点群空间群和晶体结构介绍
- 格式:ppt
- 大小:1.63 MB
- 文档页数:45
点群空间群和晶体结构晶体是由原子、分子或离子组成的固态物质。
在结晶过程中,这些粒子以一种有序的方式排列,形成了晶体的特定结构。
晶体结构的研究是固体科学的重要分支之一,可以帮助我们理解固体的物理、化学性质以及它们在各种应用中的作用。
点群是空间中对称性的一种表示方式。
点群描述了一个结构中的元素在一组操作下保持不变的方式。
这些操作可以是旋转、翻转或镜像。
常见的点群包括旋转群、镜面群和反演群。
每个点群由一组操作组成,这些操作在结构中的每个点上施加时,都可以保持结构的不变性。
点群对于确定晶体结构的对称性非常重要,因为它可以帮助我们预测晶体的物理性质,例如电学性、磁学性、光学性等。
空间群是点群在三维空间中的扩展。
它描述了一个晶体结构在所有操作下的对称性。
空间群由点群以及平移操作组成。
平移操作使得结构在空间中移动,形成了无穷多的平行结构。
这些平行结构可以通过空间群中的平移操作进行描述。
空间群的数量非常庞大,目前已知有230个不同的空间群。
每个空间群都有一个唯一的编号和名称,用于标识它的对称性。
晶体结构是晶体中离子、原子或分子的排列方式。
不同的晶体结构由不同的元素组成,以及不同的点群和空间群类型。
它们可以由晶体学的X射线衍射实验来确定。
X射线衍射会产生一种特殊的模式,称为衍射图样。
通过对衍射图样进行分析,可以确定出晶体中的原子或离子的位置,从而推断出晶体的结构。
晶体结构是固体科学的基础,它们在材料科学、化学、凝聚态物理学等领域中有着广泛的应用。
通过对晶体结构的研究,可以优化材料的性能,设计新型材料,解释物质的性质,并探索新的应用领域。
总而言之,点群、空间群和晶体结构是固体晶体学中的重要概念。
它们描述了晶体的对称性以及晶体中原子、离子或分子的排列方式。
通过对晶体结构的研究,我们可以了解晶体物质的性质和行为,并为材料科学和应用领域提供基础性的知识。
晶体点群、空间群简要归纳本⽂只是很简要的归纳,具体内容还请见李新征⽼师群论书和其在蔻享的群论课。
另外推荐肖瑞春⽼师科学⽹博客的这篇博⽂,介绍了群论及后续的学习:若研究中涉及群论和物理性质相关,其中陈纲的《晶体物理学基础》书特别好,易懂,将主动变换和被动变换等分析得特别清晰,不过此书太厚,注意⽤到什么学什么,⽤minimized的知识来科研,否则被导师批评...1.对称操作、对称元素对称操作:保持系统不变的操作。
对称元素:它是⼀个⼏何实体,对称操作可以依据对称元素施⾏对称操作。
对称元素可以是点、直线、⾯等。
2.点群:1)定义:三维实正交群O(3)群的有限⼦群物理理解:实际上点群是实际的物理系统在三维空间的⼀些对称操作的集合。
这些对称操作会保持⼀个点不动。
2)点群分类第⼀类点群:只包含纯转动元素的点群。
第⼆类点群:点群中,除了纯转动元素,还包含转动反演元素的点群。
因为点群是O(3)群的⼦群,⽽O(3)群中有固有转动和⾮固有转动。
3)点群的性质{()}性质1:点群这个集合可以写成C k(2π/n)、IC k′2π/n′的形式,其中n,→k′,n′取有限个⽅向和值;C k(2π/n)是绕→k轴转2π/n⾓的操作。
性质2:设G是点群,K是G的纯转动部分,由于纯转动部分的乘积以及逆元必属于这个纯转动部分,所以K也是G的纯转动⼦群,即K=G∩SO(3)∘.点群G与其有限⼦群K的关系有以下三种可能的情况:1.G=K, 即点群只包含纯转动操作;称为第⼀类点群。
2.若点群G中除了纯转动操作,还包含纯空间反演操作I, 则可以通过G=K∪IK得到这种情况对应的第⼆类点群。
3.若点群G中除了纯转动操作,且G中不包含纯反演操作I时 , 此第⼆类点群G⼀定与⼀个第⼀类G+同构,其中,G+=K∪K+, ⽽K+定义为:K+={Ig∣g∈G,但g∉K}根据这⾥的第3点,可以知道构造这种情况对应的第⼆类点群的⽅法:根据⼀个已知的第⼀类点群K∪K+,即可以构造⼀个第⼆类点群K∪I K+.还可以证明K必须是K∪K+的不变⼦群,其阶数是K∪K+的⼀半。
(二)点群、单形及空间群点群:晶体可能存在的对称类型。
通过宏观对称要素在一点上组合运用而得到。
只能有32种对称类型,称32种点群表1- 3 32种点群及所属晶系*2/m表示其对称面与二次轴相垂直,/表示垂直的意思。
其余类推同一晶系晶体可为不同点群的原因:阵点上原子组合情况不同。
如错误!未找到引用源。
,对称性降低,平行于六面体面的对称面不存在,4次对称轴也不存在。
理想晶体的形态―单形和聚形:单形:由对称要素联系起来的一组同形等大晶面的组合。
32种对称型总共可以导出47种单形,如错误!书签自引用无效。
,错误!书签自引用无效。
,错误!书签自引用无效。
所示聚形:属于同一晶类的两个或两个以上的单形聚合而成的几何多面体。
大量的晶体形态是由属于同一晶类的单形聚合而成的封闭一定空间的几何多面体,如单形四方柱与平行双面形成了四方柱体的真实晶体形态空间群:描述晶体中原子通过宏观和微观对称要素组合的所有可能方式。
属于同一点群的晶体可因其微观对称要素的不同而分属不同的空间群,空间群有230种,见教材中表1- 4国际通用的空间群符号及其所代表的意义为:P:代表原始格子以及六方底心格子(六方底心格子为三方晶系和六方晶系所共有)。
F:代表面心格子。
I:代表体心格子。
C:代表(001)底心格子(即与z轴相交的平行六面体两个面中心与八个角顶有相当的构造单位配布)。
A:代表(100)底心格子(即与x轴相交的平行六面体两个面中心与八个角顶有相当的构造单位配布)。
R:代表三方原始格子。
其它符号:意义与前述相同表1- 4 晶体的空间群、点群、晶系、晶族一览表续表1- 4续表1- 4续表1- 4续表1- 4续表1- 4续表1- 4续表1- 4续表1- 4续表1- 4续表1- 4续表1- 4续表1- 4续表1- 4续表1- 4续表1- 4续表1- 4续表1- 4续表1- 4续表1- 4续表1- 4续表1- 4续表1- 4点群符号m 43m2晶 系 等轴晶系 晶 族高级晶族/k/174/stu/content/1.1.3.2.htm。
点群和空间群
群是一个集合的概念。
点群和空间群是对称操作的集合。
群具有封闭性的特点。
点群是指一个晶体中点对称元素的集合。
所谓点对称操作,就是说对称操作时,晶格中至少有一点保持不动。
这也就是针对前面所说的宏观对称要素。
根据计算,总共有32种点群。
根据对点阵的讨论,根据六个点阵参数的相互关系可将晶体分为7种晶系,而现在按对称性又有32种点群,这表明同属一种晶系的晶体可为不同点群。
因为晶体的对称性不仅决定与所属晶系,还决定于其阵点上的原子组合情况。
通过对点群特征的分析,可以判断晶体所属晶系。
空间群用以描述晶体中原子组合的所有可能方式,是确定晶体结构的依据。
它是通过宏观和微观对称元素在三维空间的组合而得出。
属于同一点阵的晶体可因其微观对称元素的不同而分属不同的空间群。
故可能存在的空间群数目远远多于点阵数。
已证明晶体中可能存在的空间群有230种,分属32个点群。
《结晶学与矿物学》复习要点结晶学一、基本概念:1.晶体(crystal)的概念:内部质点在三维空间周期性重复排列构成的固体物质。
这种质点在三维空间周期性地重复排列称为格子构造,所以晶体是具有格子构造的固体。
2对称型(class of symmetry)晶体宏观对称要素之组合。
(点群,point group)3.空间群:一个晶体结构中,其全部对称要素的总和。
也称费德洛夫群或圣佛利斯群。
4.单形(Simple form):一个晶体中,彼此间能对称重复的一组晶面的组合。
即能借助于对称型之全部对称要素的作用而相互联系起来的一组晶面的组合。
5.双晶:两个以上的同种晶体,彼此间按一定的对称关系相互取向而组成的规则连生晶体。
6.平行六面体:空间格子中按一定的原则划分出来的最小重复单位称为平行六面体。
是晶体内部空间格子的最小重复单位,是由六个两两平行且相等的面网组成。
7.晶胞:能充分反映整个晶体结构特征的最小结构单元,其形状大小与对应的单位平行六面体完全一致。
8.类质同像:晶体结构中某种质点为性质相似的他种质点所替代,共同结晶成均匀的单一相的混合晶体,而能保持其键性和结构型式不变,仅晶格常数和性质略有改变。
9.同质多像:化学成分相同的物质,在不同的物理化学条件下,形成结构不同的若干种晶体的现象。
10.多型:一种元素或化合物以两种或两种以上层状结构存在的现象。
这些晶体结构的结构单元层基本上是相同的,只是它们的叠置次序有所不同。
二、晶体的6个基本性质1、均一性(homogeneity):同一晶体的任一部位的物理和化学性质性质都是相同的。
2、自限性(property of self-confinement):晶体在自由空间中生长时,能自发地形成封闭的凸几何多面体外形。
3. 异向性(各向异性)异向性(anisotropy):晶体的性质随方向的不同而有所差异。
4. 对称性(property of symmetry):晶体的相同部分(如外形上的相同晶面、晶棱或角顶,内部结构中的相同面网、行列或质点等)或性质,能够在不同的方向或位置上有规律地重复出现。