小波变换图像去噪的算法研究自设阈值
- 格式:doc
- 大小:285.50 KB
- 文档页数:10
自适应小波阈值去噪方法
小波变换是一种时频分析方法,能够将信号变换到时频域,使得信号在不同尺度上的变化能够得到很好的表示。
小波变换将信号分解成低频和高频部分,其中高频部分通常包含噪声,而低频部分则包含信号的主要能量。
阈值处理是一种常用的信号去噪方法,其基本原理是将信号中幅度较小的部分认为是噪声,并将其置零或缩小幅度。
然而,传统的固定阈值处理方法可能会引入伪像或导致信号的失真,因此自适应阈值处理方法应运而生。
软阈值是一种逐渐递减的阈值处理方法,当信号的幅度小于阈值时,将信号幅度设置为零,并将幅度较大的部分保留。
该方法能够有效地抑制噪声,同时保持信号的平滑性。
硬阈值是一种二值化的阈值处理方法,当信号的幅度小于阈值时,将信号幅度设置为零,而大于阈值的部分保留不变。
该方法能够更好地保留信号的尖峰和细节信息。
1.将信号进行小波变换,得到相应的小波系数。
2.通过估计信噪比,确定阈值大小。
3.根据选择的阈值类型(软阈值或硬阈值),对小波系数进行阈值处理。
4.对阈值处理后的小波系数进行逆变换,得到去噪后的信号。
自适应小波阈值去噪方法的优点是能够根据信号的特点自动选择合适的阈值,并且能够有效地去除噪声,同时保留信号的重要信息。
因此,在
实际应用中,自适应小波阈值去噪方法被广泛应用于图像处理、语音处理和生物信号处理等领域。
总之,自适应小波阈值去噪方法是一种有效的信号处理技术,能够去除信号中的噪声,同时保留信号的重要信息。
通过合理选择阈值和阈值处理方法,可以得到满足需求的去噪效果。
自适应小波阈值去噪原理小波变换的出现为信号处理领域带来了新的处理方法,其中的小波阈值去噪技术由于其出色的去噪效果而备受关注。
该技术在如何确定阈值方面存在许多争议,为了解决这个问题,自适应小波阈值去噪技术应运而生。
本文将详细介绍自适应小波阈值去噪技术的原理和实现方式。
小波阈值去噪技术是基于小波变换的信号去噪方法,其基本原理是:将噪声信号通过小波变换转换到小波域,利用小波变换的分解性质将噪声和信号分开,通过加入阈值进行噪声的滤除,然后将小波域上的信号逆变换回时域,得到经过去噪后的信号。
具体来说,对于一个长度为N的信号$x(n)$,它可以进行小波变换得到其小波系数$CJ_k$,即:$$CJ_k = \sum_{n=0}^{N-1}x(n)\psi_{j,k}(n)$$$\psi_{j,k}(n)$为小波基函数,它们可以由小波变换的不同种类选择。
通过多层小波分解,可以得到多个小波系数矩阵$CJ_{nj}$,其中$n$表示小波变换的层数,$j$表示小波系数的关键字,$j=(n,j)$。
在小波域中,噪声和信号的表现方式不同。
通常情况下,信号的小波系数分布在某个范围内,而噪声则分布在零附近。
我们可以通过以零为中心的阈值将小波系数分为两部分:大于阈值的系数表示信号成分,小于阈值的系数表示噪声成分。
然后将小于阈值的小波系数清零,再通过逆变换将小波系数转换回原始信号。
小波阈值去噪技术的核心问题是如何确定阈值。
传统的小波阈值去噪技术采用全局阈值,所有小波系数均采用同一个阈值进行处理。
这种方法可能会使信号丢失部分重要信息,从而影响其质量。
如果在将全部小波系数同时处理时,不同频带的信号成分和噪声带宽差异较大,无法很好地选取合理的阈值。
为了解决这些问题,自适应小波阈值去噪技术应运而生。
该方法采用自适应阈值,在不同频带上分别应用不同的阈值,以便更好地保留信号信息。
自适应小波阈值去噪技术的步骤如下:1. 利用小波变换将噪声信号转换到小波域。
图像小波阈值去噪方法研究作者:郭建峰来源:《电脑知识与技术》2014年第22期摘要:该文介绍了小波阈值去噪的基本原理,描述了图像小波阈值法去噪的过程,并通过仿真实验结果比较了小波阈值去噪方法在选取不同阈值函数下的去噪效果,证明了小波阈值去噪法是一种非常有效的变换域图像去噪方法。
关键词:图像去噪;高斯噪声;阈值去噪中图分类号: TP39 文献标识码:A 文章编号:1009-3044(2014)22-5291-02图像信息以其信息量大、传输速度快、作用距离远等优点成为人类获取信息的重要来源及获取信息的重要手段,但是在现实中的图像往往是带有噪声,噪声是破坏图像质量的重要因素之一,因此图像去噪是图像预处理的一个非常重要的环节。
人们一直寻求一种既能有效地减小噪声,又能很好地保留图像边缘信息的方法,这也是人们对图像处理的目标。
近年来,小波图像去噪方法已成为去噪的一个重要分支和主要研究方向,该文实现了小波阈值图像去噪,并对不同阀值的去噪效果进行了分析。
1 小波阈值去噪基本原理1.1 基本思想1995年,Johnstone和Donoho提出了小波阈值收缩图像去噪方法,其算法的基本过程为是先对原始信号进行小波分解,再对变换后的小波系数进行阈值处理,得到估计小波系数;然后根据估计小波系数进行小波重构。
在这个方法中,阈值的选取和阈值函数的构造是关键,二者可以影响着图像的去噪效果,是阈值法去噪方法研究的重点。
一般来说,小波阈值去噪算法主要分为4个步骤:第1步:选择一个小波基函数,确定小波分解层数并对信号进行小波分解。
常用于去噪的小波函数有dbN小波、symN小波和coifN 小波,层数一般为3-5层。
第2步:阈值的确定。
小波阈值[λ]在去噪过程中起到决定性的作用[1]。
如果阈值太小,那么阈值处理后的小波系数中包含了过多的噪声分量;如果阈值太大,那么将会丢失信号的一部分有用信息,从而造成小波系数重构后的信号失真。
第3步:选择合适的阈值函数对小波系数进行阈值处理。
在众多基于小波变换的图像去噪方法中,运用最多的是小波阈值萎缩去噪法。
传统的硬阈值函数和软阈值函数去噪方法在实际中得到了广泛的应用,而且取得了较好的效果。
但是硬阈值函数的不连续性导致重构信号容易出现伪吉布斯现象;而软阈值函数虽然整体连续性好,但估计值与实际值之间总存在恒定的偏差,具有一定的局限性。
鉴于此,本文提出了一种基于小波多分辨率分析和最小均方误差准则的自适应阈值去噪算法。
该方法利用小波阈值去噪基本原理,在基于最小均方误差算法L M S和Stein无偏估计的前提下,引出了一个具有多阶连续导数的阈值函数,利用其对阈值进行迭代运算,得到最优阈值,从而得到更好的图像去噪效果。
最后,通过仿真实验结果可以看到,该方法去噪效果显著,与硬阈值、软阈值方法相比,信噪比提高较多,同时去噪后仍能较好地保留图像细节,是一种有效的图像去噪方法。
小波基函数选择可从以下3个方面考虑。
(1)复值与实值小波的选择复值小波作分析不仅可以得到幅度信息,也可以得到相位信息,所以复值小波适合于分析计算信号的正常特性。
而实值小波最好用来做峰值或者不连续性的检测。
(2)连续小波的有效支撑区域的选择连续小波基函数都在有效支撑区域之外快速衰减。
有效支撑区域越长,频率分辨率越好;有效支撑区域越短,时间分辨率越好。
(3)小波形状的选择如果进行时频分析,则要选择光滑的连续小波,因为时域越光滑的基函数,在频域的局部化特性越好。
如果进行信号检测,则应尽量选择与信号波形相近似的小波。
小波变换与傅里叶变换的比较小波分析是傅里叶分析思想方法的发展和延拓。
自产生以来,就一直与傅里叶分析密切相关。
它的存在性证明,小波基的构造以及结果分析都依赖于傅里叶分析,二者是相辅相成的。
两者相比较主要有以下不同:(1)傅里叶变换的实质是把能量有限信号tf分解到以jwte为正交基的空间上去;而小波变换的实质是把能量有限的信号tf分解到由小波函数所构成的空间上去。
两者的离散化形式都可以实现正交变换,都满足时频域的能量守恒定律。
基于小波的图像去噪一、小波变换简介在数学上,小波定义卫队给定函数局部化的新领域,小波可由一个定义在有限区域的函数()x ψ来构造,()x ψ称为母小波,(mother wavelet )或者叫做基本小波。
一组小波基函数,()}{,x b a ψ,可以通过缩放和平移基本小波 来生成:())(1,ab x a x b a -ψ=ψ (1) 其中,a 为进行缩放的缩放参数,反映特定基函数的宽度,b 为进行平移的平移参数,指定沿x 轴平移的位置。
当a=2j 和b=ia 的情况下,一维小波基函数序列定义为:()()1222,-ψ=ψ--x x j j j i (2) 其中,i 为平移参数,j 为缩放因子,函数f (x )以小波()x ψ为基的连续小波变换定义为函数f (x )和()x b a ,ψ的内积:()dx ab x a x f f x W b a b a )(1)(,,,-ψ=ψ=⎰+∞∞- (3) 与时域函数对应,在频域上则有:())(,ωωa e a x j b a ψ=ψ- (3)可以看出,当|a|减小时,时域宽度减小,而频域宽度增大,而且()x b a ,ψ的窗口中心向|ω|增大方向移动。
这说明连续小波的局部是变化的,在高频时分辨率高,在低频时分辨率低,这便是它优于经典傅里叶变换的地方。
总体说来,小波变换具有更好的时频窗口特性。
二、图像去噪描述所谓噪声,就是指妨碍人的视觉或相关传感器对图像信息进行理解或分析的各种因素。
通常噪声是不可预测的随机信号。
由于噪声影响图像的输入、采集、处理以及输出的各个环节,尤其是图像输入、采集中的噪声必然影响图像处理全过程乃至最终结果,因此抑制噪声已成为图像处理中极其重要的一个步骤。
依据噪声对图像的影响,可将噪声分为加性噪声和乘性噪声两大类。
由于乘性噪声可以通过变换当加性噪声来处理,因此我们一般重点研究加性噪声。
设f(x,y)力为理想图像,n(x,y)力为噪声,实际输入图像为为g(x,y),则加性噪声可表示为:g(x,y)= f(x,y)+ n(x,y), (4)其中,n(x,y)和图像光强大小无关。
图像去噪的目的就是从所得到的降质图像以g(x,y)中尽可能地去除噪声n(x,y),从而还原理想图像f(x,y)。
图像去噪就是为了尽量减少图像的均方误差,提高图像的信噪比,从而尽可能多地保留图像的特征信息。
图像去噪分为时域去噪和频域去噪两种。
传统图像去噪方法如维纳滤波、中值滤波等都属于时域去噪方法。
而采用傅里叶变换去噪则属于频域去噪。
这些方法去噪的依据是一致的,即噪声和有用信号在频域的不同分布。
我们知道,有用信号主要分布于图像的低频区域,噪声主要分布在图像的高频区域,但图像的细节信息也分布在高频区域。
这样在去除高频区域噪声的同时,难免使图像的一些细节也变得模糊,这就是图像去噪的一个两难问题。
因此如何构造一种既能降低图像噪声,又能保留图像细节特征的去噪方法成为图像去噪研究的一个重大课题。
三、小波阈值去噪法3.1小波变换去噪的过程小波去噪是小波变换较为成功的一类应用,其去噪的基本思路可用框图3-1来概括,即带噪信号经过预处理,然后利用小波变换把信号分解到各尺度中,在每一尺度下把属于噪声的小波系数去掉,保留并增强属于信号的小波系数,最后再经过小波逆变换恢复检测信号。
图3-1小波去噪框图因此,利用小波变换在去除噪声时,可提取并保存对视觉起主要作用的边缘信息。
而传统的傅立叶变换去噪方法在去除噪声和边沿保持上存在着矛盾,原因是傅立叶变换方法在时域不能局部化,难以检测到局域突变信号,在去除噪声的同时,也损失了图像边沿信息。
由此可见,与傅立叶变换去噪方法相比,小波变换去噪方法具有明显的优越性。
3.2小波阈值去噪的基本方法3.2.1阈值去噪原理Donoho提出的小波阈值去噪方法的基本思想是当w j,k小于某个临界阈值时,认为这时的小波系数主要是由噪声引起的,予以舍弃。
当w j,k大于这个临界阈值时,认为这时的小波系数主要是由信号引起,那么就把这一部分的w j,k直接保留下来(硬阈值方法),或者按某一个固定量向零收缩(软阈值方法),然后用新的小波系数进行小波重构得到去噪后的信号。
此方法可通过以下三个步骤实现:(1)先对含噪声信号f(t)做小波变换,得到一组小波分解系数w j,k。
(2)通过对分解得到的小波系数w j,k进行阈值处理,得出估计小波系数k j w,使得w j,k- u j,k,尽可能的小。
(3)利用估计小波系数k j w,进行小波重构,得到估计信号了f,即为去噪之后的信号。
)(t需要说明的是,在小波阈值去噪法中,最重要的是闭值函数和闲值的选取。
3.2.2阈值函数的选取阈值函数关系着重构信号的连续性和精度,对小波去噪的效果有很大影响。
目前,阈值的选择主要分硬阈值和软阈值两种处理方式。
其中,软阈值处理是将信号的绝对值与阈值进行比较,当数据的绝对值小于或等于阈值时,令其为零;大于阈值的数据点则向零收缩,变为该点值与阈值之差。
而硬阈值处理是将信号的绝对值阈值进行比较,小于或等于阈值的点变为零,大于阈值的点不变。
但硬阈值函数的不连续性使消噪后的信号仍然含有明显的噪声;采用软阈值方法虽然连续性好,但估计小波系数与含噪信号的小波系数之间存在恒定的偏差,当噪声信号很不规则时显得过于光滑。
四、基于小波变换的图像分解与重构二维离散小波主要解决二维多分辨率分析问题,如一幅二维离散图像{c(m,n)},二小波可以将它分解为各层各个分辨率上的近似分量cAj,水平方向细节分量cHj,垂直方向细节分量cVj,对角线方向细节分量cDj,其二层小波图像分解过程如图4-1 所示:图4-1 小波图像分解过程图4-2 小波图像分解过程其二层小波图像重构过程正好与此相反如图4-2所示,基于小波变换的图像处理,是通过对图像分解过程中所产生的近似分量与细节分量系数的调整,使重构图像满足特定条件,而实现图像处理.五、编程实现图像消噪常用的图像去噪方法是小波阈值去噪法,它是一种实现简单而效果较好的去噪方法,阈值去噪方法的思想很简单,就是对小波分解后的各层稀疏模大于和小于某阈值的系数分别进行处理,然后利用处理后的小波系数重构出去噪后的图像。
在阈值去噪中,阈值函数体现了对小波分解稀疏的不同处理策略以及不同的估计方法,常用的阈值函数有硬阈值和软阈值函数,硬阈值函数可以很好的保留图像边缘等局部特征,但图像会出现伪吉布斯效应,等视觉失真现象,而软阈值处理相对较平稳,但可能会出现边缘模糊等失真现象,为此人们又提出了半软阈值函数。
小波阈值去噪方法处理阈值的选取,另一个关键因素是阈值的具体估计,如果阈值太小,去噪后的图像仍然存在噪声,相反如果阈值太大,重要图像特征又将被滤掉,引起偏差。
从直观上讲,对给定的小波系数,噪声越大,阈值就越大。
图像信号的小波去噪步骤与一维信号的去噪步骤完全相同,只使用二维小波分析工具代替了一维小波分析工具,如果用固定阈值形式,则选择的阈值用m2代替了一维信号中的n。
这三步是:1)二维信号的小波分解。
选择一个小波和小波分解的层次N, 然后计算信号S到第N层的分解。
2)对高频系数进行阈值量化,对于从一到N的每一层,选择一个阈值,并对这一层的高频系数进行软阈值化处理。
3)二维小波的重构,根据小波分解的第N层的低频系数和经过修改的从第一层到第N层的高频系数,来计算二维信号的小波重构。
下面就通过具体实例来说明利用小波分析进行图像去噪的问题。
对给定图像进行去噪的二维小波去噪程序:clear; % 清理工作空间load wbarb; % 装载原始图像subplot(221); % 新建窗口image(X); % 显示图像colormap(map); % 设置色彩索引图title('原始图像'); % 设置图像标题axis square; % 设置显示比例, 生成含噪图像并图示init=2055615866; % 初始值randn('seed',init); % 随机值XX=X+8*randn(size(X)); % 添加随机噪声subplot(222); % 新建窗口image(XX); % 显示图像colormap(map); % 设置色彩索引图title(' 含噪图像'); % 设置图像标题axis square; %用小波函数coif2对图像XX进行2层[c,l]=wavedec2(XX,2,'coif2'); % 分解n=[1,2]; % 设置尺度向量p=[10.28,24.08]; % 设置阈值向量, 对高频小波系数进行阈%nc=wthcoef2('h',c,l,n,p,'s');%nc=wthcoef2('v',c,l,n,p,'s');X1=waverec2(nc,l,'coif2'); % 图像的二维小波重构subplot(223); % 新建窗口image(X1); % 显示图像colormap(map); % 设置色彩索引图title(' 第一次消噪后的图像'); % 设置图像标题axis square; %设置显示比例,再次对高频小波系数进行阈值处理%mc=wthcoef2('h',nc,l,n,p,'s');mc=wthcoef2('v',nc,l,n,p,'s');%mc=wthcoef2('d',nc,l,n,p,'s');X2=waverec2(mc,l,'coif2'); % 图像的二维小波重构subplot(224); % 新建窗口image(X2); % 显示图像colormap(map); % 设置色彩索引图title(' 第二次消噪后的图像'); % 设置图像标题axis square; % 设置显示比例程序运行结果:图5-1 去噪前后图像比较上图中几幅图像,可见第一次去早滤除了大部分的高频噪,但与原图比较,依然有不少的高频噪声,第二次去噪在第一次的去噪基础上,再次滤除高频噪声,去噪效果较好,但图像的质量比原图稍差。
结论小波分析理论因其具有良好的时频局域特性和多分辨率特性,使得它在数字图像处理领域有着广泛的应用前景。
本论文针对小波阈值在图像去噪方面的应用进行了研究。
具体归纳如下:本文首先总结了各种图像去噪方法,并对其进行了总结与对比,提出了各自的优缺点,引出了小波变换图像去噪方法,阐述了小波变换的基础理论,给出了小波变换的基本概念、基本思想、发展历程和小波阈值去噪的基本方法。