广州地铁通信系统简介
- 格式:ppt
- 大小:212.00 KB
- 文档页数:23
广州地铁五号线无线通信系统概述
广州地铁五号线无线通信系统是一种用于实现车站、车辆之间
交互和传递信息的系统。
该系统由监控中心、车载设备、信号基站、无线骨干网、无线接入点等多个组成部分构成。
其目的是为了保证
地铁列车运行的通畅和安全,为乘客提供优质的出行服务。
监控中心是该系统的核心部分,负责实现对整个系统的管理和
控制,同时也承担着车站、车辆之间信息交互的任务。
监控中心配
备了多种设备,如计算机、电视监控、语音广播等,能够实时获取
车站、车辆运行状态的信息,同时也能够通过语音广播系统阐述运
营情况,方便乘客及时掌握信息。
为了实现监控中心和车载设备之间的互动交流,信号基站被摆
放在各个车站以及隧道内。
该基站能够接收到车辆内部发送的信息,并通过骨干网连接到监控中心进行处理。
在车站内,无线接入点则
被设置在钢轨上方,能够接收到车辆内部的信号,从而在车站站台
上显示列车到站时间、派发公告以及乘客安全警告等信息。
除此之外,该无线通信系统还能够实现车辆之间的信息传递。
车载设备可以通过无线骨干网向其他车辆发送操作指令,从而优化
运行过程。
同时,车载设备还能够向乘客提供列车的相关信息,如
当前位置、下一站点、车速等,以保障乘客的旅途体验。
广州地铁五号线无线通信系统是一项高效、智能、安全的系统,为地铁列车的运营与管理提供了重要的技术支持,对整个地铁交通
业的发展有着深远的影响。
1。
广州地铁移动闭塞信号系统车地传输方式简析作者:黄韬来源:《电子技术与软件工程》2015年第01期目前,在广州市轨道交通共开通9条线路,其信号系统类型涵盖了准移动闭塞和移动闭塞系统,都配备了列车自动防护系统(ATC),而移动闭塞作为广州地铁信号系统的主流模式,已经在广州广佛线、APM线、三号线、三北线、四号线、五号线、六号线进行使用。
【关键词】移动闭塞信号系统传输方式自动保护系统(ATP)作为ATC系统的一部分,是用以防止列车超速,相撞及其他因列车行驶时可能出现的危险情况。
车地传输系统作为列车自动防护ATP系统重要组成部分,起作用是连接轨旁ATP设备与车载ATP设备,保证ATP设备间安全信息的稳定安全传输。
1 西门子Trainguard MT系统-无线天线技术广州市轨道交通四、五、广佛线采用的是西门子Trainguard MT系统,其车地传输方式为自由无线方式,轨旁发送和接收传感器终端为轨旁AP以及与之相连接的轨旁高增益定向天线,列车发送和接收传感器终端为列车车载天线。
如图1所示。
列车通过安装在车顶的车载天线接收轨旁控制器单元、ATS 等发送给无线AP的状态信息和控制命令,并将这些信息送至车载ATP/ATO系统进行运算处理,控制列车运行;同时车载ATP/ATO系统将列车的运行状况和定位信息等实时通过车载天线发送给无线AP,反馈给轨旁设备和ATS,以实现列车信息的实时更新。
(1)采用DSSS直接序列展频技术,DSSS通过利用高速率的扩频序列在发射端扩展信号的频谱,而在接收端用相同的扩频码序列进行解扩,把展开的扩频信号还原成原来的信号。
直接序列扩频技术在军事通信和机密工业中得到了广泛的应用,采用此方法,与一位信息相关的传输能量在载波的22MHZ带宽上分布,只要确保信噪比余量,就不会影响到数据传输。
(2)通过采用定向天线等方法提高信号覆盖率而有效地抑制此影响,使用定向天线,将信号现定于需要区域,降低高功率非标准发射器对使用中的频带的无意或有意占用。
基于 TD-LTE技术的宽带集群无线通信系统在广州地铁 18、 22号线应用的实例分析摘要:本文主要叙述广州地铁18、22号线工程专用无线通信系统采用基于TD-LTE技术的宽带集群通信系统的设计方案、系统构成、主要设备功能等内容。
该系统拥有大带宽的传输能力、高速移动性、高度的可靠性,为地铁运营、调度、安全行车提供了优质的通信服务。
关键字:双机备份;异地容灾;主备冗余;主备时钟同步1、设计方案1.1LTE的关键技术LTE(Long Term Evolution,长期演进)是由3GPP组织制定的UMTS技术标准的长期演进,于2004年12月在3GPP多伦多会议上正式立项并启动,LTE系统引入了OFDM和MIMO等关键技术,显著增加了频谱效率和数据传输速率,并支持多种带宽分配,且支持全球主流2G/3G段和一些新增频段,因而频谱分配更加灵活,系统容量和覆盖也显著提升。
1.2系统综述广州市地铁18、22号线工程专用无线通信系统采用1.8GHz TD-LTE(分时长期演进)通信制式,系统为小区制的无线宽带多媒体数字集群通信系统。
本系统完全满足基于LTE技术的宽带集群通信(B-TrunC)系统的相关要求,是一个有线、无线相结合的网络系统,由核心网设备、网络管理设备、录音录像设备、调度服务器、调度台、BBU、RRU、列车车载台、固定台、TAU、移动人员手持终端、漏泄同轴电缆、天馈系统、防雷器设备以及传输通道构成。
1.3系统拓扑18号线控制中心、22号线停车场各自设置核心网设备、调度服务器、接口服务器、网管服务器等设备分部与各自的核心交换机相连,两台核心交换机通过区间光缆直连形成核心网主备通道。
LTE无线系统基站的组网方式采用BBU(室内基带处理单元)+RRU(射频拉远单元)分布式基站方案, 在线路所有车站、控制中心、车辆段及停车场专用通信系统设备室设置BBU/RRU设备,在区间设置RRU,RRU用光纤与BBU直接连接。
城市轨道交通通信系统的组成及功能1. 电话系统公务电话系统:主要由程控用户交换机、电话分机、通信电缆等设备组成。
专用调度电话系统:由调度用户交换机、调度台、调度分机等组成,可为控制中心调度指挥人员提供与各站、车辆段、变电站等的专用直达通信,并具有双重热备用功能、数字环自愈功能。
站内及轨旁电话系统:可为站内各有关部门提供与车站控制室(以下简称“车控室”)人员之间的通话以及车控室人员与相邻或相关车站车控室人员的通话。
2. 传输系统通信网的主干是一个基于光纤的传输系统。
它应是可靠的、冗余的、可扩展的、可重构的、灵活的,能为各专业系统提供丰富的接口类型。
除传输通信系统所需的语音、数据、图像等信息外,传输系统还可以传输电力监控(supervisory control and data acquisition,SCADA)、自动售检票(automatic fare collection,AFC)、列车自动监控(automatic train supervision,ATS)、火灾自动报警系统(fire alarm system,FAS)、能源管理和控制系统(energy management and control system,EMCS)、门禁控制系统(access control system,ACS)、办公自动化(office automation,OA)等系统的信息。
此外,它还可为各条轨道交通线路间的信息互联与交互提供通道。
3. 无线通信系统无线通信系统在城市轨道交通通信系统中作用重要,它既是调度员与司机通信的有效手段,又是移动中的运营人员和维修人员实现通信的重要手段。
无线通信系统为运营控制指挥中心的行调、环调、维调等提供了对列车司机、运营人员、维修人员等无线用户的无线通信,为车辆段值班员提供了对段内的无线用户的无线通信,以及相应的无线用户之间的通信。
4. 广播系统广播系统可为中心调度员、车站值班员提供对车站相应区域的广播。
地铁通信系统简介地铁通信系统简介目前地铁专用通信系统主要包括以下几个子系统:传输系统、公务电话系统、专用电话系统、无线通信系统、广播系统、闭路电视监控系统、乘客信息系统、视频会议系统、时钟系统、集中网络管理系统、地铁信息管理系统、电源及接地系统、通信光缆/电缆及其他等。
1、传输系统地铁传输系统能迅速、准确、可靠地传送地铁运营管理所需要的各种信息。
该系统采用技术先进、安全可靠、经济实用、便于维护的光纤数字传输设备组网,构成具有承载语音、数据及图像的多业务传输平台,并具有自愈环保护功能。
目前地铁传输系统普遍采用MSTP设备,随着信息化程度的不断提高,对数据传输要求高带宽、低时延,通道保护智能化高,会采用更先进的OTN传输设备。
目前传输系统所承载的语音、数据及图像信息的业务主要有:(1)公务电话系统(2)专用电话系统(3)无线通信系统(4)广播系统(5)闭路电视监控系统(6)时钟系统(7)UPS电源系统(8)信号电源及微机监测(9)自动售检票系统(AFC)(10)安防系统(11)门禁系统(12)屏蔽门系统(PSD)(13)其它运营管理信息传输系统的光纤环路具有双环路功能。
当主用环路出现故障时,能够自动切换到备用环路上,保证系统不中断,切换时不影响正常使用。
当主、备用光纤环路的线路在某一点同时出现故障时,两端的网络设备自动形成一条链状的网络。
当某个网络节点设备出现故障时,除受故障影响的节点设备外,其它网络节点设备能保持正常工作。
地铁通信系统简介2 / 31地铁通信系统简介2、公务电话系统公务电话主要为运营、管理和维护部门之间的公务通信以及与公用电话网用户的通信联络,向地铁用户提供话音、非话及各种新业务。
公务电话系统按车辆段、车站两级结构进行组网,由设置在车辆段和车站的数字程控交换机、电话机及各种终端、配线架等辅助设备构成。
两相邻车站交换机通过实回线模拟中继相连,一旦车辆段交换机、传输设备及光线路发生故障,车站内部通信仍能保证,站间行车电话、轨旁电话等仍能畅通,不影响列车运营。