遥感的基本概念、基础和遥感图像特征
- 格式:ppt
- 大小:747.50 KB
- 文档页数:60
遥感原理与应用作业18地6118078607宋雨龙第一章绪论 (1)第二章电磁辐射与地物光谱特征 (3)第三章遥感成像原理与图像特征 (4)第四章卫星遥感平台 (5)第五章遥感数字图像处理基础 (6)第六章遥感数字图像处理 (7)第七章多源遥感信息融合 (9)第八章遥感图像分类 (9)第九章遥感技术应用 (10)第一章绪论1.阐述遥感的基本概念。
答:遥感(RS),即遥远的感知。
是指应用探测仪器,不与被测目标直接接触,在高空或远距离处,接收目标辐射或反射的电磁波信息,并对这些信息进行加工处理与分析,揭示出目标的特征性质及其运动状态的综合性探测技术。
2.遥感的主要特点表现在哪几方面?举例说明。
答:①感测范围大,具有综合、宏观的特点:遥感从飞机上或人造地球卫星上获取的航空或卫星影像,比在地面上观察视域范围大得多。
例如:一幅陆地卫星TM影像可反映出185km×185km的景观实况,我国全境仅需500余张这种影像就可拼接成全国卫星影像图。
②信息量大,具有手段多、技术先进的特点:根据不同的任务,遥感技术可选用不同波段和传感器来获取信息。
③获取信息快,更新周期短,具有动态监测的特点:卫星围绕地球运转,能及时获取所经地区的最新资料,例如:Landsat-5/7陆地卫星每16天即可对全球陆地表面成像一次。
④具有获取信息受条件限制少的特点:自然条件恶劣,人类难以到达的地方,如沙漠、沼泽、高山峻岭等都可以使用遥感进行观测。
⑤应用领域广,具有用途大、效益高的特点:遥感已广泛应用于环境监测、资源勘测、农林水利、地质勘探、环境保护、气象、地理、测绘、海洋研究和军事侦察等领域,且应用领域在不断扩展。
遥感在众多领域的广泛应用产生了十分可观的经济效应和卓有成效的社会效应。
3.遥感有哪几种主要分类?其分类依据是什么?4.当前遥感发展的现状和特点如何?答:当今,遥感技术已经发生了根本的变化,主要表现在遥感平台、传感器、遥感的基础研究和应用领域等方面。
第一章1、遥感的基本概念是什么?答:广义理解,泛指一切无接触的远距离探测,包括对磁场、力场、机械波(声波、地震波)等的探测。
狭义理解,遥感是应用探测仪器,不与探测目标相接触,从远处把目标的电磁波特性记录下来,通过分析,揭示出物体的特征性质及其变化的综合性探测技术。
2、遥感探测系统包括哪几个部分?答:物理基础、技术系统、成像原理、遥感应用。
※3、遥感如何分类?答:遥感的分类方法有很多,主要有下列几种。
(1)按遥感平台分为地面遥感,传感器设置在地面平台上,如车载、船载、手提、固定等;航空遥感,传感器设置于航空器上,主要是飞机、气球等;航天遥感,传感器设置于环地球的航天器上,如人造卫星、航天飞机、空间站、火箭等;航宇遥感,传感器设置于星际飞船上,指对地月系统外的目标的探测。
(2)按传感器的探测波段分为紫外遥感,探测波段在0.05-0.38μm之间;可见光遥感,探测波段在0.38-0.76μm之间;红外遥感,探测波段在0.76-1000μm之间;微波遥感,探测波段在1mm-1m之间;多波段遥感,指探测波段在可见光波段和红外波段范围内,在分成若干窄波段来探测目标。
(3)按工作方式分为主动遥感和被动遥感、成像波段和非成像波段。
(4)按遥感的应用领域分,从大的研究领域可分为外层空间遥感、大气层遥感、陆地遥感、海洋遥感;从具体应用领域珂分为资源遥感、环境遥感、农业遥感等,还以划分为更细的研究对象进行各种专题应用。
※4、遥感有何特点?答:大面积的同步观测、时效性、数据的综合性和可比性、经济性、局限性。
第二章※1、简述大气窗口对于遥感探测的重要意义。
答:对遥感传感器而言,只能选择透过率高的波段,才对观测有意义。
通常把电磁波通过大气层时较少被反射、吸收或散射的,透过率较高的波段称为大气窗口。
大气窗口的光谱段主要有:0.3-1.3μm,即紫外光、可见光、近红外波段,这一波段是摄影成像的最佳波段,也是许多卫星传感器扫描成像的常用波段;1.5-1.8μm和2.0-3.5μm,即近、中红外波段,是白天日照条件好时扫描成像的常用波段;3.5-5.5μm,即中红外波段,该波段除了反射外,地面物体也可以自身发射热辐射能量;8-14μm,即远红外波段,主要通透来自地物热辐射的能量,适于夜间成像;0.8-2.5cm,即微波波段,由于微波穿云透雾能力强,这一区间可以全天候观测,而且是主动遥感方式,如侧视雷达。
遥感的基本原理及技术特点一、基本概念遥感一词来源于英语“Remote Sensing”,其直译为“遥远的感知”,时间长了人们将它简译为遥感。
遥感是20世纪60年代发展起来的一门对地观测综合性技术。
自20世纪80年代以来,遥感技术得到了长足的发展,遥感技术的应用也日趋广泛。
随着遥感技术的不断进步和遥感技术应用的不断深入,未来的遥感技术将在我国国民经济建设中发挥越来越重要的作用。
关于遥感的科学含义通常有广义和狭义两种解释: 广义的解释: 一切与目标物不接触的远距离探测。
狭义的解释: 运用现代光学、电子学探测仪器,不与目标物相接触,从远距离把目标物的电磁波特性记录下来,通过分析、解译揭示出目标物本身的特征、性质及其变化规律。
遥感技术系统是实现遥感目的的方法论、设备和技术的总称。
现已成为一个从地面到高空的多维、多层次的立体化观测系统。
研究内容大致包括遥感数据获取、传输、处理、分析应用以及遥感物理的基础研究等方面。
遥感技术系统主要有:①遥感平台系统,即运载工具。
包括各种飞机、卫星、火箭、气球、高塔、机动高架车等;②遥感仪器系统。
如各种主动式和被动式、成像式和非成像式、机载的和星载的传感器及其技术保障系统;③数据传输和接收系统。
如卫星地面接收站、用于数据中继的通讯卫星等;④用于地面波谱测试和获取定位观测数据的各种地面台站网;⑤数据处理系统。
用于对原始遥感数据进行转换、记录、校正、数据管理和分发;⑥分析应用系统。
包括对遥感数据按某种应用目的进行处理、分析、判读、制图的一系列设备、技术和方法。
遥感技术系统是一个非常庞杂的体系。
对某一特定的遥感目的来说,可选定一种最佳的组合,以发挥各分系统的技术优势和总体系统的技术经济效益。
二、系统的组成遥感是一门对地观测综合性技术,它的实现既需要一整套的技术装备,又需要多种学科的参与和配合,因此实施遥感是一项复杂的系统工程。
根据遥感的定义,遥感系统主要由以下四大部分组成:1、信息源信息源是遥感需要对其进行探测的目标物。
遥感技术及应用主要内容遥感基础:概念、系统组成、分类、特点、发展、应用等;物理基础:电磁波谱、地物电磁波谱特征;技术系统:传感器、遥感平台、信息传输、处理及应用;遥感数据特点与评价:几何、辐射、时间分辨率;数据处理:校正、增强、分类;信息提取:人工、自动、人—机协同;遥感应用:资源环境调查、动态监测、数据更新等。
第一章绪论1.1 遥感的概念:遥远的感知1.广义的遥感:泛指一切无接触的远距离探测。
包括力场、电磁场、机械波(声波和地震波)的探测;狭义的遥感:遥感是应用探测仪器,不与探测目标相接触,从远处把目标的电磁波特性记录下来,通过分析,揭示出物体的特征性质及其变化的综合性探测技术。
2.遥感、遥控、遥测:区别和联系遥控:指远距离控制目标物运动状态和过程的技术。
(遥是相对的,电视遥控器、遥控玩具,空际飞行器的遥控等。
)遥测(Remote Measure):指对被测物体某些运动参数和性质进行远距离测量的技术。
接触测量:如测量宇宙飞船里的温度;非接触测量:如激光测距,雷达测距和定位等1.2 遥感系统1.被测目标的信息特征——遥感探测的依据信息的获取——依靠传感器(遥感器)、遥感平台信息的记录与传输——胶片或数字磁介质;人或回收舱、卫星上的微波天线信息的处理——地面站对数字信息进行信息恢复、辐射校正、卫星姿态校正、投影变换等,再转换成通用数据格式或模拟信号信息的应用——信息处理、分析、融合及遥感与非遥感信息的复合2.遥感的过程:1.3 遥感的类型按遥感平台分:地面遥感、航空遥感、航天遥感、航宇遥感地面遥感——传感器设置在地面平台上,如车载,船载,手提,固定或活动高架平台等航空遥感——传感器设置在航空器上,主要为飞机,气球等。
与航天遥感相比,航空遥感的主要优点是机动性强。
可以根据研究主题选用适当的遥感器、选择适当的飞行高度和飞行区域。
航天遥感——传感器设置在环地球的航天器上,如人造地球卫星、航天飞机,空间站,火箭等。
遥感导论知识点整理1、遥感概念广义:泛指一切无接触的远距离探测,包括对地磁场、力场、机械波(声波、地震波)等的探测。
遥感定义:是从远处探测感知物体,也就是不直接接触物体,从远处通过探测仪器接收来自目标底物的电磁波信息,经过对信息的处理,判别出目标地物的属性。
2、遥感系统组成包括:被测目标的信息特征、信息的获取、信息的传输与记录、信息的处理和信息的应用。
3、传感器一般由信息收集、探测系统、信息处理和信息输出4部分组成。
4、传感器是收集、量测和记录遥远目标的信息仪器,是遥感技术系统的核心。
5、遥感的特点:大面积的同步观测、时效性、数据的综合性和可比性、经济性、局限性。
6、遥感的数据类型:按平台分为地面遥感、航空遥感、航天遥感数据;按电磁波段分可见光遥感、红外遥感、微波遥感、紫外遥感数据;按传感器的工作方式分主动遥感、被动遥感数据。
7、电磁波谱:按照电磁波在真空中传播的波长或频率进行递增/递减排列形成的一个连续谱带。
8、遥感机理:遥感是利用传感器主动或被动地接受地面目标反射或发射的电磁波,通过电磁波所传递的信息来识别目标,从而达到探测目标地物的目的。
9、大气发生的散射主要有三种:瑞利散射(d<<λ)、米氏散射(d≈λ)、非选择性散射(d>>λ)。
10、自然辐射源是被动遥感的辐射源包括太阳辐射、地球辐射。
11、地球辐射:地球表面和大气电磁辐射的总称。
12、地球辐射是被动遥感中传递地物信息的载体。
13、人工辐射源是主动式遥感的辐射源。
14、地物波谱:地物的电磁波响应特性随电磁波长改变而变化的规律,称为地表物体波谱,简称地物波谱。
15、大气窗口:通常把电磁波通过大气层时较少被反射、吸收或散射的,透过率较高的波段称为大气窗口。
16、反射率:地物的反射能量与入射总能量的比,即ρ=(Pρ/p0)×100%。
表征物体对电磁波谱的反射能力。
17、地物反射类型根据地表目标物体表面性质的不同分为镜面反射、漫反射、实际物体的反射三种类型。
遥感概论知识点总结一、遥感的基本概念遥感是通过对地球表面进行观测和测量,获取地球表面各种信息的技术。
遥感可以利用航空器、卫星等平台来进行观测和测量,通过获取的遥感数据,可以对地球的各种现象和特征进行监测和分析。
遥感技术的应用范围非常广泛,可以在农业、水资源、土地利用、环境保护、城市规划等领域发挥重要作用。
二、遥感的原理遥感的原理主要是通过传感器对地球表面进行观测和测量,获取各种遥感数据。
传感器可以利用电磁波、红外线、微波等方式对地球表面进行观测,不同的传感器可以获取到不同波段的数据,从而获取到地球表面的不同信息。
遥感数据可以分为光学遥感数据和雷达遥感数据两种类型,其中光学遥感数据主要是通过对可见光、红外线等光谱的捕捉,获取地球表面的图像信息,而雷达遥感数据则是通过微波的回波信息获取地球表面的各种信息。
通过对遥感数据的处理和分析,可以获取到地球表面的各种信息,包括地形、地物、植被、水域、土壤等。
三、遥感的分类遥感可以根据传感器的工作原理和数据类型进行分类,主要可以分为光学遥感和雷达遥感两种类型。
光学遥感主要是利用可见光和红外线等光学波段进行观测和测量,可以获取地球表面的图像信息,包括地形、地物、植被、水域等。
光学遥感主要利用航空摄影、卫星摄影等方式获取数据,可以在农业、林业、地质勘探等领域得到应用。
雷达遥感则是利用雷达传感器对地球表面进行观测和测量,可以在夜间和恶劣天气下进行观测,可以获取地球表面的高度、形状、液体含量等信息,广泛应用于地质勘探、环境监测等领域。
四、遥感数据的获取遥感数据的获取主要是通过航空摄影、卫星摄影等方式进行观测和测量。
航空摄影是利用航空器进行大范围、高分辨率的遥感观测和测量,可以获取地球表面的高分辨率图像信息,适用于小范围的地面观测。
而卫星摄影则是利用卫星平台进行大范围、中低分辨率的遥感观测和测量,可以获取地球表面的宽幅图像信息,适用于大范围的地面观测。
通过这些方式获取的遥感数据可以在地质勘探、农业监测、城市规划等方面得到应用。
遥感概论复习重点遥感概论是地球科学和环境科学中的重要学科之一,主要研究地球表面信息的获取、处理和应用。
以下是遥感概论复习的重点内容。
一、遥感基础知识1.遥感的定义、特点和应用范围;2.遥感数据的分类、图像解译的基本步骤;3.遥感的数据源、传感器和平台;4.遥感数据的光谱特征和光谱反射率;5.遥感数据的空间、光谱和时间分辨率。
二、遥感图像解译1.遥感图像解译的基本概念和步骤;2.遥感图像的特征提取方法;3.遥感图像分类方法和常用分类算法;4.遥感图像解译中的误差源和误差评价方法;5.遥感图像的应用领域和典型应用案例。
三、遥感技术的发展和应用1.遥感技术的发展历程和主要进展;2.遥感技术在农业、林业、环境监测、城市规划等领域的应用;3.遥感技术在气象、地质灾害监测、资源调查和管理中的应用;4.遥感技术在国土调查、地理信息系统、地理空间数据处理中的应用。
四、遥感数据处理和分析1.遥感数据的获取和预处理技术;2.遥感图像的增强和滤波处理方法;3.遥感数据的特征提取和信息提取方法;4.遥感数据的数学模型和解析技术;5.遥感数据的多光谱、高光谱和合成孔径雷达处理方法。
五、遥感与地理信息系统(GIS)的集成应用1.遥感与GIS的概念、关系和集成模式;2.遥感数据在GIS中的应用和分析方法;3.遥感数据与GIS数据的转换和交互;4.遥感数据与GIS空间分析的集成方法;5.遥感与GIS的应用案例和未来发展方向。
六、遥感应用中的伦理和社会问题1.遥感数据的隐私和安全问题;2.遥感数据在环境保护和资源管理中的伦理问题;3.遥感数据的使用和共享政策问题;4.遥感数据在社会冲突和隐患管理中的道德问题;5.遥感数据的技术限制和社会影响问题。
以上内容是遥感概论复习的重点,通过对这些知识点的深入学习和理解,可以帮助学生全面掌握遥感概论的基本理论和应用技术,为进一步深入研究和应用遥感技术打下坚实的基础。
第一章1.遥感概念及特点。
答:概念:为了某种目的,采用不接触目标物的记录器,收集其信息并对其进行探测、识别、分类、判读和分析的过程;具有动态(where、when、what)、宏观(全天候、全天使、全球)、准确(高空间、高光谱、高时空分辨率)、系统(大小卫星、航天航空、技术与应用)的特点。
2.遥感平台、传感器的概念、功能和种类答:遥感平台是指遥感中搭载传感器的运载工具。
大体可以分为三类:地面平台、航空平台、和航天平台。
传感器是远距离感测和记录地物环境辐射或反射电磁波能量的遥感仪器,通常安装在遥感平台上。
根据记录方式的不同,分为成像方式和非成像方式两类。
3.遥感技术系统由哪几部分组成?各自功能是什么?答:遥感系统由以下四部分组成:遥感平台,遥感中搭载传感器的运载工具。
传感器,用来远距离感测和记录地物环境辐射或反射电磁波能量。
遥感信息的接收和处理,接收航空遥感和卫星遥感所获取的胶片和数字图像,并对其进行一系列的校正处理。
遥感图像判读和应用:将遥感图像光谱信息转化为用户的类别信息,也就是为了应用目的和要求对遥感数据进行分析分类和解译。
4.遥感影像的优缺点答:优点:动态、宏观、准确、真实客观、可数字化处理提取有效信息,可以不断的更新,具有时需性,便于现地找点。
缺点:无境界线、无属性、坐标、不能标明地类。
5.遥感技术的应用领域及发展趋势。
答:环境保护方面的应用,遥感对于检测各种环境变化,如城市化、沙漠化、土地退化、盐渍化、环境污染问题都能起到独特的作用。
发展趋势:多分辨率多遥感平台并存,空间、时间、光谱分辨率普遍提高;微波遥感、高光普遥感迅速发展;遥感的综合应用不断深化,商业遥感时代的到来。
6.天然遥感与人工遥感答:天然遥感:自然界中依靠独特的生体特征,以不接触目标物的形式,收集其信息并对其进行探测、识别,比如蝙蝠、海豚等动物;人工遥感:为了某种目的,采用不接触目标物的记录器,收集其信息并对其进行探测、识别、分类、判读和分析的过程;7.主动遥感与被动遥感答:传感器只能被动的接收地物反射的太阳辐射电磁波信息进行的遥感为被动遥感;传感器本身发射人工辐射,接收地物反射回来的辐射,这种探测地物信息的遥感即为主动遥感。
遥感导论知识点总结完整引言遥感作为一种先进的信息获取技术,已经在各个领域得到广泛的应用。
随着科学技术的不断发展,遥感技术也在不断进步,为人类提供了更多更精确的信息。
本文将从遥感的基本概念、发展历程、原理与分类、遥感数据的获取与处理、遥感在环境监测、资源调查、地质勘查等领域的应用以及遥感技术的未来发展方向等方面对遥感进行全面的介绍和总结。
一、遥感的基本概念遥感(Remote Sensing)是指利用卫星、飞机等远距离的传感器对地球表面和大气的特定区域进行观测和记录,然后通过数据处理和分析来获取地球表面和大气的信息的一种技术。
遥感技术的基本原理是利用电磁波在大气中传播的特性,通过感应器对地球表面和大气进行观测,然后对获取的数据进行处理,得到地表特征和大气物理参数等信息。
二、遥感的发展历程遥感技术的起源可以追溯到19世纪中叶,当时法国科学家对地球表面采用长焦距照相术进行观测。
20世纪初,随着航空摄影术的发明,遥感技术得到了迅速发展。
随着卫星技术的进步,遥感技术得到了更大的发展,不仅可以进行大范围的观测,还可以获取更多更精确的信息。
在遥感技术发展的过程中,人们不断提出了各种遥感技术和方法,比如红外遥感、微波遥感、激光雷达遥感等,这些新技术和方法的应用,使遥感技术更加全面和精确。
三、遥感的原理与分类1. 遥感的原理遥感技术基于物体对电磁波的反射、散射、辐射和吸收等特性,通过感应器对地球表面和大气进行观测,进而获取地表特征和大气物理参数等信息。
遥感技术的原理可以简要概括为:电磁波的发射和接收、电磁波与地表物体的相互作用、数据获取与处理。
2. 遥感的分类遥感根据不同的波段和传感器,可以分为光学遥感、红外遥感、微波遥感等。
根据不同的平台,可以分为航空遥感和卫星遥感。
根据不同的目的和应用,可以分为地质勘查、环境监测、农业资源调查等。
四、遥感数据的获取与处理1. 遥感数据的获取遥感数据的获取包括传感器的观测、数据的传输和处理。
遥感基础学习知识原理与应用知识点一、遥感的基本概念与分类1.遥感的定义:遥感是指通过遥远距离采集并记录地球表面信息的科学技术。
2.遥感的分类:按照遥感的数据类型可分为光学遥感、微波遥感和热红外遥感;按照数据获取平台可分为航空遥感和卫星遥感。
二、遥感的基本原理1.辐射传输原理:地球表面物体受到太阳辐射照射后,会发生反射、散射和吸收,这些辐射经过大气层的传输和变化后达到遥感仪器,形成遥感数据。
2.遥感数据的获取原理:通过遥感仪器记录地球表面物体的辐射或能量信息,如通过遥感卫星的光学传感器记录地球表面反射光谱。
3.遥感数据的处理原理:遥感数据需要经过预处理、解译和分析等过程,以提取有价值的信息。
三、遥感的主要技术与方法1.遥感图像解译:通过对遥感图像进行目视或计算机辅助解译,识别和判读地表物体。
2.遥感数字化:遥感图像通过扫描或数字相机获取,然后通过数字化处理,得到数字图像。
3.遥感分类:将遥感图像中的地表物体划分成不同的类别或类型,如土地利用分类、植被类型分类等。
4.遥感定量分析:通过对遥感图像进行数学模型和算法的分析,提取地表物体的数量信息,如土地覆盖变化分析、物质迁移分析等。
5.遥感辅助决策:通过利用遥感图像数据进行地表资源调查、规划设计和决策支持等。
四、典型遥感应用领域1.地质勘探与矿产资源:通过遥感技术可以探测到地下的地质信息和矿产资源分布情况。
2.土地利用与土地覆盖:通过遥感图像可以对土地利用类型进行分类和监测,了解土地利用变化和土地覆盖的动态变化情况。
3.植被监测与农业信息提取:通过遥感技术可以获取到植被的生长状况、植被类型和叶面积指数等信息,对农业生产进行监测和评估。
4.城市规划与环境监测:通过遥感技术可以获取到城市的用地分布、建筑物高度和环境污染等信息,对城市规划和环境保护进行监测和分析。
5.自然灾害监测与评估:通过遥感技术可以实时获取地震、火灾、洪水等自然灾害的信息,进行监测和评估,为应急救灾提供支持。
遥感一、名词解释遥感:是应用探测仪器,不与被测目标接触,从远处把目标的电磁波特性记录下来,通过分析,揭示出物体的特征性质及其变化的综合性探测技术。
朗伯源:辐射亮度L与观察角⊙无关的辐射源。
严格的说,只有绝对黑体才是朗伯源。
绝对黑体:如果一个物体对于任何波长的电磁波辐射都全部吸收,则这个物体是绝对黑体。
黑体:所谓黑体是指入射的电磁波全部被吸收,既没有反射,也没有透射( 当然黑体仍然要向外辐射)。
太阳常数:是指不受大气影响,在距太阳一个天文单位内,垂直于太阳逛辐射方向上,单位面积单位时间黑体所接收的太阳辐射能量。
1.360*10(3)W/m2太阳高度角:太阳光线摄入地面,与地面形成的夹角。
天顶距和天顶角:取太阳入射光线与地平面垂线的夹角。
大气散射:辐射在传播过程中遇到小微粒而使传播方向改变,并向哥哥方向散开。
①瑞丽散射:当大气中粒子的直径比波长小的多时发生的散射。
这种散射主要由大气中的原子和分子,如氮、二氧化碳、臭氧和氧分子等引起。
②米氏散射:当大气中粒子的直径与辐射的波长相当时发生的散射。
这种散射主要由大气中的微粒,如烟、尘埃、小水滴及其溶胶等引起。
原理:米氏散射的散射强度与波长的二次方成反比,并且散射咋光线向前方向比向后方向更强,方向性比较明显。
③无选择性散射:当大气中粒子的直径比波长大得多时发生的散射。
反射率:物体反射的辐射能量P占总入射能P0的百分比公式P37低轨:就是近极地太阳同步轨道,简称极地轨道。
高轨:是指地球同步轨道,轨道高度36000KM左右,绕地球一周24H,卫星公转角度和地球自转角速度相等,相对于地球似乎固定于高空某一点,故称作地球同步卫星或静止气象卫星。
垂直摄影:摄影机主光轴垂直与地面或偏离垂线3°以内。
倾斜摄影:摄影机主光轴偏离垂线大于3°取得的相片。
空间分辨率:指像素代表的地面范围的大小,即扫描仪的瞬时视场或地面物体能分辨的最小单元。
波谱分辨率:是指传感器在接受目标辐射的波谱时能分辨的最小波长间隔。
第一章绪论1、遥感的基本概念:应用探测仪器,不与探测目标相接触,从远处把目标的电磁波特性记录下来,通过分析,揭示出物体的特征性质及其变化的综合性探测技术。
也是一门科学。
2、遥感系统的组成部分:1)被测目标的信息特征(目标物电磁波特性) 2)信息的获取3)信息的传输与接收4)信息的处理5)遥感信息的应用3、传感器的概念:接收、记录目标物电磁波特征的一起,陈伟传感器或遥感器。
4、遥感的类型:按遥感平台分:地面遥感、航空遥感、航天遥感、航宇遥感按传感器的探测波段分:5、紫外遥感:探测波段在0.05~0.38µm之间;可见光遥感:探测波段在0.38~0.76µm之间;红外遥感:探测波段在0.76~1000µm之间;微波遥感:探测波段在1mm~10m之间;6、多波段遥感:指探测波段在可见光波段和红外波段范围内,再分成若干窄波段来探测目标。
按工作方式分:(1)主动遥感和被动遥感:7、主动遥感由探测器主动发射一定的电磁波能量并接收目标的后向散射信号;8、被动遥感的传感器不向目标发射电磁波,仅被动接收目标物的自身发射和对自然辐射源的反射能量。
(2)成像遥感与非成像遥感。
按遥感的应用领域(1)从大的研究领域可分为外层空间遥感、大气层遥感、陆地遥感和海洋遥感等。
(2)从具体应用领域可分为资源遥感、环境遥感、军事遥感等。
4、遥感的特点:1)大面积的同步观测2)时效性3)数据的综合性和可比性4)经济性5)局限性第二章电磁波谱与电磁辐射10、电磁波谱:(频率从高到低排列)γ射线、X射线、紫外线、可见光、红外线和无线电波(微波、短波、中波和超长波等)在真空中按照波长或频率递增或递减排列,则构成了电磁波谱。
2、目前,遥感技术中通常采用的电磁波位于可见光、红外和微波波谱区间3、辐射源:任何物体都是辐射源。
不仅能够吸收其他物体对它的辐射,也能够向外辐射。
电磁波的传播实际上就是电磁能量的传递。
4、辐射测量度量:辐射能量:电磁辐射的能量。
1、遥感的概念、特点、类型遥感:遥感是通过不接触被探测目标,利用传感器获取目标数据,通过对数据进行分析,获取被探测目标、区域和现象的有用信息。
基本特征:利用地物对电磁波的辐射和反射特性,通过接收电磁波的辐射或反射信息获取地物的特性。
地物特性:分为几何特征和物理特征两种。
几何特征:如土壤的粗糙度,房屋的轮廓、各种植被的形状和长势等;物理特征:如地物的介电常数、土壤湿度等,是物质本身的性质所决定的。
遥感目的:就是通过接收到的电磁波信息反推出地物的几何特征和物理特征的反演过程。
类型:可见光遥感、反射红外遥感、微波遥感、热红外遥感。
特点:覆盖范围广、信息量大、具有连续观测的特点。
象元:遥感系统的空间分辨率确定遥感图象识别的最基本的信息单元2、遥感系统的组成3、遥感系统的分类按平台高度:航空、航天与地面测量。
按遥感波段分:光学与微波。
按成像信号能量来源:被动与主动,被动式分为反射式、发射式,主动式分为反射式与受激发式。
按应用:空间尺度分为全球、区域、局地遥感;地表分为海洋、大气、陆地遥感;行业分类环境、农业、林业、水文、地址遥感。
4、电磁波谱与电磁辐射电磁波:交互变化的电磁场在空间的传播。
电磁波的特性:电磁波是横波,传播速度为3×108 m/s,不需要媒质也能传播,与物质发生作用时会有反射、吸收、透射、散射等,并遵循同一规律。
电磁波普:按电磁波波长的长短,依次排列制成的图表叫电磁波谱。
γ线、x线、紫外线、可见光、红外线、无线电波。
常用的:紫外线的一部分(0.3-0.4μm),可见光线(0.4-0.7μm),红外线的一部分(0.7-14μm),以及微波(约lmm-1m)。
紫外线:波长范围为0.01~0.38μm,太阳光谱中,只有0.3~0.38μm波长的光到达地面,对油污染敏感,但探测高度在2000 m以下。
可见光:波长范围:0.38~0.76μm,人眼对可见光有敏锐的感觉,是遥感技术应用中的重要波段。