单级单级圆柱齿轮减速器
- 格式:doc
- 大小:761.00 KB
- 文档页数:22
单级圆柱齿轮减速器设计说明书设计说明书:单级圆柱齿轮减速器引言:圆柱齿轮减速器作为一种常见的传动装置,广泛应用于机械设备中的减速传动系统中。
本设计说明书旨在详细介绍单级圆柱齿轮减速器的设计原理、结构特点、性能参数以及选型要点,为读者提供有关该减速器的全面指导和参考。
一、设计原理及结构特点:单级圆柱齿轮减速器是由一个输入轴和一个输出轴组成。
其中输入轴与电机相连,输出轴与被驱动机械设备相连。
通过齿轮传递动力,实现减速效果。
该减速器结构简单,耐久性强,承载能力较大,传动效率较高,对于大功率传动系统非常适用。
二、性能参数:1. 传动比:传动比是指减速器输入轴转速与输出轴转速之间的比值。
在设计中,通过合理选择齿轮模数、齿数等参数来确定传动比。
传动比的选择直接影响到输出扭矩和转速,需要根据实际应用需求进行优化设计。
2. 承载能力:减速器的承载能力是指其可以承受的最大轴向和径向力矩。
在设计中,需要考虑被驱动机械设备的扭矩要求,并确保减速器可以承受该扭矩而不损坏。
3. 效率:减速器的效率是指输入功率与输出功率之间的比值。
高效率的减速器能够最大程度地将电机输入的功率转化为机械设备需要的输出功率,减少能量损失。
三、选型要点:在选型过程中,需要综合考虑以下几个要点,以确保减速器的使用效果和寿命:1. 转速要求:根据被驱动机械设备的转速要求,选择合适的传动比,使得输出轴转速满足要求。
2. 扭矩要求:根据被驱动机械设备的扭矩要求,选择合适的减速器承载能力,保证减速器不会因为超负荷工作而损坏。
3. 空间限制:考虑被安装环境的空间限制,选择适当大小的减速器尺寸,以便于安装和维护。
4. 质量和可靠性:选择优质的材料和制造工艺,确保减速器的质量和可靠性,以减少故障概率和维修次数。
结论:单级圆柱齿轮减速器是一种可靠、高效的传动装置,广泛应用于各种机械设备中的减速传动系统。
通过本设计说明书的介绍,读者对单级圆柱齿轮减速器的设计原理、结构特点、性能参数以及选型要点有了更全面的了解,并可以根据实际需求进行合理的设计和选型,以满足各类机械设备的传动需求。
一级单级圆柱齿轮减速器说明书一级单级圆柱齿轮减速器是一种常用的传动装置,被广泛应用于各种机械设备中。
它通过齿轮的啮合来实现传动的目的,将高速旋转的输入轴转换为低速高扭矩的输出轴。
本篇说明书将详细介绍一级单级圆柱齿轮减速器的结构、工作原理、安装要点以及维护保养等方面的内容,以帮助读者对其有更全面的了解和正确的使用。
一、结构介绍一级单级圆柱齿轮减速器由输入轴、输出轴、齿轮、轴承、外壳等部分组成。
其主要部件是两个相互啮合的圆柱齿轮,一个为输入轴上的驱动齿轮,另一个为输出轴上的从动齿轮。
它们通过齿轮啮合的角度和齿轮的齿数来实现不同的减速比。
二、工作原理当输入轴以一定的转速带动驱动齿轮旋转时,通过齿轮的啮合作用,从动齿轮也开始旋转。
由于从动齿轮的齿数较大,因此它转速较低,但扭矩较大。
这样就实现了输入轴高速旋转到输出轴低速高扭矩的转换。
三、安装要点1. 在安装前,应先清理减速器内部的油污和杂物,保持清洁。
2. 安装时应注意减速器的方向和位置,确保输入轴和输出轴的轴线对称,保持正确的啮合角度和齿轮间隙。
3. 在连接输入轴和输出轴时,应使用合适的联轴节或刚性联接件,保证转动的稳定性和可靠性。
4. 安装完成后,应检查并调整齿轮的啮合程度,确保减速器的工作顺畅。
四、维护保养1. 定期更换齿轮减速器内部的润滑油,并注意油品的选择与规定。
2. 清洁减速器表面的杂物和灰尘,并定期检查减速器的工作状态,如有异常应及时处理。
3. 轴承和齿轮的润滑脂应保持适当的润滑,不得过多或过少。
4. 若发现齿轮出现磨损或断裂等问题,应及时更换或修复,以免影响减速器的正常工作。
通过本篇说明书的详细介绍,相信读者对一级单级圆柱齿轮减速器有了更全面的认识。
在使用和维护中,我们应该严格按照要求进行操作,注意安装要点和维护保养的工作,从而提高减速器的工作效率和使用寿命,确保机械设备的正常运行。
单级圆柱齿轮减速器课程设计说明书单级圆柱齿轮减速器课程设计说明书1.引言1.1 编写目的本文档旨在提供关于单级圆柱齿轮减速器的课程设计说明,深入介绍该减速器的结构、工作原理、制造要求和使用注意事项,为课程设计的开展提供参考和指导。
1.2 背景单级圆柱齿轮减速器是一种常用的传动装置,广泛应用于各种机械设备中,具有结构简单、传动效率高等优点。
本课程设计的目标是通过深入研究单级圆柱齿轮减速器实现对其工作原理的理解和对其设计参数的分析。
2.减速器概述2.1 结构组成单级圆柱齿轮减速器主要由输入轴、输入齿轮、输出齿轮和输出轴组成。
输入轴与输入齿轮相连,输出齿轮与输出轴相连。
2.2 工作原理当输入轴转动时,通过输入齿轮的旋转将动力传递到输出齿轮上,从而将输入轴的高速运动转变为输出轴的低速运动。
3.设计要求3.1 传动比计算根据实际应用需求确定所需的传动比,结合输入轴的转速和输出轴的转速计算减速器的传动比。
3.2 齿轮尺寸设计根据所需的传动比和减速器的工作负载,设计合适的齿轮模数、齿数、齿形等参数。
3.3 轴承选择根据输入轴和输出轴的负载以及转速要求,选择适当的轴承以保证减速器的稳定运行。
4.使用注意事项4.1 安装与调试减速器安装前应检查各部件是否完好无损,安装过程中要注意对各部件进行正确的组装和配合,调试时应确保齿轮的啮合状态和轴线的对中度。
4.2 运行与维护在正常运行期间,应监测减速器的运行状态,定期检查润滑油的情况,及时更换和补充润滑油。
5.附件本文档涉及的附件包括:齿轮图、尺寸图、工程计算表格等。
6.法律名词及注释6.1 法律名词1:根据《机械传动设计规范》,减速器是一种通过齿轮和其他传动装置进行能量传递和转换的机械装置。
6.2 法律名词2:传动比是指输入轴转速与输出轴转速之间的比值,通常用N表示。
6.3 注释1:齿轮模数是一个用来描述齿轮尺寸的参数,是每毫米齿宽上的齿数。
6.4 注释2:齿形是用来描述齿轮对齿轮啮合的牙形形状,决定齿轮的传动效率和噪音水平。
设计
项目
计算公式及说明主要结果
1.设计任务
(1)设计带式传送机的传动系统,采用单级圆柱齿轮减速器和开式圆柱齿轮传动。
(2)原始数据
输送带的有效拉力 F=4000N
输送带的工作转速 V=s(允许误差 5%)
输送带滚筒的直径 d=380mm
减速器的设计寿命为5年
(3)工作条件
两班工作制,空载起动,载荷平稳,常温下连续单向运转,工作环境多尘;三相交流电源,电压为380V/220V。
2.传动方案的拟定
带式输送机传动系统方案如下所示:
带式输送机由电动机驱动。
电动机1通过联轴器2将动
力传入减速器3,再经联轴器4及开式齿轮5将动力传至输送
机滚筒6,带动输送带7工作。
传动系统中采用单级圆柱齿轮
减速器,其结构简单,齿轮相对于轴位置对称,为了传动的
平稳及效率采用斜齿圆柱齿轮传动,开式则用圆柱直齿传动。
传动系统方
案图见附图(一)
参考文献
[1] 诸文俊主编,机械原理与设计,机械工业出版社,2001
[2] 任金泉主编,机械设计课程设计,西安交通大学出版社,2002
[]3朱文俊钟发祥主编,机械原理及机械设计,西安交通大学城市学院,2009
马小龙
2009年6月30日。
单级圆柱齿轮减速器的优化设计单级圆柱齿轮减速器的优化设计齿轮减速器是一种常用的机械传动装置,广泛应用于各种机械设备中。
其中,单级圆柱齿轮减速器是一种常见的减速器类型,具有结构简单、传动效率高等优点。
本文将围绕单级圆柱齿轮减速器的优化设计展开讨论。
首先,我们需要明确单级圆柱齿轮减速器的工作原理。
单级圆柱齿轮减速器是通过两个相互啮合的圆柱齿轮进行传动的。
其中,一个齿轮称为主动齿轮,另一个齿轮称为从动齿轮。
主动齿轮通过电机等动力源驱动,从而带动从动齿轮旋转。
通过不同大小的齿轮组合,可以实现不同的减速比。
在进行优化设计时,我们可以从以下几个方面考虑:1. 齿轮材料的选择:齿轮材料的选择直接影响到减速器的使用寿命和传动效率。
一般来说,常用的齿轮材料有钢、铸铁、铜合金等。
在选择材料时,需要综合考虑其强度、硬度、耐磨性等因素,并根据具体应用场景进行选择。
2. 齿轮参数的优化:齿轮参数包括模数、压力角、齿数等。
通过优化这些参数,可以提高减速器的传动效率和承载能力。
例如,增大模数可以增加齿轮的强度和承载能力;选择合适的压力角可以减小齿轮啮合时的摩擦损失。
3. 齿轮啮合传动的优化:齿轮啮合传动是减速器最关键的部分,也是能量损失最大的部分。
通过优化齿轮啮合传动的设计,可以减小能量损失,提高传动效率。
例如,采用精密加工工艺可以提高齿轮的啮合精度;采用润滑油膜技术可以减小摩擦损失。
4. 减速器结构的优化:减速器的结构设计也会影响其性能。
通过优化结构设计,可以降低噪声、提高刚度、减小体积等。
例如,采用斜齿圆柱减速器可以减小噪声;采用刚性箱体结构可以提高刚度。
5. 传动效率的测试与改进:在优化设计完成后,需要对减速器的传动效率进行测试,并根据测试结果进行改进。
通过不断地测试与改进,可以逐步提高减速器的传动效率。
综上所述,单级圆柱齿轮减速器的优化设计涉及到多个方面,包括材料选择、齿轮参数优化、齿轮啮合传动优化、结构优化以及传动效率测试与改进等。
单级斜齿轮圆柱齿轮减速器设计单级斜齿轮圆柱齿轮减速器是一种常用的传动机构,广泛应用于各种机械设备。
它由斜齿轮和圆柱齿轮组成,通过齿轮的啮合传递动力,实现减速和增大扭矩的作用。
本文将介绍单级斜齿轮圆柱齿轮减速器的设计要点和应用场景。
一、设计要点1. 选用合适的齿轮材料齿轮材料是影响减速器使用寿命的重要因素。
一般情况下,斜齿轮和圆柱齿轮的材料应选用高强度的合金钢或硬质合金材料。
在具体选择时,需要根据减速器的工作条件、转速、负载等因素进行综合考虑。
2. 确定齿轮参数齿轮参数包括模数、齿数、齿宽、齿廓等。
这些参数的选择直接影响到齿轮的传动性能。
在设计减速器时,需要根据所需的减速比、扭矩和功率等要求,确定合适的齿轮参数。
3. 确定齿轮啮合角度齿轮啮合角度是指齿轮啮合时齿轮齿面与轴线的夹角。
啮合角度的选择应根据减速器的工作条件和齿轮材料的强度等因素进行综合考虑。
一般情况下,啮合角度应控制在20度左右。
4. 考虑齿轮的润滑和冷却齿轮在工作过程中会产生热量,需要进行润滑和冷却。
润滑可以采用油浸润滑或油雾润滑等方式,冷却可以采用风扇或水冷系统等方式。
在设计减速器时,需要考虑到齿轮的润滑和冷却方式,以保证其正常工作。
二、应用场景单级斜齿轮圆柱齿轮减速器广泛应用于各种机械设备中,如工业机械、冶金设备、矿山机械、化工设备等。
其优点包括传动效率高、噪音低、结构简单等。
例如,在工业机械中,单级斜齿轮圆柱齿轮减速器常用于输送机、起重机、磨机等设备中。
在冶金设备中,常用于轧机、连铸机、冷却床等设备中。
在矿山机械中,常用于矿山提升机、煤矿机械等设备中。
在化工设备中,常用于搅拌设备、输送设备等。
单级斜齿轮圆柱齿轮减速器是一种性能稳定、可靠性高的传动机构,可以满足各种机械设备的传动需求。
在设计和选择时,应根据具体的应用场景和要求,进行综合考虑,以保证其正常工作和使用效果。
单级圆柱齿轮减速器设计书课程设计题目:设计带式运输机传动装置1已知条件:运输带工作拉力 F = 3200 N。
运输带工作速度 v= 2 m/s滚筒直径 D = 375 mm工作情况两班制,连续单向运转,载荷较平稳。
,室,工作,水分和灰度正常状态,环境最高温度35℃。
要求齿轮使用寿命十年。
一、传动装置总体设计一、传动方案1)外传动用v带传动2)减速器为单级圆柱齿轮齿轮减速器3)方案如图所示二、该方案的优缺点:该工作机有轻微振动,由于V带有缓冲吸振能力,采用V带传动能减小振动带来的影响,并且该工作机属于小功率、载荷变化不大,可以采用V带这种简单的结构,并且价格便宜,标准化程度高,大幅降低了成本。
减速器部分单级渐开线圆柱齿轮减速器。
轴承相对于齿轮对称,要求轴具有较大的刚度。
原动机部分为Y系列三相交流异步电动机。
总体来讲,该传动方案满足工作机的性能要求,适应工作条件、工作可靠,此外还结构简单、尺寸紧凑、成本低传动效率高。
计算与说明(一)电机的选择工作机所需要的功率 P w =F ×v=6400w =6.4 kw m in .110134.014.36.1•-=⨯==R D V n π 传动装置总效率:η总=η带轮×η齿轮×η轴承×η轴承×η联轴器=0.95×0.97×0.99×0.99×0.99=0.89电机输出功率 P =P w/η总= 7.11 kw所以取电机功率P =7.5kw技术数据: 额定功率 7.5 kw 满载转速 970 R/min额定转矩 2.0 n •m 最大转矩 2.0 n •m选用Y160 M-6型外形查表19-2(课程设计书P 174)A:254 B:210 C:108 D:42 E:110 F:12 G:37H:160 K:15 AB:330 AC:32 AD:255 HD:385 BB:270 L:600二、 V 带设计总传动比 6.959.9101970≈===n i nm 定 V 带传动比i 1=3.2定 齿轮传动比i 2=3外传动带选为V 带由表12-3(P 216)查得K a =1.2P ca =K a ×P = 1.1×7.5=9KW所以 选用B 型V 带设小轮直径d 1=125 d 1/2<Hs m d n V a ⋅-=⨯⨯⨯=⨯⋅⋅=11116100060125970100060ππ大带轮直径 d 2=i 1×d 1=3.2×125=439.6所以取d 2=400所以 i 1=d 2/d 1=3.2所以大带轮转速n 2=n 1/i 1=303(R/min)确定中心距a 和带长L 00.7(d 1+d 2)≤a ≤2(d 1+d 2)367.5≤a ≤1050 所以初选中心距 a 0=5002)()(22221210d d d d L a ++++=π=1861 查表12-2(P 210)得L 0 =2000 中心距mm a L L a d 5.569218612000500200=-+=-+= 中心距调整围a max =a+0.03l d =629.5a min =a -0.015l d =539.5小带轮包角 ︒≥︒=︒⨯--︒≈1207.1663.57180121a d d α确定V 带根数Z 参考12-27 取P 0=1.32KW由表12-10 查得△P 0=0.11Kw由查表得12-5 查得包角系数K ≈0.96由表12-2(P 210)查得长度系数K L =1.06计算V 带根数Z ,由式(5-28机设)97.413.195.0)3.013.2(75.9)(00≈⨯⨯+=∇+≥K K P P PL caZ α 取Z=5根计算单根V 带初拉力F0,由式(12-22)机设。
《机械设计基础》课程设计说明书题目:带传动及单级圆柱齿轮减速器的设计学院:机械与电子学院专业:机械制造与自动化班级:机制19-1班学号:姓名:李俊指导教师:周海机械与电子学院2019年11月-12月目录一、课程设计任务要求 (3)二、电动机的选择 (4)三、传动比的计算设计 (5)四、各轴总传动比各级传动比 (6)五、V带传动设计 (8)六、齿轮传动设计 (11)七、轴的设计 (19)八、轴和键的校核 (30)九、键的设计 (32)十、减速器附件的设计 (34)十一、润滑与密封 (36)十二、设计小结 (37)十三、参考资料 (37)一、课程设计任务要求1. 用CAD设计一张减速器装配图(A0或A1)并打印出来。
2. 轴、齿轮零件图各一张,共两张零件图。
3.一份课程设计说明书(电子版)并印出来传动系统图如下:传动简图输送机传动装置中的一级直齿减速器。
运动简图工作条件冲击载荷,单向传动,室内工作。
三班制,使用5年,工作机速度误差±5%。
原始数据如下:二、电动机的选择三、传动比的计算设计四、各轴总传动比各级传动比计算结果汇总如下表,以供参考五、传动设计六、齿轮传动设计根据数据:传递功率P1=5.02KW电动机驱动,小齿轮转速n1=480r/min,大齿轮转速n2=166r/min,传递比i=2.90,单向运转,载荷变化不大,使用期限五年,三班制工作。
七、轴的设计主动抽1轴传动功率P2=4.77KW,转速n2=166r/min,工作单向转动轴采用深沟球轴承支撑。
八、轴和键的校核九、键的设计十、减速器附件的设计十一、润滑与密封十二、设计小结这次的课程设计,对于培养我们理论联系实际的设计思想;训练综合运用机械设计和有关先修课程的理论,结合生产实际反系和解决工程实际问题的能力;巩固、加深和扩展有关机械设计方面的知识等方面有重要的作用。
此次减速器,经过两个月的努力,终于将机械设计课程设计作业完成了。
设计计算及说明结果一设计任务书1.设计方案设计题目:带式输送机的传动装置设计方案图如下:表3 大齿轮结构尺寸名称结构尺寸及经验计算公式结果/mm 毂孔直径h d根据中间轴设计而定 h d =24d60轮毂直径1D 1D =1.6h d 96 轮毂宽度l L=(1.2~1.5) h d80 腹板最大直径2D 2D =a d -(10~14)m n 270 板孔分布圆直径0D 0D =0.5(1D +2D )183 板孔直径0d 0d =15~23mm25 腹板厚度CC=(0.2~0.3)b24大齿轮的结构草图如图1所示,闭式齿轮传动的尺寸列于表4。
图1大10%~15%。
C 值由[1]表5-5来确定:C=120。
1)闭式级高速轴37mm .21970482.5120nd 331min =⨯=≥PC 因为在最小直径处开有一个键槽为了安装联轴器,所以87mm .22)07.01(37.21d 1min =+⨯=,最后取1min d =30mm ;2)闭式级低速轴33.24mm 250.3235.319120nd 332min =⨯=≥PC因为在该轴上开有两个键槽,所以38.226mm )15.01(33.24d 2min =+⨯=最后取2min d =40mm ;3. 闭式级高速轴的结构设计闭式级高速轴的结构草图如图2所示图21).各轴段直径的确定D15:轴的最小直径,取1min d =30mm ;D14:密封处轴段直径,根据轴向定位以及密封圈的尺寸要求,取45mm ;D13:滚动轴承处轴段直径,取50mm ,由[1]表13-2初选滚动轴承6010;D12:齿轮处轴段,由于小齿轮直径较小,故采用齿轮轴结构; D11:滚动轴承处轴段直径,取50mm;2)各轴段长度的确定D15:由外接的联轴器确定,取50mm;D14:由箱体结构、轴承端盖尺寸、装配要求等确定,取75mm; D13:由滚动轴承、挡油盘等确定,取30mm;D12:齿轮处轴段,取110mm;D11:滚动轴承处轴段直径,取30mm闭式级高速轴的结构尺寸列于表6表6 闭式级高速轴的结构尺寸轴段D11 D12 D13 D14 D15直径/mm 50 80 50 45 30长度/mm 30 110 30 75 504. 闭式级低速轴的结构设计闭式级低速轴的结构草图如图3所示图31).各轴段直径的确定d=40mm;D26: 轴的最小直径,取2minD25: 密封处轴段直径,根据轴向定位以及密封圈的尺寸要求,取45mm;D24:滚动轴承处轴段直径,取50mm;D23:大齿轮处轴段,由大齿轮确定,取60mm;D22:过渡轴段,取70mm;D21:滚动轴承处轴段直径,取50mm;2)各轴段长度的确定D26:由外接齿轮等确定,取155mm ;D25: 由箱体结构、轴承端盖尺寸、装配要求等确定,取80mm ; D24:由滚动轴承、轴套等确定,取60mm ; D23:由大齿轮确定,取80mm ; D22:过渡轴段,取20mm ; D21:滚动轴承处轴段直径,取30mm 闭式级低速轴的结构尺寸列于表7表7 闭式级低速轴的结构尺寸轴段D21D22 D23 D24 D25 D26 直径/mm 50 70 60 50 45 40 长度/mm 30 208060801555. Ⅰ轴的校核1)对称循环弯曲许用应力选轴的材料为45钢,调质处理,由[4]表14-1查得对称循环弯曲许用应力][1- =55MPa ; 2)轴空间受力图齿轮啮合处作用有径向力、圆周力和轴向力,根据齿轮转向和齿轮旋向,可确定三者方向,画出轴空间受力图,如图4所示:图4取集中力作用于齿轮和轴承宽度的中点,齿轮啮合力即为作用于轴上的载荷,将其分解为垂直面受力和水平面受力,分别如图5和图6所示:图5图63)轴上载荷计算齿轮圆周力:N T T F 145305.12cos /5.231550652cos /zm 2d 2n 111t =⨯⨯===β 齿轮的径向力:NF F n t r5.54005.12cos 20tan 1453cos tan =⨯==βα 齿轮的轴向力:N F F 17.31005.tan121453tan t a =⨯== β 4)轴上支反力计算水平面内的支反力:N F F F HB HA 5.7262/t === 垂直面内的支反力:N d F l F l F a AB r ABVA 22.354)2/2/(11=⨯+⨯=N F F F VA r VB 28.186-== 5)轴弯矩计算及弯矩图绘制 计算截面C 处的弯矩:mm 508555.72670l ⋅=⨯=⨯=N F M HA AC Hmm 4.2479522.35470l 1⋅=⨯=⨯=N F M VA AC Vmm N F F M VA AC V ⋅=⨯-⨯=9.130392/d l 1a 2分别画出垂直面和水平面的弯矩图,分别如图7、图8所示:图7图8求合成弯矩并画出其弯矩图,如图9所示:mm 76.565772121⋅=+=N MM M V Hmm N M M M V H ⋅=+=2.525002222图96)画出扭矩图 如图10所示:图107)按弯扭合成校核轴的强度界面C 处的弯矩最大,以其为危险截面进行强度校核。
单位代码学号12341801444分类号密级毕业设计(论文)(单级圆柱齿轮减速器)学习中心名称泰州专业名称机械工程及自动化学生姓名钱伟锋指导教师2014年 3 月 1 日摘要:减速器的结构随其类型和要求不同而异。
单级圆柱齿轮减速器按其轴线在空间相对位置的不同分为:卧式减速器和立式减速器。
前者两轴线平面与水平面平行,如图1-2-1a所示。
后者两轴线平面与水平面垂直,如图1-2-1b所示。
一般使用较多的是卧式减速器,故以卧式减速器作为主要介绍对象。
单级圆柱齿轮减速器可以采用直齿、斜齿或人字齿圆柱齿轮。
一.主要特性由于减速器已成为一种通用的传动部件,因此,圆柱齿轮减速器多数已经标准化,ZD (JB1130-70)为单级圆柱齿轮减速器的标准型号。
其主要参数均已标准化和规格化。
单级圆柱齿轮减速器的主要性能参数为:传递功率P(标准ZD型减速器P=1~2000KW)传动比i为避免减速器的外廓尺寸过大,一般i〈6,其最大传动比imax=8~10,高速轴转速n1,中心距a(标准ZD型减速器a=100~700mm )工作类型及装配型式机械零件课程设计,可以根据任务书的要求参考标准系列产品进行设计,也可自行设计非标准的减速器。
二.组成图1-2-2和图1-2-3所示分别为单级直齿圆柱齿轮减速器的轴测投影图和结构图。
减速器一般由箱体、齿轮、轴、轴承和附件组成。
箱体由箱盖与箱座组成。
箱体是安置齿轮、轴及轴承等零件的机座,并存放润滑油起到润滑和密封箱体内零件的作用。
箱体常采用剖分式结构(剖分面通过轴的中心线),这样,轴及轴上的零件可预先在箱体外组装好再装入箱体,拆卸方便。
箱盖与箱座通过一组螺栓联接,并通过两个定位销钉确定其相对位置。
为保证座孔与轴承的配合要求,剖分面之间不允许放置垫片,但可以涂上一层密封胶或水玻璃,以防箱体内的润滑油渗出。
为了拆卸时易于将箱盖与箱座分开,可在箱盖的凸缘的两端各设置一个起盖螺钉(参见图1-2-3),拧入起盖螺钉,可顺利地顶开箱盖。
箱体内可存放润滑油,用来润滑齿轮;如同时润滑滚动轴承,在箱座的接合面上应开出油沟,利用齿轮飞溅起来的油顺着箱盖的侧壁流入油沟,再由油沟通过轴承盖的缺口流入轴承(参图1-2-3)。
减速器箱体上的轴承座孔与轴承盖用来支承和固定轴承,从而固定轴及轴上零件相对箱体的轴向位置。
轴承盖与箱体孔的端面间垫有调整垫片,以调整轴承的游动间隙,保证轴承正常工作。
为防止润滑油渗出,在轴的外伸端的轴承盖的孔壁中装有密封圈(参见图1-2-3)。
减速器箱体上根据不同的需要装置各种不同用途的附件。
为了观察箱体内的齿轮啮合情况和注入润滑油,在箱盖顶部设有观察孔,平时用盖板封住。
在观察孔盖板上常常安装透气塞(也可直接装在箱盖上),其作用是沟通减速器内外的气流,及时将箱体内因温度升高受热膨胀的气体排出,以防止高压气体破坏各接合面的密封,造成漏油。
为了排除污油和清洗减速器的内腔,在减速器箱座底部装置放油螺塞。
箱体内部的润滑油面的高度是通过安装在箱座壁上的油标尺来观测的。
为了吊起箱盖,一般装有一到两个吊环螺钉。
不应用吊环螺钉吊运整台减速器,以免损坏箱盖与箱座之间的联接精度。
吊运整台减速器可在箱座两侧设置吊钩(参见图1-2-3)。
减速器的箱体是采用地脚螺栓固定在机架或地基上的。
减速机设计计算1. 选择电动机:1) 选电动机类型滚动轴承效率η滚=0.995;联轴器效率η联=0.98。
η=0.96x0.97x0.995x0.995=0.9由上述计算,T=137N m⋅我们取减速机轴最大扭矩max T =150N m⋅m p 需要略大于0P ,按已知工作要求和条件,选用Y 系列一般用途的全封闭自扇冷鼠笼型三相异步电动机。
2) 确定电动机转速按手册P7表1推荐的传动比合理范围,取圆柱齿轮传动一级减速器传动比范围I’a =3~6。
故电动机转速的可选范围为n’d =I’a ×3=459~1834r/min符合这一范围的同步转速有750、1000、和1500r/min 。
根据容量和转速,由有关手册查出有三种适用的电动机型号:因此有三种传支比方案。
综合考虑电动机和传动装置尺寸、重量、价格和带传动、减速器的传动比,可见第2方案比较适合,则选n=1000r/min 。
3)确定电动机的型号根据以上选用的电动机类型,所需的额定功率及同步转速,选定电动机型号为Y132S-6。
其主要性能:额定功率:3KW ,满载转速960r/min ,额定转矩2.0。
质量63kg 。
2. 传动比:传动比:取i=23. 计算各传动参数:1. 计算各轴转速(r/min )n I =n 电机=960r/minn II =n I /i =960/2=480 (r/min)2.计算各轴的功率(KW)P I=P工作=15.08KWP II=P I×η总=15.08×0.9=13.572KW3.计算各轴扭矩(N·mm)T I=9.55×106P I/n I=150N·mmT II=9.55×106P II/n II=9.55×106×13.572/480=270026.25N·mm齿轮的选择1、齿轮传动的设计计算1)选择齿轮材料及精度等级考虑减速器传递功率不在,所以齿轮采用软齿面。
小齿轮选用40Cr调质,齿面硬度为240~260HBS。
大齿轮选用45钢,调质,齿面硬度220HBS;根据表选7级精度。
齿面精糙度R a≤1.6~3.2μm2)按齿面接触疲劳强度设计由d1≥76.43(kT1(u+1)/φd u[σH]2)1/3=2确定有关参数如下:传动比i齿取小齿轮齿数Z1=16。
则大齿轮齿数:Z2=iZ1=2×16=32实际传动比I0传动比误差:i-i0/I=0%<2% 可用齿数比:u=i0=2由表取φd=0.93)转矩T1T1=9.55×106×P/n1=9.55×106×15.08/960=150N·m4)载荷系数k由课本P128表6-7取k=15)许用接触应力[σH][σH]= σHlim Z NT/SH由图查得:σHlimZ1=570Mpa σHlimZ2=350Mpa由查表得计算应力循环次数N LN L1=60n1rth=60×384×1×(16×365×8)=1.28×109N L2=N L1/i=1.28×109/6=2.14×108由查图表得接触疲劳的寿命系数:Z NT1=0.92 Z NT2=0.98通用齿轮和一般工业齿轮,按一般可靠度要求选取安全系数S H=1.0 [σH]1=σHlim1Z NT1/S H=570×0.92/1.0Mpa=524.4Mpa[σH]2=σHlim2Z NT2/S H=350×0.98/1.0Mpa=343Mpa故得:d1≥76.43(kT1(u+1)/φd u[σH]2)1/3=76.43[1×150000×(6+1)/0.9×6×3432]1/3mm=68.4mm模数:m=d1/Z1=68.4/16=3.8mm根据表取标准模数:m=4mm6)校核齿根弯曲疲劳强度根据由公式σF=(2kT1/bm2Z1)Y Fa Y Sa≤[σH]确定有关参数和系数分度圆直径:d1=mZ1=4×16mm=64mmd2=mZ2=4×32mm=128mm齿宽:b=34mm取b=34mm b2=30mm7)齿形系数Y Fa和应力修正系数Y Sa根据齿数Z1=16,Z2=32由表得Y Fa1=2.80 Y Sa1=1.55Y Fa2=2.14 Y Sa2=1.838)许用弯曲应力[σF]根据公式式:[σF]= σFlim Y ST Y NT/S F由查表得:σFlim1=290Mpa σFlim2 =210Mpa由图6-36查得:Y NT1=0.88 Y NT2=0.9试验齿轮的应力修正系数Y ST=2按一般可靠度选取安全系数S F=1.25计算两轮的许用弯曲应力[σF]1=σFlim1 Y ST Y NT1/S F=290×2×0.88/1.25Mpa =408.32Mpa[σF]2=σFlim2 Y ST Y NT2/S F =210×2×0.9/1.25Mpa =302.4Mpa将求得的各参数代入式(6-49)σF1=(2kT1/bm2Z1)Y Fa1Y Sa1=(2×1×150000/45×2.52×20) ×2.80×1.55Mpa =77.2Mpa< [σF]1σF2=(2kT1/bm2Z2)Y Fa1Y Sa1=(2×1×150000/45×2.52×120) ×2.14×1.83Mpa =11.6Mpa< [σF]2故轮齿齿根弯曲疲劳强度足够9)计算齿轮传动的中心矩aa=m/2(16+32)=4/2(16+32)=96mm(10)计算齿轮的圆周速度VV=πd1n1/60×1000=3.14×64×960/60×1000=3.22m/s减速器的轴及轴上零件的结构设计一、轴的结构设计轴结构设计包括确定钢的结构形状和尺寸。
轴的结构是由多方面的因素决定的,其中主要考虑轴的强度、刚度、轴上零件的安装、定位、轴的支承结构以及轴的工艺性等,其设计方法和结构要素的确定,可参照教科书有关章节进行。
单级圆柱齿轮减速器的轴一般均为阶梯轴,确定阶梯轴各段的直径和长度是阶梯轴设计的主要内容。
下面通过图1-2-17和表1-2-2、表1-2-3来说明。
1、阶梯轴各段直径的确定图1-2-17中阶梯轴各段的直径可由表1-2-2确定。
确定方法及说明符号d1按许用扭转应力进行估算。
尽可能圆整为标准直径,如果选用标准联轴器,d1应符合联轴器标准的孔径。
d2d2= d1+2a,a为定位轴肩高度。
通常取a=3-10mmd2尽可能符合密封件标准孔径的要求,以便采用标准密封圈。
d3此段安装轴承,故d3必须符合滚动轴承的内径系列。
为便于轴承安装,此段轴径与d2段形成自由轴肩,因此,d3= d2+1~5mm,然后圆整到轴承的内径系列。
当此轴段较长时,可改设计为两个阶梯段,一段与轴承配合,精度较高,一段与套筒配d4d4= d3+1~5mm(自由轴肩),d4与齿轮孔相配,应圆整为标准直径。
d5d5= d4+2a,a为定位轴环高度,通常可取a=3~10mmd6d6= d3,因为同一轴上的滚动轴承最好选取同一型号。