晶体结构空间群点群
- 格式:doc
- 大小:389.00 KB
- 文档页数:9
点群:一个结晶多面体所有的全部宏观对称要素的集合,称为该结晶多面体的点群。
对称型:晶体结构中所有点对称要素(对称面、对称中心、对称轴和旋转反伸轴)的集合称为对称型,也称点群。
空间群:空间群:指在一个晶体结构中所存在的一切对称要素的集合。
它由两部分组成,一是平移轴的集合(也就是平移群),另外是除平移轴之外的所有其他对称要素的集合(与对称型相对应)。
无规则网络假说:凡是成为玻璃态的物质和相应的晶体结构一样,也是由一个三度空间网络所构成。
这种网络是由离子多面体(三角体或四面体)构筑起来的。
晶体结构网是由多面体无数次有规律重复构成,而玻璃中结构多面体的重复没有规律性。
网络形成体:单键强度大于335KJ/mol的氧化物,可单独形成玻璃。
网络变性(改变)体:单键强度小于250KJ/mol的氧化物,这类氧化物不能形成玻璃,但是能改变网络结构。
从而使玻璃性质改变。
正尖晶石;二价阳离子分布在1/8四面体空隙中,三价阳离子分布在l/2八面体空隙的尖晶石。
反型尖晶石:二价阳离子分布在八面体空隙中,三价阳离子一半在四面体空隙中,另一半在八面体空隙中的尖晶石。
萤石结构(CaF2):F-填充在八个小立方体中心,8个四面体全被占据,八面体全空(有1+12*1/4=4个八面体空隙,其中有12个位于棱的中点,为4个晶胞所共用,1个位于体心) 。
可塑性:粘土与适当比例的水混合均匀制成泥团,该泥团受到高于某一个数值剪应力作用后,可以塑造成任何形状,当去除应力泥团能保持其形状,这种性质称为可塑性。
弗伦克尔缺陷:如果在晶格热振动时,一些能量足够大的原子离开平衡位置后,挤到晶格的间隙中,形成间隙原子,而原来位置上形成空位,这种缺陷称为弗伦克尔缺陷。
Frenkel缺陷的特点是:①间隙原子和空位成对出现;②缺陷产生前后,晶体体积不变。
网络形成剂:这类氧化物单键强度大于335KJ/mol,其正离子为网络形成离子,可单独形成玻璃。
液相独立析晶:是在转熔过程中发生的,由于冷却速度较快,被回收的晶相有可能会被新析出的固相包裹起来,使转熔过程不能继续进行,从而使液相进行另一个单独的析晶过程,就是液相独立析晶。
点群空间群和晶体结构晶体是由原子、分子或离子组成的固态物质。
在结晶过程中,这些粒子以一种有序的方式排列,形成了晶体的特定结构。
晶体结构的研究是固体科学的重要分支之一,可以帮助我们理解固体的物理、化学性质以及它们在各种应用中的作用。
点群是空间中对称性的一种表示方式。
点群描述了一个结构中的元素在一组操作下保持不变的方式。
这些操作可以是旋转、翻转或镜像。
常见的点群包括旋转群、镜面群和反演群。
每个点群由一组操作组成,这些操作在结构中的每个点上施加时,都可以保持结构的不变性。
点群对于确定晶体结构的对称性非常重要,因为它可以帮助我们预测晶体的物理性质,例如电学性、磁学性、光学性等。
空间群是点群在三维空间中的扩展。
它描述了一个晶体结构在所有操作下的对称性。
空间群由点群以及平移操作组成。
平移操作使得结构在空间中移动,形成了无穷多的平行结构。
这些平行结构可以通过空间群中的平移操作进行描述。
空间群的数量非常庞大,目前已知有230个不同的空间群。
每个空间群都有一个唯一的编号和名称,用于标识它的对称性。
晶体结构是晶体中离子、原子或分子的排列方式。
不同的晶体结构由不同的元素组成,以及不同的点群和空间群类型。
它们可以由晶体学的X射线衍射实验来确定。
X射线衍射会产生一种特殊的模式,称为衍射图样。
通过对衍射图样进行分析,可以确定出晶体中的原子或离子的位置,从而推断出晶体的结构。
晶体结构是固体科学的基础,它们在材料科学、化学、凝聚态物理学等领域中有着广泛的应用。
通过对晶体结构的研究,可以优化材料的性能,设计新型材料,解释物质的性质,并探索新的应用领域。
总而言之,点群、空间群和晶体结构是固体晶体学中的重要概念。
它们描述了晶体的对称性以及晶体中原子、离子或分子的排列方式。
通过对晶体结构的研究,我们可以了解晶体物质的性质和行为,并为材料科学和应用领域提供基础性的知识。
(二)点群、单形与空间群点群:晶体可能存在的对称类型。
通过宏观对称要素在一点上组合运用而得到。
只能有32种对称类型, 称32种点群同一晶系晶体可为不同点群的原因:阵点上原子组合情况不同。
如错误!未找到引用源。
,对称性降低,平行于六面体面的对称面不存在,4次对称轴也不存在。
理想晶体的形态一单形和聚形:单形:由对称要素联系起来的一组同形等大晶面的组合。
32种对称型总共可以导出47种单形,如错误!书签自引用无效。
,错误! 书签自引用无效。
,错误!书签自引用无效。
所示聚形:属于同一晶类的两个或两个以上的单形聚合而成的几何多面体。
大量的晶体形态是由属于同一晶类的单形聚合而成的封闭一定空间的几何多面体,如单形四方柱与平行双面形成了四方柱体的真实晶体形态空间群:描述晶体中原子通过宏观和微观对称要素组合的所有可能方式。
属于同一点群的晶体可因其微观对称要素的不同而分属不同的空间群,空间群有230种,见教材中表1-4国际通用的空间群符号与其所代表的意义为:P:代表原始格子以与六方底心格子〔六方底心格子为三方晶系和六方晶系所共有〕。
F:代外表心格子。
I :代表体心格子。
C:代表〔001〕底心格子〔即与z轴相交的平行六面体两个面中心与八个角顶有相当的构造单位配布〕。
A:代表〔100〕底心格子〔即与x轴相交的平行六面体两个面中心与八个角顶有相当的构造单位配布〕。
R:代表三方原始格子。
其它符号:意义与前述一样续表1- 4i续表1- 4续表1- 4续表1- 4空间群符号I4 1md I4 2d P422 P422 P422 P4 22 P422 P4212 P422 P4212中级晶族续表1- 4点群符号 6 2 2m m m23 2 3 m晶系六方晶系等轴晶系晶族中级晶族高级晶族空间群符号F2 3 d I 2 3m P2! 3aI乙3aP43m F43m I 43m P 43n FQ3c I 23d P432 P432 F432点群符号 2 3m43m 432晶系等轴晶系晶族高级晶族空间群符号F4i32 I432 P432 P4i32 I4 i32 P4 3 2m mP4 3 2n nP 42 3 2 mnP 42 3 2 nmF 4 3 2m mF 4 3 2m c点群符号432 上32 m m晶系等轴晶系晶族高级晶族续表1- 4空间群符号F4132 F 4L3£d mI 4i 3 2 a d。
晶体点群、空间群简要归纳本⽂只是很简要的归纳,具体内容还请见李新征⽼师群论书和其在蔻享的群论课。
另外推荐肖瑞春⽼师科学⽹博客的这篇博⽂,介绍了群论及后续的学习:若研究中涉及群论和物理性质相关,其中陈纲的《晶体物理学基础》书特别好,易懂,将主动变换和被动变换等分析得特别清晰,不过此书太厚,注意⽤到什么学什么,⽤minimized的知识来科研,否则被导师批评...1.对称操作、对称元素对称操作:保持系统不变的操作。
对称元素:它是⼀个⼏何实体,对称操作可以依据对称元素施⾏对称操作。
对称元素可以是点、直线、⾯等。
2.点群:1)定义:三维实正交群O(3)群的有限⼦群物理理解:实际上点群是实际的物理系统在三维空间的⼀些对称操作的集合。
这些对称操作会保持⼀个点不动。
2)点群分类第⼀类点群:只包含纯转动元素的点群。
第⼆类点群:点群中,除了纯转动元素,还包含转动反演元素的点群。
因为点群是O(3)群的⼦群,⽽O(3)群中有固有转动和⾮固有转动。
3)点群的性质{()}性质1:点群这个集合可以写成C k(2π/n)、IC k′2π/n′的形式,其中n,→k′,n′取有限个⽅向和值;C k(2π/n)是绕→k轴转2π/n⾓的操作。
性质2:设G是点群,K是G的纯转动部分,由于纯转动部分的乘积以及逆元必属于这个纯转动部分,所以K也是G的纯转动⼦群,即K=G∩SO(3)∘.点群G与其有限⼦群K的关系有以下三种可能的情况:1.G=K, 即点群只包含纯转动操作;称为第⼀类点群。
2.若点群G中除了纯转动操作,还包含纯空间反演操作I, 则可以通过G=K∪IK得到这种情况对应的第⼆类点群。
3.若点群G中除了纯转动操作,且G中不包含纯反演操作I时 , 此第⼆类点群G⼀定与⼀个第⼀类G+同构,其中,G+=K∪K+, ⽽K+定义为:K+={Ig∣g∈G,但g∉K}根据这⾥的第3点,可以知道构造这种情况对应的第⼆类点群的⽅法:根据⼀个已知的第⼀类点群K∪K+,即可以构造⼀个第⼆类点群K∪I K+.还可以证明K必须是K∪K+的不变⼦群,其阶数是K∪K+的⼀半。
晶体宏观外形只对应点对称操作,所有可能的点对称性组合可分成32个独立的晶体点群,可以说是宏观对称的表现;空间群是相对微观对称性而言的,除了点对称操作以外还有滑移反映、螺旋轴等的对称操作。
其实空间群是在点群上的细分,但二者又都是对晶体结构的分类。
宏观对称要素有平面,直线,点,即反映面、旋转轴、对称中心。
全部宏观对称要素的组合叫点群。
通过晶体具有不同宏观对称要素或其组合,将晶体分成7大晶系,共32种点群。
微观对称要素仅在晶格内部出现。
微观对称要素有平移轴、螺旋轴、滑移面。
点群:保留一点不变的对称操作群。
也就是各对称元素都过一个点。
只具有宏观的方向性,不涉及位置变动。
空间群:为扩展到三维物体例如晶体的对称操作群,由点群对称操作和平移对称操作组合而成。
在点群操作的基础上增加了平移、滑移操作,不仅具有宏观的对称性,还涉及到了微观的位置的变动。
点群不存在平移操作,所有的对称要素都集中在一个共同的点上。
对称要素包括旋转、反映、反伸(对称中心)与旋转反伸。
有这4个对称要素组合出32个点群。
(二)点群、单形及空间群
点群:晶体可能存在的对称类型。
通过宏观对称要素在一点上组合运用而得到。
只能有32种对称类型,称32种点群
表1- 3 32种点群及所属晶系
*2/m表示其对称面与二次轴相垂直,/表示垂直的意思。
其余类推
同一晶系晶体可为不同点群的原因:阵点上原子组合情况不同。
如错误!未找到引用源。
,对称性降低,平行于六面体面的对称面不存在,4次对称轴也不存在。
理想晶体的形态―单形和聚形:
单形:由对称要素联系起来的一组同形等大晶面的组合。
32种对称型总共可以导出47种单形,如错误!书签自引用无效。
,错误!
书签自引用无效。
,错误!书签自引用无效。
所示
聚形:属于同一晶类的两个或两个以上的单形聚合而成的几何多面体。
大量的晶体形态是由属于同一晶类的单形聚合而成的封闭一
定空间的几何多面体,如单形四方柱与平行双面形成了四方柱体的真实晶体形态
空间群:描述晶体中原子通过宏观和微观对称要素组合的所有可能方式。
属于同一点群的晶体可因其微观对称要素的不同而分属不同的空间群,空间群有230种,见教材中表1- 4
国际通用的空间群符号及其所代表的意义为:
P:代表原始格子以及六方底心格子(六方底心格子为三方晶系和六方晶系所共有)。
F:代表面心格子。
I:代表体心格子。
C:代表(001)底心格子(即与z轴相交的平行六面体两个面中心与八个角顶有相当的构造单位配布)。
A:代表(100)底心格子(即与x轴相交的平行六面体两个面中心与八个角顶有相当的构造单位配布)。
R:代表三方原始格子。
其它符号:意义与前述相同
表1- 4 晶体的空间群、点群、晶系、晶族一览表
续表1- 4
续表1- 4
续表1- 4
续表1- 4
续表1- 4
续表1- 4
续表1- 4
续表1- 4
续表1- 4
续表1- 4
续表1- 4
续表1- 4
续表1- 4
续表1- 4
续表1- 4
续表1- 4
续表1- 4
续表1- 4
续表1- 4
续表1- 4
续表1- 4
续表1- 4
点群符号
m 43m
2
晶 系 等轴晶系 晶 族
高级晶族
/k/174/stu/content/1.1.3.2.htm。