第1章 天线基础知识1
- 格式:ppt
- 大小:8.21 MB
- 文档页数:57
微波技术与天线复习知识要点绪论●微波的定义:微波是电磁波谱介于超短波与红外线之间的波段,它属于无线电波中波长最短的波段;●微波的频率范围:300MHz~3000GHz ,其对应波长范围是1m~●微波的特点要结合实际应用:似光性,频率高频带宽,穿透性卫星通信,量子特性微波波谱的分析第一章均匀传输线理论●均匀无耗传输线的输入阻抗2个特性定义:传输线上任意一点z处的输入电压和输入电流之比称为传输线的输入阻抗注:均匀无耗传输线上任意一点的输入阻抗与观察点的位置、传输线的特性阻抗、终端负载阻抗、工作频率有关;两个特性:1、λ/2重复性:无耗传输线上任意相距λ/2处的阻抗相同Z in z= Z in z+λ/22、λ/4变换性: Z in z- Z in z+λ/4=Z02证明题:作业题●均匀无耗传输线的三种传输状态要会判断1.行波状态:无反射的传输状态▪匹配负载:负载阻抗等于传输线的特性阻抗▪沿线电压和电流振幅不变▪电压和电流在任意点上同相2.纯驻波状态:全反射状态▪负载阻抗分为短路、开路、纯电抗状态3.行驻波状态:传输线上任意点输入阻抗为复数●传输线的三类匹配状态知道概念▪负载阻抗匹配:是负载阻抗等于传输线的特性阻抗的情形,此时只有从信源到负载的入射波,而无反射波;▪源阻抗匹配:电源的内阻等于传输线的特性阻抗时,电源和传输线是匹配的,这种电源称之为匹配电源;此时,信号源端无反射;▪共轭阻抗匹配:对于不匹配电源,当负载阻抗折合到电源参考面上的输入阻抗为电源内阻抗的共轭值时,即当Z in=Z g﹡时,负载能得到最大功率值;共轭匹配的目的就是使负载得到最大功率;●传输线的阻抗匹配λ/4阻抗变换P15和P17●阻抗圆图的应用与实验结合史密斯圆图是用来分析传输线匹配问题的有效方法;1.反射系数圆图:Γz=|Γ1|e jΦ1-2βz= |Γ1|e jΦΦ1为终端反射系数的幅度,Φ=Φ1-2βz是z处反射系数的幅角;反射系数圆图中任一点与圆心的连线的长度就是与该点相应的传输线上某点处的反射系数的大小;2.阻抗原图点、线、面、旋转方向:➢在阻抗圆图的上半圆内的电抗x>0呈感性,下半圆内的电抗x<0呈容性;➢实轴上的点代表纯电阻点,左半轴上的点为电压波节点,其上的刻度既代表r min又代表行波系数K,右半轴上的点为电压波腹点,其上的刻度既代表r max又代表驻波比ρ;➢|Γ|=1的圆图上的点代表纯电抗点;➢实轴左端点为短路点,右端点为开路点,中心点处是匹配点;➢在传输线上由负载向电源方向移动时,在圆图上应顺时针旋转,;反之,由电源向负载方向移动时,应逆时针旋转;3.史密斯圆图:将上述的反射系数圆图、归一化电阻圆图和归一化电抗圆图画在一起,就构成了完整的阻抗圆图;4.基本思想:➢特征参数归一阻抗归一和电长度归一;➢以系统不变量|Γ|作为史密斯圆图的基底;➢把阻抗或导纳、驻波比关系套覆在|Γ|圆上;●回波损耗、功率分配等问题的分析✓回波损耗问题:1.定义为入射波功率与反射波功率之比通常以分贝来表示,即Lrz=10lgP in/Pr dB对于无耗传输线,ɑ=0,Lr与z无关,即Lrz=-20lg|Γ1| dB2.插入损耗:定义为入射波功率与传输功率之比3.|Γ1|越大,则| Lr |越小;|Γ1|越小,则| L in|越大;P21:有关回波损耗的例题例1-4✓功率分配问题:1.入射波功率、反射波功率和传输功率计算公式反映出了它们之间的分配关系;P192.传输线的传输效率:η=负载吸收功率/始端传输功率3.传输效率取决于传输线的损耗和终端匹配情况第二章规则金属波导●导波系统中的电磁波按纵向场分量的有无,可分为TE波、TM波和TEM波三种类型;知道概念➢TEM波:导行波既无纵向磁场有无纵向电场,只有横向电场和磁场,故称为横电磁波;E z=0而H z=0➢TM波E波:只有纵向电场,又称磁场纯横向波;E z≠0而H z=0➢TE波H波:只有纵向磁场,又称电场纯横向波;E z=0而H z≠0●导行条件:k c<k时,f>f c为导行波;●矩形波导、圆波导主要模式的特点及应用✧矩形波导:将由金属材料制成的、矩形截面的、内充空气的规则金属波导称为矩形波导;1)纵向场分量E z和H z不能同时为零,不存在TEM波;2)TE波:横向的电波,纵向场只有磁场;➢TE波的截止波数k c,➢矩形波导中可以存在无穷多种TE导模,用TE mn表示;➢最低次波形为TE10,截止频率最低;3)TM波➢TM11模是矩形波导TM波的最低次模,其他均为高次模;4)主模TE10的场分布及其工作特性➢主模的定义:在导行波中截止波长最长截止频率最低的导行模➢特点:场结构简单、稳定、频带宽和损耗小等;✧圆波导:若将同轴线的内导体抽走,则在一定条件下,由外导体所包围的圆形空间也能传输电磁能量,这就是圆形波导;➢应用:远距离通信、双极化馈线以及微波圆形谐振器等;➢圆形波导也只能传输TE和TM波形;➢主模TE11,截止波长最长,是圆波导中的最低次模;圆波导中TE11模的场分布与矩形波导的TE10模的场分布很相似,因此工程上容易通过矩形波导的横截面逐渐过渡变为圆波导;即构成方圆波导变换器;➢圆对称TM01模:圆波导的第一个高次模,由于它具有圆对称性故不存在极化简并模;因此常作为雷达天线与馈线的旋转关节中的工作模式;➢低损耗的TE01模:是圆波导的高次模式,它与TM11模是简并模;它是圆对称模,故无极化简并;当传输功率一定时,随着频率升高,管壁的热损耗将单调下降;故其损耗相对于其他模式来说是低的,故可将工作在此模式下的圆波导用于毫米波的远距离传输或制作高Q值的谐振腔;●熟悉模式简并概念及其区别1.矩形波导中的E-H简并:对相同的m和n,TE mn和TM mn模具有相同的截止波长或相同的截止频率;虽然它们的场分布不同,但是具有相同的传输特性;2.圆波导中有两种简并模:➢E-H简并:TE0n模和TM1n模的简并➢极化简并模:考虑到圆波导的轴对称性,因此场的极化方向具有不确定性,使导行波的场分布在φ方向存在cosmφ和sinmφ两种可能的分布,它们独立存在,相互正交,截止波长相同,构成同一导行模的极化简并模;●熟悉矩形波导壁电流分布及应用●波导激励的几种类型1.电激励2.磁激励3.电流激励●方圆波导转换器的作用圆波导中TE11模的场分布与矩形波导的TE10模的场分布很相似,因此工程上容易通过矩形波导的横截面逐渐过渡变为圆波导;即构成方圆波导变换器;第三章微波集成传输线●带状线、微带线的结构及特点1.带状线:➢是由同轴线演化而来的,即将同轴线的外导体对半分开后,再将两半外导体向左右展平,并将内导体制成扁平带线;➢主要传输的是TEM波;可存在高次模;➢用途:替代同轴线制作高性能的无源元件;➢特点:宽频带、高Q值、高隔离度➢缺点:不宜做有源微波电路;2.微带线:➢是由双导体传输线演化而来的,即将无限薄的导体板垂直插入双导体中间,再将导体圆柱变换成导体带,并在导体带之间加入介质材料,从而构成了微带线;微带线是半开放结构;➢工作模式:准TEM波●带状线、微带线特征参数的计算会查图➢带状线和微带线的传输特性参量主要有:特性阻抗Z0、衰减常数ɑ、相速v p和波导波长λg ●介质波导主模及其特点➢主模HE11模的优点:a)不具有截止波长;b)损耗较小;c)可直接由矩形波导的主模TE10激励;第四章微波网络基础●熟练掌握阻抗参量、导纳参量、转移参量、散射参量结合元件特性和传输参量的定义P84-P93➢阻抗矩阵Z➢导纳矩阵Y➢转移矩阵A➢散射矩阵S➢传输矩阵T●掌握微波网络思想在微波测量中的应用三点法的条件➢前提条件:令终端短路、开路和接匹配负载时,测得的输入端的反射系数分别为Γs,Γo和Γm,从而可以求出S11, S12, S22;第五章微波元器件●匹配负载螺钉调配器原理、失配负载;衰减器、移相器作用➢匹配负载作用:消除反射,提高传输效率,改善系统稳定性;➢螺钉调配器:螺钉是低功率微波装置中普遍采用的调谐和匹配原件,它是在波导宽边中央插入可调螺钉作为调配原件;螺钉深度不同等效为不同的电抗原件,使用时为了避免波导短路击穿,螺钉·都设计成为了容性,即螺钉旋入波导中的深度应小于3b/4b为波导窄边尺寸;➢失配负载:既吸收一部分微波功率又反射一部分微波功率,而且一般制成一定大小驻波的标准失配负载,主要用于微波测量;➢衰减器,移相器作用:改变导行系统中电磁波的幅度和相位;●了解定向耦合器的工作原理P106➢定向耦合器是一种具有定向传输特性的四端口元件,它是由耦合装置联系在一起的两对传输系统构成的;➢利用波程差;●熟练掌握线圆极化转换器的工作原理及作用●了解场移式隔离器的作用P122➢根据铁氧体对两个方向传输的波型产生的场移作用不同而制成的;●了解铁氧体环行器的分析及作用P123➢环行器是一种具有非互易特性的分支传输系统;第六章天线辐射与接收的基本理论第七章电波传播概论●天波通信、地波通信、视距波通信的概念1.天波通信:指自发射天线发出的电波在高空被电离层反射后到达接收点的传播方式,也成为电离层电波传播;主要用于中波和短波波段2.地波通信:无线电波沿地球表面传播的传播方式;主要用于长、中波波段和短波的低频段;3.视距波通信:指发射天线和接收天线处于相互能看见的视距距离内的传播方式;地面通信、卫星通信以及雷达等都可以采用这种传播方式;主要用于超短波和微波波段的电波传播●天线的作用●无线电波传输是产生失真的原因无线电波通过煤质除产生传输损耗外,还会使信号产生失真——振幅失真和相位失真两个原因:1.煤质的色散效应:色散效应是由于不同频率的无线电波在煤质中的传播速度有差别而引起的信号失真;2.随机多径传输效应:会引起信号畸变;因为无线电波在传输时通过两个以上不同长度的路径到达接收点;接收天线收到的信号是几个不同路径传来的电场强度之和;。
天线原理课程知识点汇总【A——了解,B——理解,C——掌握(深刻理解,熟练应用)】附表1常见天线的方向性系数附表2三种常见的均匀直线阵波瓣特性及方向性系数D(Nd>>λ)附表3 口径场分布及其辐射特性附表4口径场相差对辐射的影响【例题1】 在给定了增益和工作波长的情况下,设计由理想导体制作的最佳喇叭天线的口径尺寸的求解过程如下:(1)首先确定喇叭波导的尺寸a 和b ,请写出单模传输时a 和b 与波长λ满足的关系: a<λ<2a λ>2b(2)确定了a 和b 以后,依次列写最佳喇叭所满足的两个关系式(不要求):x x R D λ3=①y y R D λ2=②(3)根据给定的增益G 和工作波长λ,结合最佳喇叭的口面利用系数ν就可以确定D x 和D y 的关系式,请写出这个关系式:πνλ42GD D y x =(4)请写出ν的值:ν=0.51【例题2】 某圆锥喇叭天线A 口面直径为20cm ,工作波长为3.0cm ,H 面主瓣内的方向性函数可以用公式3||100()10F ϕϕ-=表示,φ以度为单位,取值范围|φ|≤5º。
若采用该喇叭A 作为发射天线,测试另一个口面直径为10cm 的相同波段的圆锥喇叭B 的方向图,请计算: [1]仅满足相位条件(接收天线中心和边缘处的最大相差不超过π/8)的最小测试距离; [2]仅满足幅度条件(接收天线中心和边缘处的最大幅度比不超过0.25dB )的最小测试距离; [3]设发射天线A 的发射功率为10mW ,增益为23dB ,不计线缆损耗,若接收天线B 的口面利用系数为0.56,则B 天线按照[1]、[2]确定的最小测试距离摆放所能获得的最大接收功率是多少? 【解】 [1] ()cm 6002221min =+=λD D r[2] 3||100()10F ϕϕ-=,|φ|≤5º,20lg ()0.6||0.25dB F ϕϕ=-≥- 4167.0||≤ϕ实际上要求)4167.0tan(2/min2 ≤r D ,得cm 5.687min ≥r [3]取r min =687.5cm ,t r t r G G r P P 2min 4⎪⎪⎭⎫ ⎝⎛=πλP t =10mW=10×10-3W ,G t =23dB=200, ν=0.56νλππ22244⎪⎭⎫ ⎝⎛=D G r∴P r =14.8 μW附图1 利用矢量网络分析仪、自动测试转台、辅助天线和计算机测试天线方向图和增益的基本原理框图演示实验问题汇总1、微波暗室包括吸收层和屏蔽层两部分组成,请回答这两部分是用什么材料实现的?2、请分析一下微波暗室的吸收层的工作原理。
第1章天线基础知识1.什么是电基本振子,电基本振子远区辐射场的特点?电基本振子是一段理想的高频电流直导线,其长度l 远小于波长λ,其半径a 远小于l ,同时振子沿线的电流I 处处等幅同相。
远区场特点:p4,包括大小关系、方向关系。
00060sin ,/==377jkr Il E j e H E r q j q m p q h h l e -==W ,对真空,2.远区场坡印廷矢量平均值计算公式(会计算):p4。
与距离平方、波长平方成反比,与子午角正弦的平方成正比。
电基本振子远区辐射场的主要特性:(1) E θ、H υ均与距离r 成反比,成反比,辐射场的等相位面为辐射场的等相位面为r 等于常数的球面,E 、H 和S av 相互垂直,且符合右手螺旋定则。
(2)传播方向上电磁场的分量为零。
(3)E θ和H υ的比值为常数。
(4)E θ和H υ与sin θ成正比。
(5)辐射功率P r 正比于(Il/λ)2。
如果是近区,电场与磁场相差90度相位差。
3.电基本振子的辐射功率和辐射电阻公式(会计算,p5) 22240()r l P I p l =4.电基本振子和磁基本振子远区辐射功率比较对同样电长度的导线绕制成磁偶极子,在电流振幅相同情况下,远区的辐射功率比电偶极子小几个数量级。
磁基本振子的辐射场是根据电磁对偶性原理推得的。
5.天线的方向函数定义:p8 (,,)(,)60/E r f I rq j q j =归一化方向函数:max max(,)(,)(,)(,)E f F f E q j q j q j q j ==电基本振子的E 面归一化方向函数F (θ,φ)=|sin θ| ,H 面为圆。
6.E 面方向图与H 面方向图如何定义的?p9 E 面方向图:电场强度矢量所在并包含最大辐射方向的平面;H 面方向图:磁场强度矢量所在并包含最大辐射方向的平面。
功率方向图(也有E 面和H 面之分):Φ(θ,φ)=F 2(θ,φ) 半功率点波瓣宽度(3d B 波瓣宽度)2θ0.5E (E 面)或2θ0.5H (H面)。
《天线理论与技术》教学大纲Antenna Theory and Technology第一部分大纲说明1. 课程代码:2. 课程性质:专业学位课3. 学时/学分:40/34. 课程目标:通过这门课的学习,使学生掌握天线的基础知识、常用天线的结构及分析方法。
配合相关软件的学习,最终使学生达到能够独立完成常用及新型天线的设计及改进方法。
5. 教学方式:课堂讲授、分组实验、分组专题报告与课堂讨论相结合6. 考核方式:考试7. 先修课程:电磁场与波、高频电子电路8. 本课程的学时分配表9. 教材及教学参考资料:(一)教材:宋铮,天线与电波传播,西安:西安电子科技大学出版社,2003年版(二)教学参考资料:1、John D. Kraus,天线(第三版),北京:电子工业出版社,2008年版2、Law & Kelton,Electromagnetics with Application ,北京:清华大学出版社,2001年版3、Warren L. Stutaman,天线理论与设计,北京:人民邮电出版社,2006年版4、卢万铮,天线理论与技术,西安:西安电子科技大学出版社,2004年版5、李莉,天线与电波传播,北京:科学出版社,2009年版第二部分教学内容和教学要求本课程讲授天线的基本理论和设计方法,主要内容有:天线的基本知识、常用天线的结构和分析方法、天线仿真与设计的常用软件、常用天线及新型天线的设计和改进方法。
第一章时变电磁场教学内容:1.1 麦克斯韦方程1.2 时变电磁场的边界条件1.3 波动方程与位函数1.4 位函数求解1.5 时变电磁场的唯一性定理1.6 时变电磁场的能量及功率1.7 正弦时变电磁场1.8 正弦时变电磁场中的平均能量与功率教学要求:本章是本课程的基础内容,讲授过程中注意和后续章节具体天线的分析和设计的结合。
教学建议:1.重点是麦克斯韦方程和时变电磁场的边界条件的分析方法。
2.讲授过程中注重讲授和后续章节内容的联系。
天线知识培训一、天线基本原理天线是无线通信系统中的重要组成部分,负责将电磁波传输和接收。
天线能够将电流元转换为电磁波,或者将电磁波转换为电流元。
其基本原理基于电磁波的传播和辐射。
二、天线类型与用途1. 按照工作频段:可分为超长波、长波、中波、短波、超短波以及微波等类型。
2. 按照方向性:可分为全向和定向天线。
3. 按照增益:可分为无源和有源天线。
4. 按照结构:可分为线天线和面天线。
不同类型的天线有不同的用途,例如长波天线用于通信和导航,短波天线用于电报通信和广播,超短波天线用于电视、雷达和移动通信等。
三、天线参数与性能1. 阻抗:天线的输入阻抗应与信号源的输出阻抗相匹配,以实现最佳传输效果。
2. 方向图:表示天线接收和辐射电磁波的方向和强度。
3. 增益:表示天线辐射或接收电磁波的能力,与天线的尺寸、形状和材料有关。
4. 带宽:表示天线的工作频率范围。
5. 极化:表示电场矢量的方向,影响着天线的性能。
四、天线辐射与传播天线的辐射原理是将电磁能转化为向空间发散的电磁波,或者将空间中的电磁波转化为电流元。
电磁波在传播过程中受到各种因素的影响,如空气阻力、地面反射等,形成不同的传播模式。
五、天线材料与工艺天线的材料和工艺对其性能有着重要影响。
常用的天线材料包括铜、铝、铁等金属材料,以及塑料、陶瓷等非金属材料。
工艺方面,需要考虑天线的精度、防腐、防水等因素。
六、天线设计与优化天线的设计过程需要考虑诸多因素,如阻抗匹配、增益、方向图、极化等。
现代计算机辅助设计软件的应用使得天线的优化设计成为可能,通过对天线结构、尺寸和材料等因素的调整,可以得到最佳的性能表现。
七、天线测量与调试天线的性能需要通过实际测量来评估。
测量内容包括阻抗、方向图、增益、极化等。
一旦发现性能不佳,需要进行调试,调整天线的结构、尺寸或工作参数等,以实现最佳性能。
八、天线干扰与防护天线在使用过程中可能会受到各种干扰,如其他电磁波的干扰、雷电的袭击等。
天线基础知识面试天线是无线通信系统的重要组成部分,它在无线信号的收发过程中起到关键作用。
天线基础知识是每个从事无线通信领域的人员都应该掌握的内容。
在进行天线相关工作的面试中,天线基础知识是常见的考察点之一。
本文将从天线的基本概念、类型、性能参数等方面介绍天线基础知识。
1. 天线的基本概念天线是一种能够将电磁波转化为感应电流或将感应电流转化为电磁波的装置。
它是无线通信系统中的重要组成部分,用于发送和接收电磁波信号。
天线根据工作频段的不同可以分为宽带天线和窄带天线;根据工作方式的不同可以分为单频天线和多频天线。
2. 天线的类型2.1 定向天线定向天线是一种能够将信号集中在某个方向上的天线。
它具有较高的增益和较窄的波束宽度,可以提高信号的传输距离和质量。
定向天线常用于远距离通信和无线网络覆盖。
2.2 环形天线环形天线是一种呈环形结构的天线,主要用于卫星通信和雷达系统中。
它具有全向性的特点,能够在水平和垂直方向上均匀辐射和接收信号。
2.3 扁平天线扁平天线是一种薄而宽的天线,适用于嵌入式设备和小型终端。
它具有良好的频率选择性和天线效率,可以在有限的空间内实现高效的无线通信。
2.4 基站天线基站天线是用于无线通信基站的天线,主要用于无线网络的信号覆盖。
它可以根据网络需求灵活调整天线参数,实现不同方向和距离的信号传输。
3. 天线的性能参数3.1 增益天线的增益是指天线在某个方向上辐射或接收信号的能力。
增益越高,天线的辐射范围和接收灵敏度越好。
增益的单位通常用dBi表示,表示相对于理想点源辐射的增益。
3.2 驻波比驻波比是衡量天线匹配性能的重要指标。
它反映了天线输入端的驻波情况,即天线输入端的阻抗与传输线阻抗的匹配程度。
驻波比越小,天线的匹配性能越好。
3.3 方向性天线的方向性是指天线在空间中辐射或接收信号的方向特性。
方向性越强,天线在某个方向上的辐射和接收效果越好。
方向性可以通过天线的波束宽度和辐射图来描述。
天线基础知识展开全文天线基础知识1 天线1.1 天线的作用与地位无线电发射机输出的射频信号功率,通过馈线(电缆)输送到天线,由天线以电磁波形式辐射出去。
电磁波到达接收地点后,由天线接下来(仅仅接收很小很小一部分功率),并通过馈线送到无线电接收机。
可见,天线是发射和接收电磁波的一个重要的无线电设备,没有天线也就没有无线电通信。
天线品种繁多,以供不同频率、不同用途、不同场合、不同要求等不同情况下使用。
对于众多品种的天线,进行适当的分类是必要的:按用途分类,可分为通信天线、电视天线、雷达天线等;按工作频段分类,可分为短波天线、超短波天线、微波天线等;按方向性分类,可分为全向天线、定向天线等;按外形分类,可分为线状天线、面状天线等;等等分类。
*电磁波的辐射导线上有交变电流流动时,就可以发生电磁波的辐射,辐射的能力与导线的长度和形状有关。
如图1.1 a 所示,若两导线的距离很近,电场被束缚在两导线之间,因而辐射很微弱;将两导线张开,如图1.1 b 所示,电场就散播在周围空间,因而辐射增强。
必须指出,当导线的长度L 远小于波长λ 时,辐射很微弱;导线的长度L 增大到可与波长相比拟时,导线上的电流将大大增加,因而就能形成较强的辐射。
1.2 对称振子对称振子是一种经典的、迄今为止使用最广泛的天线,单个半波对称振子可简单地单独立地使用或用作为抛物面天线的馈源,也可采用多个半波对称振子组成天线阵。
两臂长度相等的振子叫做对称振子。
每臂长度为四分之一波长、全长为二分之一波长的振子,称半波对称振子, 见图1.2a 。
另外,还有一种异型半波对称振子,可看成是将全波对称振子折合成一个窄长的矩形框,并把全波对称振子的两个端点相叠,这个窄长的矩形框称为折合振子,注意,折合振子的长度也是为二分之一波长,故称为半波折合振子, 见图1.2 b。
1.3 天线方向性的讨论1.3.1 天线方向性发射天线的基本功能之一是把从馈线取得的能量向周围空间辐射出去,基本功能之二是把大部分能量朝所需的方向辐射。