图比较,通过调整准确画出原几何体.[问题1] 如图,若一个几何体的正(主)视图、侧(左)视图、俯视图均为面积等于2的等腰直角三角形,则该几何体的体积为________.答案 432.空间几何体表面积和体积的求法几何体的表面积是各个面的面积之和,组合体的表面积应注意重合部分的处理,求几何体的体积常用公式法、割补法、等积变换法.[问题2] 如图所示,一个空间几何体的正(主)视图和俯视图都是边长为1的正方形,侧(左)视图是一个直径为1的圆,那么这个几何体的表面积为( )A .4πB .3πC .2πD.32π答案 D3.空间平行问题的转化关系平行问题的核心是线线平行,证明线线平行的常用方法有:三角形的中位线、平行线分线段成比例(三角形相似)、平行四边形等.[问题3] 判断下列命题是否正确,正确的在括号内画“√”号,错误的画“×”号. (1)如果a ,b 是两条直线,且a ∥b ,那么a 平行于经过b 的任何平面.( ) (2)如果直线a 和平面α满足a ∥α,那么a 与α内的任何直线平行.( ) (3)如果直线a ,b 和平面α满足a ∥α,b ∥α,那么a ∥b .( ) (4)如果直线a ,b 和平面α满足a ∥b ,a ∥α,b ⊄α,那么b ∥α.( ) 答案 (1)× (2)× (3)× (4)√ 4.空间垂直问题的转化关系线线垂直线面垂直的判定线面垂直的定义线面垂直面面垂直的判定面面垂直的性质面面垂直垂直问题的核心是线线垂直,证明线线垂直的常用方法有: 等腰三角形底边上的中线、勾股定理、平面几何方法等. [问题4] 已知两个平面垂直,下列命题①一个平面内已知直线必垂直于另一个平面内的任意一条直线; ②一个平面内的已知直线必垂直于另一个平面的无数条直线; ③一个平面内的任一条直线必垂直于另一个平面;④过一个平面内任意一点作交线的垂线,则此垂线必垂直于另一个平面. 其中正确命题的个数是( ) A .3 B .2 C .1 D .0答案 C5.多面体与球接、切问题的求解策略(1)涉及球与棱柱、棱锥的接、切问题时,一般过球心及多面体中的特殊点(一般为接、切点)或线作截面,把空间问题转化为平面问题,再利用平面几何知识寻找几何体中元素间的关系,或只画内接、外切的几何体的直观图,确定球心的位置,弄清球的半径(直径)与该几何体已知量的关系,列方程(组)求解.(2)若球面上四点P ,A ,B ,C 构成的三条线段P A ,PB ,PC 两两互相垂直,且P A =a ,PB =b ,PC =c ,一般把有关元素“补形”成为一个球内接长方体,则4R 2=a 2+b 2+c 2求解.[问题5] 一个球与一个正三棱柱的三个侧面和两个底面都相切,已知这个球的体积是32π3,那么这个三棱柱的体积是( ) A .96 3 B .16 3 C .24 3 D .48 3答案 D解析 如图,设球的半径为R ,由43πR 3=32π3,得R =2.所以正三棱柱的高h =4. 设其底面边长为a , 则13·32a =2, 所以a =43, 所以V =34×(43)2×4=48 3. 6.求平面的法向量的方法(1)性质法:根据线面垂直的判定找出与平面垂直的直线,则此直线的方向向量就是平面的法向量.(2)赋值法:在平面内取两个不共线向量,设出平面的法向量建立方程组,通过赋值求出其中的一个法向量. 7.“转化法”求空间角(1)设两条异面直线a ,b 所成的角为θ,两条直线的方向向量分别为a ,b . 因为θ∈(0,π2],故有cos θ=|cos 〈a ,b 〉|=|a·b|a||b ||.(2)设直线l 和平面α所成的角为θ,l 是斜线l 的方向向量,n 是平面α的法向量,则sin θ=|cos 〈l ,n 〉|=|l·n|l||n||.(3)设二面角α—l —β的大小为θ,n 1,n 2是二面角α—l —β的两个半平面的法向量,则|cos θ|=|cos 〈n 1,n 2〉|,两个角之间的关系需要根据二面角的取值范围来确定.[问题6] 在三棱锥P —ABC 中,AB ⊥BC ,AB =BC =12P A ,点O ,D 分别是AC ,PC 的中点,OP ⊥底面ABC ,求直线P A 与平面PBC 所成角的正弦值. 解 ∵OP ⊥平面ABC ,OA =OC ,AB =BC , ∴OA ⊥OB ,OA ⊥OP ,OB ⊥OP .以O 为原点,射线OP 为z 轴正方向,OA 为x 轴正方向,OB 为y 轴正方向,建立空间直角坐标系Oxyz (如图).设AB =a ,则A (22a,0,0),B (0,22a,0),C (-22a,0,0), 设OP =h ,则P (0,0,h ),由12P A =AB ,则P A =2a ,则P =(0,0,72a ),P A →=( 22a,0,-72a ). 可求得平面PBC 的一个法向量为n =(1,-1,-17), ∴cos 〈P A →,n 〉=P A →·n |P A →||n |=21030,设P A 与平面PBC 所成的角为θ, 则sin θ=|cos 〈P A →,n 〉|=21030.8.求点到平面的距离的方法(1)“等积法”:求解点到面的距离常转化为锥体的高,利用三棱锥体积公式求点到平面的距离.(2)“向量法”:如图,设P 在平面α外,n 为平面α的法向量,在平面α内任取一点Q ,则点P 到平面α的距离d =|PQ →·n ||n |.[问题7] 正方体ABCD -A 1B 1C 1D 1的棱长为1,O 是底面A 1B 1C 1D 1的中心,则点O 到平面ABC 1D 1的距离为________. 答案24解析建立如图所示的空间直角坐标系,则A (1,0,0),B (1,1,0),D 1(0,0,1),C 1(0,1,1),O ⎝⎛⎭⎫12,12,1. 设平面ABC 1D 1的法向量为 n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·AB →=0,n ·AD 1→=0,∴⎩⎪⎨⎪⎧y =0,-x +z =0.令z =1,得⎩⎪⎨⎪⎧x =1,y =0,∴n =(1,0,1),又OD 1→=⎝⎛⎭⎫-12,-12,0, ∴O 到平面ABC 1D 1的距离d =|n ·OD 1→||n |=122=24.易错点1 三视图识图不准例1 如图为某几何体的三视图,则该几何体的表面积为________.易错分析 解本题易出现的错误有:(1)还原空间几何体的形状时出错,不能正确判断其对应的几何体;(2)计算时不能准确把三视图中的数据转化为对应几何体中的线段长度,尤其侧视图中的数据处理很容易出错.解析 该几何体为一个四棱锥,如图所示.CD ⊥底面P AD ,BA ⊥底面P AD , P A ⊥AD ,P A =AD =CD =2,AB =1. PC =23,PB =5,BC = 5. ∴S △PBC =12×23×2= 6.该几何体的表面积S =(1+2)×22+12×2×1+12×22×2+12×2×2+6=6+22+ 6.答案 6+22+ 6易错点2 旋转体辨识不清例2 如图所示(单位:cm),求图中阴影部分绕AB 旋转一周所形成的几何体的体积.易错分析 注意这里是旋转图中的阴影部分,不是旋转梯形ABCD .在旋转的时候边界形成一个圆台,并在上面挖去了一个“半球”,其体积应是圆台的体积减去半球的体积.解本题易出现的错误是误以为旋转的是梯形ABCD ,在计算时没有减掉半球的体积. 解 由题图中数据,根据圆台和球的体积公式,得 V 圆台=13×π(22+2×5+52)×4=52π(cm 3),V 半球=43π×23×12=163π(cm 3).所以旋转体的体积为V 圆台-V 半球=52π-163π=1403π(cm 3).易错点3 线面关系把握不准例3 设a ,b 为两条直线,α,β为两个平面,且a ⊄α,a ⊄β,则下列结论中不成立的是( ) A .若b ⊂β,a ∥b ,则a ∥β B .若a ⊥β,α⊥β,则a ∥α C .若a ⊥b ,b ⊥α,则a ∥α D .若α⊥β,a ⊥β,b ∥a ,则b ∥α易错分析 本题易出现的问题就是对空间点、线、面的位置关系把握不准,考虑问题不全面,不能准确把握题中的前提——a ⊄α,a ⊄β,对空间中的平行、垂直关系的判定和性质定理中的条件把握不准导致判断失误.如A 项中忽视已知条件中的a ⊄β,误以为该项错误等. 解析 对于选项A ,若有b ⊂β,a ∥b ,且已知a ⊄β,所以根据线面平行的判定定理可得a ∥β,故选项A 正确;对于选项B ,若a ⊥β,α⊥β,则根据空间线面位置关系可知a ⊂α或a ∥α,而由已知可知a ⊄α,所以有a ∥α,故选项B 正确;对于选项C ,若a ⊥b ,b ⊥α,所以a ⊂α或a ∥α,而由已知可得a ⊄α,所以a ∥α,故选项C 正确;对于选项D ,由a ⊥β,b ∥a 可得b ⊥β,又因为α⊥β,所以b ⊂α或b ∥α,故不能得到b ∥α,所以选项D 错,故选D. 答案 D易错点4 线面关系论证不严谨例4 在棱长为2的正方体ABCD —A 1B 1C 1D 1中,E ,F 分别为DD 1,DB 的中点.(1)求证:EF ∥平面ABC 1D 1; (2)求证:EF ⊥B 1C .易错分析 利用空间线面关系的判定或性质定理证题时,推理论证一定要严格按照定理中的条件进行,否则出现证明过程不严谨的问题. 证明 (1)连接BD 1,如图所示.在△DD 1B 中,E ,F 分别为DD 1,DB 的中点,则⎭⎬⎫EF ∥D 1BD 1B ⊂平面ABC 1D 1EF ⊄平面ABC 1D 1⇒EF ∥平面ABC 1D 1.(2)ABCD —A 1B 1C 1D 1为正方体⇒AB ⊥平面BCC 1B 1⇒⎭⎬⎫B 1C ⊥ABB 1C ⊥BC 1AB ,BC 1⊂平面ABC 1D 1AB ∩BC 1=B⎭⎪⎬⎪⎫⇒B 1C ⊥平面ABC 1D 1 BD 1⊂平面ABC 1D 1⎭⎪⎬⎪⎫⇒B 1C ⊥BD 1 EF ∥BD 1⇒EF ⊥B 1C .易错点5 混淆空间角与向量夹角例5 如图,△ABC 和△BCD 所在平面互相垂直,且AB =BC =BD =2,∠ABC =∠DBC =120°,E ,F 分别为AC ,DC 的中点.(1)求证:EF ⊥BC ;(2)求二面角E —BF —C 的正弦值.易错分析 本题易错点在于认为两个平面法向量的夹角等于所求二面角的大小.根据向量计算出二面角的余弦值的绝对值后,其大小还要通过二面角的取值范围确定.(1)证明 由题意,以B 为坐标原点,在平面DBC 内过B 作垂直BC 的直线为x 轴,BC 所在直线为y 轴,在平面ABC 内过B 作垂直BC 的直线为z 轴,建立如图所示空间直角坐标系.易得B (0,0,0),A (0,-1,3),D (3,-1,0),C (0,2,0), 因而E (0,12,32),F (32,12,0),所以EF →=(32,0,-32),BC →=(0,2,0),因此EF →·BC →=0.从而EF →⊥BC →,所以EF ⊥BC .(2)解 在图中,平面BFC 的一个法向量为n 1=(0,0,1). 设平面BEF 的法向量为n 2=(x ,y ,z ). 又BF →=(32,12,0),BE →=(0,12,32),由⎩⎪⎨⎪⎧n 2·BF →=0,n 2·BE →=0,得其中一个法向量n 2=(1,-3,1).设二面角E —BF —C 的大小为θ,且由题意知θ为锐角,则cos θ=|cos 〈n 1,n 2〉|=|n 1·n 2|n 1||n 2||=15. 因此sin θ=25=255,即所求二面角的正弦值为255.1.已知m ,n 为空间中两条不同的直线,α,β为空间中两个不同的平面,下列命题中正确的是( )A .若m ∥α,m ∥β,则α∥βB .若m ⊥α,m ⊥n ,则n ∥αC .若m ∥α,m ∥n ,则n ∥αD .若m ⊥α,m ∥β,则α⊥β 答案 D解析 对于选项A ,若m ∥α,m ∥β,则可能α,β相交,或者α∥β,所以选项A 不正确;对于选项B ,若m ⊥α,m ⊥n ,则可能n ⊂α,或n ∥α,所以选项B 不正确;对于选项C ,若m ∥α,m ∥n ,则n ⊂α,或n ∥α,所以选项C 不正确;对于选项D ,若m ⊥α,m ∥β,则由线面平行可得在平面β内存在一条直线l ,使得m ∥l ,然后由m ⊥α可得l ⊥α,进而得出α⊥β,故应选D.2.(2015·浙江)某几何体的三视图如图所示(单位:cm),则该几何体的体积是( )A .8cm 3B .12cm 3C.323cm 3D.403cm 3答案 C解析 该几何体是棱长为2cm 的正方体与一底面边长为2cm 的正方形、高为2cm 的正四棱锥组成的组合体,V =2×2×2+13×2×2×2=323cm 3.故选C.3.如图,已知△ABC 为直角三角形,其中∠ACB =90°,M 为AB 的中点,PM 垂直于△ABC 所在平面,那么( )A .P A =PB >PC B .P A =PB <PC C .P A =PB =PCD .P A ≠PB ≠PC 答案 C解析 ∵M 为AB 的中点,△ACB 为直角三角形,∴BM =AM =CM ,又PM ⊥平面ABC ,∴Rt △PMB ≌Rt △PMA ≌Rt △PMC ,故P A =PB =PC .4.如图,已知六棱锥P —ABCDEF 的底面是正六边形,P A ⊥平面ABC ,P A =2AB ,则下列结论正确的是( )A .PB ⊥ADB .平面P AB ⊥平面PBC C .直线BC ∥平面P AED .直线PD 与平面ABC 所成的角为45° 答案 D解析 若PB ⊥AD ,则AD ⊥AB ,但AD 与AB 成60°角,A 错误;平面P AB 与平面ABD 垂直,所以平面P AB 一定不与平面PBC 垂直,B 错误;BC 与AE 是相交直线,所以BC 一定不与平面P AE 平行,C 错误;直线PD 与平面ABC 所成角为∠PDA ,在Rt △P AD 中,AD =P A , 所以∠PDA =45°,D 正确.5.如图,在正方体ABCD —A 1B 1C 1D 1中,M ,N ,P ,Q 分别是AA 1,A 1D 1,CC 1,BC 的中点,给出以下四个结论:①A 1C ⊥MN ;②A 1C ∥平面MNPQ ;③A 1C 与PM 相交;④NC 与PM 异面.其中不正确的结论是( )A .①B .②C .③D .④答案 B解析 作出过M ,N ,P ,Q 四点的截面交C 1D 1于点S ,交AB 于点R ,如图中的六边形MNSPQR ,显然点A 1,C 分别位于这个平面的两侧,故A 1C 与平面MNPQ 一定相交,不可能平行,故结论②不正确.6.如图,在空间四边形ABCD 中,M ∈AB ,N ∈AD ,若AM MB =ANND ,则直线MN 与平面BDC 的位置关系是________.答案 平行解析 由AM MB =ANND ,得MN ∥BD .而BD ⊂平面BDC ,MN ⊄平面BDC , 所以MN ∥平面BDC .7.球O 内有一个内接正方体,正方体的全面积为24,则球O 的体积是________. 答案 43π解析 由于正方体的顶点都在球面上,则正方体的对角线即为球的直径.正方体的全面积为24,则设正方体的边长为a ,即有6a 2=24,解得a =2,设球的半径为R ,则2R =23,解得,R =3,则有球的体积为V =43πR 3=43π×33=43π.8.如图,在直三棱柱ABC -A 1B 1C 1中,AB =1,BC =2,AC =5,AA 1=3,M 为线段BB 1上的一动点,则过A 、M 、C 1三点的平面截该三棱柱所得截面的最小周长为________.答案 32+14 解析 由图形可知,当AM +MC 1最小时,所得截面的周长最小,如图所示把平面A 1ABB 1与平面C 1CBB 1展开成一个平面AA 1C 1C ,则AM +MC 1最短为AC 1=32+32=32,所以截面的最小周长为32+(5)2+32=32+14.9.(2015·山东改编)在梯形ABCD 中,∠ABC =π2,AD ∥BC ,BC =2AD =2AB =2.将梯形ABCD绕AD 所在的直线旋转一周而形成的曲面所围成的几何体的体积为______. 答案5π3解析 过点C 作CE 垂直AD 所在直线于点E ,梯形ABCD 绕AD 所在直线旋转一周而形成的旋转体是由以线段AB 的长为底面圆半径,线段BC 为母线的圆柱挖去以线段CE 的长为底面圆半径,ED 为高的圆锥,如图所示,该几何体的体积为V =V 圆柱-V 圆锥=π·AB2·BC -13·π·CE 2·DE =π×12×2-π3×12×1=5π3.10.如图,四棱锥P—ABCD中,∠ABC=∠BAD=90°,BC=2AD,△P AB与△P AD都是等边三角形.(1)证明:PB⊥CD;(2)求二面角A—PD—B的余弦值.(1)证明如图,取BC的中点E,连接DE,则ADEB为正方形,过P作PO⊥平面ABCD,垂足为O,连接OA,OB,OE,OD,则由△P AB和△P AD都是等边三角形可知P A=PB=PD,∴OA=OB=OD,即点O为正方形ADEB对角线的交点,故OE⊥BD,从而OE⊥平面PBD,∴OE⊥PB,∵O是BD的中点,E是BC的中点,∴OE∥CD,因此PB⊥CD.(2)解由(1)可知,OE,OB,OP两两垂直,以O为原点,OE方向为x轴正方向,OB方向为y轴正方向,OP方向为z轴正方向,建立如图所示的空间直角坐标系Oxyz,设AB=2,则A(-2,0,0),D(0,-2,0),P(0,0,2),AD →=(2,-2,0),AP →=(2,0,2), 设平面P AD 的法向量n =(x ,y ,z ), n ·AD →=2x -2y =0,n ·AP →=2x +2z =0, 取x =1,得y =1,z =-1,得n =(1,1,-1),∵OE ⊥平面PBD ,设平面PBD 的法向量为m ,取m =(1,0,0), 由图象可知二面角A —PD —B 的大小为锐角, ∴二面角A —PD —B 的余弦值为 cos θ=|n·m||n||m |=13=33.。
球与多面体的内接外切常用技巧球与多面体的内切、外接如果一个多面体的各个顶点都在同一个球面上,那么称这个多面体是球的内接多面体,这个球称为多面体的外接球.有关多面体外接球的问题,是立体几何的一个重点,也是高考考查的一个热点.研究多面体的外接球问题,既要运用多面体的知识,又要运用球的知识,并且还要特别注意多面体的有关几何元素与球的半径之间的关系,而多面体外接球半径的求法在解题中往往会起到至关重要的作用.一、直接法1、求正方体的外接球的有关问题例1若棱长为3的正方体的顶点都在同一球面上,则该球的表面27π .变式题:一个正方体的各顶点均在同一球的球面上,若该正方体的表面积为24,则该球的体积为43π?.2、求长方体的外接球的有关问题 例2、一个长方体的各顶点均在同一球面上,且一个顶点上的三条棱长分别为1,2,3 ,则此球的表面积为14π .变式题:已知各顶点都在一个球面上的正四棱柱高为4,体积为16,则这个球的表面积为24π二、球与多面体的接、切图3 图4 图5定义1:若一个多面体的各顶点都在一个球的球面上,则称这个多面体是这个球的内接多面体,这个球是这个多面体的外接球。
。
定义2:若一个多面体的各面都与一个球的球面相切,则称这个多面体是这个球的外切多面体, 这个球是这个多面体的内切球。
棱切: 一个几何体各个面分别与另一个几何体各条棱相切。
球与棱柱的组合体问题例1 甲球内切于正方体的各面,乙球内切于该正方体的各条棱,丙球外接于该正方体,则三球表面面积之比为( )。
设棱长为1球的外切正方体的棱长等于球直径。
A B CD D1 C1 B1 A1 O⇒中截面 214=S R ππ=甲.设棱长为1正方形的对角线等于球的直径。
224=2S R ππ=乙。
多面体与球的组合体问题的求解策略
如果一个多面体的各个顶点都在同一个球面上,那么称这个多面体是球的内接多面体,这个球称为多面体的外接球.有关多面体外接球的问题,是立体几何的一个重点,也是高考考查的一个热点.研究多面体的外接球问题,既要运用多面体的知识,又要运用球的知识,并且还要特别注意多面体的有关几何元素与球的半径之间的关系,而多面体外接球半径的求法在解题中往往会起到至关重要的作用. 策略一:公式法
例1 一个六棱柱的底面是正六边形,其侧棱垂直于底面,已知该六棱柱的顶点都在同一个球面上,且该六棱柱的体积为98,底面周长为3,则这个球的体积为_________. 【解析】设正六棱柱的底面边长为x ,高为h ,则有263,936,8
4x x h =⎧⎪⎨=⨯⎪⎩∴1,23x h ⎧=⎪⎨⎪=⎩. ∴正六棱柱的底面圆的半径12r =,球心到底面的距离32
d =.∴外接球的半径221R r d =+=,43
V π∴=球 【小结】本题是运用公式222R r d =+求球的半径的,该公式是求球的半径的常用公式
策略二:多面体几何性质法
例2 已知各顶点都在同一个球面上的正四棱柱的高为4,体积为16,则这个球的表面积是
A .16π
B .20π
C .24π
D .32π
【解析】设正四棱柱的底面边长为x ,外接球的半径为R ,则有2416x =,解得2x =. ∴222222426,6R R =++=∴= .∴这个球的表面积是2424R ππ=.选C .
【小结】本题是运用“正四棱柱的体对角线的长等于其外接球的直径”这一性质来求解的. 策略三:补形法
例3 若三棱锥的三个侧面两两垂直,且侧棱长均为3,则其外接球的表面积是_________.
【解析】据题意可知,该三棱锥的三条侧棱两两垂直,∴把这个三棱锥可以补成一个棱长为3的正方体,于是正方体的外接球就是三棱锥的外接球.
设其外接球的半径为R ,则有()()()()222223339R =++=.∴294
R =. 故其外接球的表面积249S R ππ==.
【小结】一般地,若一个三棱锥的三条侧棱两两垂直,且其长度分别为a b c 、、,则就可以将这个三棱锥补成一个长方体,于是长方体的体对角线的长就是该三棱锥的外接球的直径.设其外接球的半径为R ,则有2222R a b c =++.
策略四:寻求轴截面圆半径法
例4 正四棱锥S ABCD -的底面边长和各侧棱长都为2,点S A B C D 、、、、都在同一球面上,则此球的体积为_________.
C
D
A B S
O 1
图3
【解析】设正四棱锥的底面中心为1O ,外接球的球心为O ,如图1所示.∴由球的截面的性质,可得1OO ABCD ⊥平面.
又1SO ABCD ⊥平面,∴球心O 必在1SO 所在的直线上.
∴ASC ∆的外接圆就是外接球的一个轴截面圆,外接圆的半径就是外接球的半径.
在ASC ∆中,由22SA SC AC ===,,得222SA SC AC +=.
∴ASC AC ∆∆是以为斜边的Rt .
∴12AC =是外接圆的半径,也是外接球的半径.故43
V π=球. 【小结】根据题意,我们可以选择最佳角度找出含有正棱锥特征元素的外接球的一个轴截面圆,于是该圆的半径就是所求的外接球的半径.本题提供的这种思路是探求正棱锥外接球半径的通解通法,该方法的实质就是通过寻找外接球的一个轴截面圆,从而把立体几何问题转化为平面几何问题来研究.这种等价转化的数学思想方法值得我们学习.
C
A O D
B 图4
策略五:确定球心位置法
例5 在矩形ABCD 中,4,3AB BC ==,沿AC 将矩形ABCD 折成一个直二面角
B A
C
D --,则四面体ABCD 的外接球的体积为( )
A .12512π
B .1259π
C .1256π
D .1253
π 【解析】设矩形对角线的交点为O ,则由矩形对角线互相平分,可知OA OB OC OD ===.∴点O 到四面体的四个顶点A B C D 、、、的距离相等,即点O 为四面体的外接球的球心,如图2所示,∴外接球的半径52R OA ==.故3412536V R ππ==球,故选C .。