当前位置:文档之家› 年高考数学试题分类大全

年高考数学试题分类大全

年高考数学试题分类大全
年高考数学试题分类大全

2008年高考数学试题分类汇编

数列

一.选择题:

1.(全国一5)已知等差数列{}n a 满足244a a +=,3510a a +=,则它的前10项的和10S =( C )

A .138

B .135

C .95

D .23

2.(上海卷14) 若数列{a n }是首项为1,公比为a -3

2的无穷等比数列,且{a n }各项的和为a ,

10

a 10S A .64 B .100

C .110

D .120

8.(福建卷3)设{a n }是公比为正数的等比数列,若n 1=7,a 5=16,则数列{a n }前7项的和为C

A.63

B.64

C.127

D.128

9.(广东卷2)记等差数列{}n a 的前n 项和为n S ,若11

2

a =,420S =,则6S =( D ) A .16

B .24

C .36

D .48

10.(浙江卷6)已知{}n a 是等比数列,4

1

252=

=a a ,,则13221++++n n a a a a a a Λ=C (A )16(n --41) (B )16(n --21) (C )

332(n --41) (D )3

32(n --21) 11.(海南卷4)设等比数列{}n a 的公比2q =,前n 项和为n S ,则

4

2

S a =( C ) A. 2 B. 4 C.

15

D.

17 ,b 若

4.(湖北卷15)观察下列等式: ……………………………………

可以推测,当x ≥2(*

k N ∈)时,1111,,12k k k a a a k +-=

==+ 12

k 2k a -= .,0

5.(重庆卷14)设S n =是等差数列{a n }的前n 项和,a 12=-8,S 9=-9,则S 16= .-72

三.解答题: 1.(全国一22).(本小题满分12分)

(注意:在试题卷上作答无效.........

) 设函数()ln f x x x x =-.数列{}n a 满足101a <<,1()n n a f a +=. (Ⅰ)证明:函数()f x 在区间(01),是增函数; (Ⅱ)证明:11n n a a +<<;

(Ⅲ)设1(1)b a ∈,

,整数11ln a b

k a b

-≥.证明:1k a b +>.

1, 若存在某≤满足i ,则由⑵知:1k i +

2, 若对任意i k ≤都有b a i >,则k

k k k a a b a b a ln 1--=-+ b ka b a ln 11--≥)(1

1b a b a --->0=,即1k a b +>成立. 2.(全国二20).(本小题满分12分)

设数列{}n a 的前n 项和为n S .已知1a a =,13n n n a S +=+,*

n ∈N . (Ⅰ)设3n

n n b S =-,求数列{}n b 的通项公式;

(Ⅱ)若1n n a a +≥,*

n ∈N ,求a 的取值范围.

解:

(Ⅰ)依题意,113n n n n n S S a S ++-==+,即123n

n n S S +=+,

由此得1

13

2(3)n n n n S S ++-=-. ······················· 4分

因此,所求通项公式为

13(3)2n n n n b S a -=-=-,*n ∈N .① ···················· 6分

1n n -*

2分 【解】:由题意知12a =,且

两式相减得()()1121n

n n n b a a b a ++--=-

即12n

n n a ba +=+ ①

(Ⅰ)当2b =时,由①知122n

n n a a +=+

于是()()1122212n

n

n

n n a n a n +-+?=+-+?

又1

112

10n a --?=≠,所以{}

12n n a n --?是首项为1,公比为2的等比数列。

(Ⅱ)当2b =时,由(Ⅰ)知11

22n n n a n ---?=,即()112n n a n -=+

当2b ≠时,由由①得 因此11112222n n n n a b a b b ++??-

?==-? ?--??

得1

211n n n n a -=??=???? 6n +32 ……

21n n a a q --=,(2n ≥).

将以上各式相加,得2

11n n a a q q --+++=L (2n ≥).

所以当2n ≥时,1

1,,.

1,111n n q q q a n q

-≠=?-+

?=-???

上式对1n =显然成立.

(Ⅲ)解:由(Ⅱ),当1q =时,显然3a 不是6a 与9a 的等差中项,故1q ≠. 由3693a a a a -=-可得5

2

2

8

q q q q -=-,由0q ≠得3

6

11q q -=-, ①

整理得323()20q q +-=,解得32q =-或3

1q =(舍去).于是q =

另一方面,2113

3

(1)11n n n n n q q q a a q q q

+--+--==---,

则31111k k a ca c c c +=+-≤+-=,且3

1110k k a ca c c +=+-≥-=≥

1[0,1]k a +∈∴,由数学归纳法知[0,1]n a ∈对所有*n N ∈成立

(2) 设 1

03

c <<

,当1n =时,10a =,结论成立 当2n ≥ 时, 103

C <<

∵,由(1)知1[0,1]n a -∈,所以 2

1113n n a a --++≤ 且 110n a --≥

(3) 设 103c <<

,当1n =时,2

120213a c

=>--,结论成立 当2n ≥时,由(2)知1

1(3)0n n a c -≥->

6.(山东卷19)。(本小题满分12分)

将数列{a n }中的所有项按每一行比上一行多一项的规则排成如下数表: a 1

a 2 a 3

a 4 a 5 a 6

a 7 a 8 a 9 a 10

……

则(12)1(1)12(1)

k k S q k k k k =

==--+-+g (k ≥3). 7.(江苏卷19).(Ⅰ)设12,,,n a a a L L 是各项均不为零的等差数列(4n ≥),且公差0d ≠,若将此数列删去某一项得到的数列(按原来的顺序)是等比数列: ①当n =4时,求

1

a d

的数值;②求n 的所有可能值; (Ⅱ)求证:对于一个给定的正整数n(n ≥4),存在一个各项及公差都不为零的等差数列

12,,,n b b b L L ,其中任意三项(按原来顺序)都不能组成等比数列.

【解析】本小题主要考查等差数列与等比数列的综合运用.

(Ⅰ)①当n =4 时,1234,,,a a a a 中不可能删去首项或末项,否则等差数列中连续三项成等比数列,则推出d =0.

若删去2a ,则有2

314,a a a =g 即()()2

11123a d a a d +=+g 化简得2

14a d d +=0,因为d ≠0,所以

1

a d

=4 ; 若删去3a ,则有2

14a a a =g ,即()()2

1113a d a a d +=+g ,故得

1

a d

=1.

n a 数列{}n a 为等差数列,n a 为正整数,其前n 项和为n S ,数列{}n b 为等比数列,且

113,1a b ==,数列{}n a b 是公比为64的等比数列,2264b S =.

(1)求,n n a b ; (2)求证

121113

4

n S S S +++

3(1)n a n d =+-,1n n b q -=

依题意有1363(1)22642(6)64n n nd

a d n d a

b q q b q S b d q +++-?====?

??=+=?

由(6)64d q +=知q 为正有理数,故d 为6的因子1,2,3,6之一, 解①得2,8d q ==

1

n -λ(Ⅰ)证明:假设存在一个实数λ,使{a n }是等比数列,则有a 2

2=a 1a 3,即

,0949

4

9494)494()332(222=?-=+-?-=-λλλλλλλ矛盾. 所以{a n }不是等比数列.

(Ⅱ)解:因为b n +1=(-1)n +1

[a n +1-3(n -1)+21]=(-1)n +1

(

3

2

a n -2n +14) =

32(-1)n

·(a n -3n +21)=-3

2b n 又b 1x -(λ+18),所以

当λ=-18,b n =0(n ∈N +

),此时{b n }不是等比数列: 当λ≠-18时,b 1=(λ+18) ≠0,由上可知b n ≠0,∴

3

2

1-=+n a b b (n ∈N +). 故当λ≠-18时,数列{b n }是以-(λ+18)为首项,-3

2

为公比的等比数列. (Ⅲ)由(Ⅱ)知,当λ=-18,b n =0,S n =0,不满足题目要求. ∴λ≠-18,故知b n = -(λ+18)·(-

3

2)n -1

,于是可得

). (Ⅰ)求34,,a a 并求数列{}n a 的通项公式; (Ⅱ)设21122,.n n n n n a b S b b b a -=

=+++L 证明:当1

62.n n S n

≥-<时, 解: (Ⅰ)因为121,2,a a ==所以2

2

311(1cos

)sin 12,2

2

a a a π

π

=++=+=

一般地,当*

21(N )n k k =-∈时,2

22121(21)21

[1cos

sin 22

k k k k a a ππ+---=++

=211k a -+,即2121 1.k k a a +--=

所以数列{}21k a -是首项为1、公差为1的等差数列,因此21.k a k -=

当*

2(N )n k k =∈时,2

2222222(1cos

)sin 2.22

k k k k k a a a ππ

+=++= 所以数列{}2k a 是首项为2、公比为2的等比数列,因此22.k

k a =

故数列{}n a 的通项公式为*

21,21(N ),2

2n n n n k k a +?=-∈?=?

令2

(2)

(6)2n n n c n +=

≥,则21121(1)(3)(2)30.222n n n n n n n n n c c ++++++--=-=< 所以当6n ≥时,1n n c c +<.因此当6n ≥时,6683

1.644

n c c ?≤==< 于是当6n ≥时,

2

(2)

1.2n n +< 综上所述,当6n ≥时,1

2.n S n

-<

11.(陕西卷22).(本小题满分14分)

已知数列{}n a 的首项13

5a =

,1321n n n

a a a +=+,12n =L ,,.

(Ⅰ)求{}n a 的通项公式; (Ⅱ)证明:对任意的0x >,21121(1)3n n a x x x ??

-- ?++??

,12n =L ,,; (Ⅲ)证明:2

121

n n a a a n +++>+L .

则22

121111

11133n n

n n n n a a a n n n +++=>

+??+-+- ???

L ≥. ∴原不等式成立.

解法二:(Ⅰ)同解法一. (Ⅱ)设2112()1(1)3n

f x x x x ??

=

-- ?++??

则2222

22(1)2(1)2133()(1)(1)(1)n n x x x x f x x x x ????

-+--+- ? ?????'=-

-=+++g

0x >Q , ∴当23n x <时,()0f x '>;当2

3

n x >时,()0f x '<,

∴当2

3n

x =

时,()f x 取得最大值212313n n n

f a ??

== ???+.

}的 21

.2x ≥ ③

下用反证法证明:2211

..22

x x ≤>假设

由①得2121131

2()(2).22

n n n n n n x x x x x x ++++++=+++

因此数列12n n x x ++是首项为22x +,公比为1

2

的等比数列.故

*

121111((N ).222

n n n x x x n +--=-∈ ④

又由①知 211111311

()2(),2222

n x n n n n n x x x x x x x +++++-=--=-- 因此是112n n x x +-

是首项为21

2

x -,公比为-2的等比数列,所以 1*1211

()(2)(N ).22

n n n x x x n -+-=--∈ ⑤ 由④-⑤得

1*221511

(2)()(2)(N ).222

n n n S x x n --=+---∈ ⑥ 对n 求和得

数列{}n x 的通项公式; (3)若1p =,1

4

q =

,求{}n x 的前n 项和n S . 【解析】(1)由求根公式,不妨设<αβ,得==

αβ ∴+=+=p

αβ,

==q αβ

(2)设112()----=-n n n n x sx t x sx ,则12()--=+-n n n x s t x stx ,由12n n n x px qx --=-得

+=??=?

s t p st q , 消去t ,得2

0-+=s ps q ,∴s 是方程2

0x px q -+=的根,由题意可知,

12,==s s αβ

数列

{

}

n

n

x α是以1为公差的

1

2(1)111∴

=

+-?=

+-=+n

n

x x n n n α

αα

α

,∴=+n n n x n αα

综上所述,11

,(),()++?-≠?

=-??+=?

n n n n n x n βααββααααβ

(3)把1p =,14q =

代入20x px q -+=,得2

104-+=x x ,解得12

==αβ

14.(浙江卷22)(本题14分) 已知数列

{}

n a ,0≥n a ,01=a ,)(12

121?++∈=-+N n a a a n n n .记

n

n a a a S +++=Λ21.

)

1()1)(1(1

)1)(1(11121211n n a a a a a a T +++++++++=

ΛΛ. 求证:当?

∈N n 时,

11k k k ++得22

231()(1)n n a a a a n a ++++--=L . 因为10a =,所以2

1n n S n a =--.

由1n n a a +<及22

11121n n n a a a ++=+-<得1n a <, 所以2n S n >-. (Ⅲ)证明:由22

1112k k k k a a a a +++=+≥,得

所以

2342

1

(3)(1)(1)(1)2n n n a a a a a a -+++L ≤≥,

于是

2222

232211

(3)(1)(1)(1)2()22n n n n n n a a n a a a a a ---=<++++L ≤≥,

故当3n ≥时,211

11322

n n T -<++

++

那么当n =k +1时,

22

221122(1)(1)(1)(2)(2)k

k k k k k

a a

b a k k k k k b k b +++=-=+-+=++==+,.

所以当n =k +1时,结论也成立.

由①②,可知2

(1)(1)n n a n n b n =++,对一切正整数都成立. ·········· 7分

(Ⅱ)

11115

612

a b =<+.

n ≥2时,由(Ⅰ)知(1)(21)2(1)n n a b n n n n +=++>+. ··········· 9分

112211111111622334(1)n n a b a b a b n n ??

+++<++++ ?+++??+??

…… 综上,原不等式成立. ··························· 12分

高考数学试题分类汇编集合理

2013年全国高考理科数学试题分类汇编1:集合 一、选择题 1 .(2013年普通高等学校招生统一考试重庆数学(理)试题(含答案))已知全集 {}1,2,3,4U =,集合{}=12A ,,{}=23B ,,则 ()=U A B ( ) A.{}134, , B.{}34, C. {}3 D. {}4 【答案】D 2 .(2013年普通高等学校招生统一考试辽宁数学(理)试题(WORD 版))已知集合 {}{}4|0log 1,|2A x x B x x A B =<<=≤=,则 A.()01, B.(]02, C.()1,2 D.(]12, 【答案】D 3 .(2013年普通高等学校招生统一考试天津数学(理)试题(含答案))已知集合A = {x ∈R | |x |≤2}, A = {x ∈R | x ≤1}, 则A B ?= (A) (,2]-∞ (B) [1,2] (C) [2,2] (D) [-2,1] 【答案】D 4 .(2013年普通高等学校招生统一考试福建数学(理)试题(纯WORD 版))设S,T,是R 的两个非空子集,如果存在一个从S 到T 的函数()y f x =满足:(){()|};()i T f x x S ii =∈ 对任意12,,x x S ∈当12x x <时,恒有12()()f x f x <,那么称这两个集合“保序同构”.以下集合对不是“保序同构”的是( ) A.* ,A N B N == B.{|13},{|8010}A x x B x x x =-≤≤==-<≤或 C.{|01},A x x B R =<<= D.,A Z B Q == 【答案】D 5 .(2013 年高考上海卷(理))设常数a R ∈,集合 {|(1)()0},{|1}A x x x a B x x a =--≥=≥-,若A B R ?=,则a 的取值范围为( ) (A) (,2)-∞ (B) (,2]-∞ (C) (2,)+∞ (D) [2,)+∞ 【答案】B. 6 .(2013年普通高等学校招生统一考试山东数学(理)试题(含答案))已知集合 A ={0,1,2},则集合 B ={},x y x A y A -∈∈中元素的个数是 (A) 1 (B) 3 (C)5 (D)9 【答案】C

高考数学试题分类大全

2015年高考数学试题分类汇编及答案解析(22个专题) 目录 专题一集合..................................................................................................................................................... 专题二函数..................................................................................................................................................... 专题三三角函数............................................................................................................................................ 专题四解三角形............................................................................................................................................ 专题五平面向量............................................................................................................................................ 专题六数列..................................................................................................................................................... 专题七不等式................................................................................................................................................. 专题八复数..................................................................................................................................................... 专题九导数及其应用................................................................................................................................... 专题十算法初步............................................................................................................................................ 专题十一常用逻辑用语 .............................................................................................................................. 专题十二推理与证明................................................................................................................................... 专题十三概率统计 ....................................................................................................................................... 专题十四空间向量、空间几何体、立体几何...................................................................................... 专题十五点、线、面的位置关系 ............................................................................................................ 专题十六平面几何初步 .............................................................................................................................. 专题十七圆锥曲线与方程.......................................................................................................................... 专题十八计数原理 ..................................................................................................................................... 专题十九几何证明选讲 ............................................................................................................................ 专题二十不等式选讲.................................................................................................................................

2020年高考数学试题分类汇编 应用题 精品

应用题 1.(四川理9)某运输公司有12名驾驶员和19名工人,有8辆载重量为10吨的甲型卡车和 7辆载重量为6吨的乙型卡车.某天需运往A 地至少72吨的货物,派用的每辆车虚满载且只运送一次.派用的每辆甲型卡车虚配2名工人,运送一次可得利润450元;派用的每辆乙型卡车虚配1名工人,运送一次可得利润350元.该公司合理计划当天派用两类卡车的车辆数,可得最大利润z= A .4650元 B .4700元 C .4900元 D .5000元 【答案】C 【解析】由题意设派甲,乙,x y 辆,则利润450350z x y =+,得约束条件 08071210672219 x y x y x y x y ≤≤??≤≤?? +≤??+≥?+≤??画 出可行域在12219x y x y +≤??+≤?的点7 5x y =??=?代入目标函数4900z = 2.(湖北理10)放射性元素由于不断有原子放射出微粒子而变成其他元素,其含量不断减少, 这种现象称为衰变。假设在放射性同位素铯137的衰变过程中,其含量M (单位:太贝克) 与时间t (单位:年)满足函数关系:30 0()2 t M t M - =,其中M 0为t=0时铯137的含量。已知t=30时,铯137含量的变化率是-10In2(太贝克/年),则M (60)= A .5太贝克 B .75In2太贝克 C .150In2太贝克 D .150太贝克 【答案】D 3.(北京理)。根据统计,一名工作组装第x 件某产品所用的时间(单位:分钟)为 ??? ??? ? ≥<=A x A c A x x c x f ,,,)((A ,C 为常数)。已知工人组装第4件产品用时30分钟,组装第A 件产品用时15分钟,那么C 和A 的值分别是 A .75,25 B .75,16 C .60,25 D .60,16 【答案】D 4.(陕西理)植树节某班20名同学在一段直线公路一侧植树,每人植一棵,相邻两棵树相距 10米。开始时需将树苗集中放置在某一树坑旁边,使每位同学从各自树坑出发前来领取树苗往返所走的路程总和最小,这个最小值为 (米)。 【答案】2000 5.(湖北理)《九章算术》“竹九节”问题:现有一根9节的竹子,自上而下各节的容积成等 差数列,上面4节的容积共为3升,下面3节的容积共4升,则第5节的容积为 升。 【答案】67 66 6.(湖北理)提高过江大桥的车辆通行能力可改善整个城市的交通状况。在一般情况下,大 桥上的车流速度v (单位:千米/小时)是车流密度x (单位:辆/千米)的函数。当桥上的的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20 辆/千米时,车流速度为60千米/小时,研究表明;当20200x ≤≤时,车流速度v 是车流密度x 的一次函数.

历年高考数学试题分类汇编

2008年高考数学试题分类汇编 圆锥曲线 一. 选择题: 1.(福建卷11)又曲线22 221x y a b ==(a >0,b >0)的两个焦点为F 1、F 2,若P 为其上一点,且|PF 1|=2|PF 2|,则双曲线离心率的取值范围为B A.(1,3) B.(]1,3 C.(3,+∞) D.[)3,+∞ 2.(海南卷11)已知点P 在抛物线y 2 = 4x 上,那么点P 到点Q (2,-1)的距 离与点P 到抛物线焦点距离之和取得最小值时,点P 的坐标为( A ) A. ( 4 1 ,-1) B. (4 1 ,1) C. (1,2) D. (1,-2) 3.(湖北卷10)如图所示,“嫦娥一号”探月卫星沿地月转移轨道飞向月球,在月球附近一点P 轨进入以月球球心F 为一个焦点的椭圆轨道Ⅰ绕月飞行,之后卫星在P 点第二次变轨进入仍以F 为一个焦点的椭圆轨道Ⅱ绕月飞行,最终卫星在P 点第三次变轨进入以F 为圆心的圆形轨道Ⅲ绕月飞行,若用12c 和22c 分别表示椭轨道Ⅰ和Ⅱ的焦距,用12a 和 22a 分别表示椭圆轨道Ⅰ和Ⅱ的长轴的长,给出下列式子: ①1122a c a c +=+; ②1122a c a c -=-; ③1212c a a c >; ④11c a <22 c a . 其中正确式子的序号是B A. ①③ B. ②③ C. ①④ D. ②④ 4.(湖南卷8)若双曲线22 221x y a b -=(a >0,b >0)上横坐标为32a 的点到右焦点 的距离大于它到左准线的距离,则双曲线离心率的取值范围是( B ) A.(1,2) B.(2,+∞) C.(1,5) D. (5,+∞)

2019-2020高考数学试题分类汇编

2019---2020年真题分类汇编 一、 集合(2019) 1,(全国1理1)已知集合}242{60{}M x x N x x x =-<<=--<,,则M N = A .}{43x x -<< B .}42{x x -<<- C .}{22x x -<< D .}{23x x << 2,(全国1文2)已知集合{}{}{}1,2,3,4,5,6,72,3,4,52,3,6,7U A B ===,,,则U B A = A .{}1,6 B .{}1,7 C .{}6,7 D .{}1,6,7 3,(全国2理1)设集合A ={x |x 2–5x +6>0},B ={x |x –1<0},则A ∩B = A .(–∞,1) B .(–2,1) C .(–3,–1) D .(3,+∞) 4,(全国2文1)已知集合={|1}A x x >-,{|2}B x x =<,则A ∩B = A .(-1,+∞) B .(-∞,2) C .(-1,2) D .? 5,(全国3文、理1)已知集合2{1,0,1,2}{|1}A B x x =-=≤,,则A B = A .{}1,0,1- B .{}0,1 C .{}1,1- D .{}0,1,2 6,(北京文,1)已知集合A ={x |–11},则A ∪B = (A )(–1,1) (B )(1,2) (C )(–1,+∞) (D )(1,+∞) 7,(天津文、理,1)设集合{1,1,2,3,5},{2,3,4},{|13}A B C x x =-==∈≤∈R ,则A B = . 10,(上海1)已知集合{1A =,2,3,4,5},{3B =,5,6},则A B = . 一、 集合(2020) 1.(2020?北京卷)已知集合{1,0,1,2}A =-,{|03}B x x =<<,则A B =( ). A. {1,0,1}- B. {0,1} C. {1,1,2}- D. {1,2} 2.(2020?全国1卷)设集合A ={x |x 2–4≤0},B ={x |2x +a ≤0},且A ∩B ={x |–2≤x ≤1},则 a =( ) A. –4 B. –2 C. 2 D. 4 3.(2020?全国2卷)已知集合U ={?2,?1,0,1,2,3},A ={?1,0,1},B ={1,2},则()U A B ?=( ) A. {?2,3} B. {?2,2,3} C. {?2,?1,0,3} D. {?2,?1,0,2,3} 4.(2020?全国3卷)已知集合{(,)|,,}A x y x y y x =∈≥*N ,{(,)|8}B x y x y =+=,则A B 中元素的个数为( ) A. 2 B. 3 C. 4 D. 6 5.(2020?江苏卷)已知集合{1,0,1,2},{0,2,3}A B =-=,则A B =_____.

三年高考(2016-2018)数学(理)真题分类解析:专题14-与数列相关的综合问题

专题14 与数列相关的综合问题 考纲解读明方向 分析解读 1.会用公式法、倒序相加法、错位相减法、裂项相消法、分组转化法求解不同类型数列的和.2.能综合利用等差、等比数列的基本知识解决相关综合问题.3.数列递推关系、非等差、等比数列的求和是高考热点,特别是错位相减法和裂项相消法求和.分值约为12分,难度中等. 2018年高考全景展示 1.【2018年浙江卷】已知成等比数列,且 .若 , 则 A. B. C. D. 【答案】B 【解析】分析:先证不等式,再确定公比的取值范围,进而作出判断. 详解:令则 ,令 得,所以当时, ,当 时, ,因此 , 若公比 ,则 ,不合题意;若公比 ,则

但,即 ,不合题意;因此, ,选B. 点睛:构造函数对不等式进行放缩,进而限制参数取值范围,是一个有效方法.如 2.【2018年浙江卷】已知集合,.将的所有元素从小到大依次排列构成一个数列.记为数列的前n项和,则使得成立的n的最小值为________. 【答案】27 【解析】分析:先根据等差数列以及等比数列的求和公式确定满足条件的项数的取值范围,再列不等式求满足条件的项数的最小值. 点睛:本题采用分组转化法求和,将原数列转化为一个等差数列与一个等比数列的和.分组转化法求和的常见类型主要有分段型(如),符号型(如),周期型(如). 3.【2018年理数天津卷】设是等比数列,公比大于0,其前n项和为,是等差数列.已知,,,.

(I)求和的通项公式; (II)设数列的前n项和为, (i)求; (ii)证明. 【答案】(Ⅰ),;(Ⅱ)(i).(ii)证明见解析. 【解析】分析:(I)由题意得到关于q的方程,解方程可得,则.结合等差数列通项公式可得(II)(i)由(I),有,则. (ii)因为,裂项求和可得. 详解:(I)设等比数列的公比为q.由可得.因为,可得,故.设等差数列的公差为d,由,可得由,可得 从而故所以数列的通项公式为,数列的通项公式为 (II)(i)由(I),有,故 . (ii)因为, 所以. 点睛:本题主要考查数列通项公式的求解,数列求和的方法,数列中的指数裂项方法等知识,意在考查学生的转化能力和计算求解能力.

全国百套高考数学模拟试题分类汇编001

组距 分数 0.0350.0250.0150005 100 9080 70605040全国百套高考数学模拟试题分类汇编 10概率与统计 二、填空题 1、(启东中学高三综合测试一)6位身高不同的同学拍照,要求分成两排,每排3人,则后排每人均比其前排的同学身材要高的概率是_________。 答案:18 2、(皖南八校高三第一次联考)假设要考查某企业生产的袋装牛奶质量是否达标,现以500袋牛奶中抽取60袋进行检验,利用随机数表抽样本时,先将500袋牛奶按000,001,┉,499进行编号,如果从随机数表第8行第4列的数开始按三位数连续向右读取,请你依次写出最先检测的5袋牛奶的编号____________________________________________;答案:163,199,175,128,395; 3、(蚌埠二中高三8月月考)设随机变量ξ的概率分布规律为*,)1()(N k k k c k p ∈+==ξ,则 ) 2 5 21(<<ξp 的值为___________答案:2 3 4、(巢湖市高三第二次教学质量检测)从分别写有0,1,2,3,4的五张卡片中第一次取出一张卡片,记下数字后放回,再从中取出一张卡片.两次取出的卡片上的数字和恰好等于4的概率是. 答案:15 5、(北京市东城区高三综合练习二)从某区一次期末考试中随机抽取了100 个学生的数学成绩,用这100个数据来估计该区的总体数学成绩,各分数段的人数统计如图所示. 从该区随机抽取一名学生,则这名学生的数学成绩及格(60≥的概率为;若同一组数据用该组区间的中点 (例如,区间[60,80)的中点值为70)表示,则该区学生的数学成绩 的期望值为. 答案:0.65,67 6、(北京市宣武区高三综合练习二)某工厂生产A 、B 、C 三种不同型号的产品,产品数量之比依次为2:3:4, 现用分层抽样的方法抽出一个容量为n 的样本,样本中A 型号的产品有16件,那么此样本容量n= 答案:72 7、(东北三校高三第一次联考)用系统抽样法要从160名学生中抽取容量为20的样本,将160名学生从1—— 160编号。按编号顺序平均分成20组(1—8号,9—16号,……153—160号),若第16组应抽出的号码为126,则第一组中用抽签方法确定的号码是________。 答案:6 8、(揭阳市高中毕业班高考调研测试)统计某校1000名学生的数学会考成绩,得到样本频率分布直方图如右图示,规定不低于60分为及格,不 低于80分为优秀,则及格人数是;优秀率为。 答案:由率分布直方图知,及格率=10(0.0250.03520.01)0.8?++?==80%, 及格人数=80%×1000=800,优秀率=100.020.220?==%.

高考数学试题分类汇编集合

2008年高考数学试题分类汇编:集合 【考点阐述】 集合.子集.补集.交集.并集. 【考试要求】 (1)理解集合、子集、补集、交集、并集的概念.了解空集和全集的意义.了解属于、包含、相等关系的意义.掌握有关的术语和符号,并会用它们正确表示一些简单的集合. 【考题分类】 (一)选择题(共20题) 1、(安徽卷理2)集合{}|lg ,1A y R y x x =∈=>,}{2,1,1,2B =--则下列结论正确的是( ) A .}{2,1A B =-- B . ()(,0)R C A B =-∞ C .(0,)A B =+∞ D . }{()2,1R C A B =-- 解: }{0A y R y = ∈>,R (){|0}A y y =≤e,又{2,1,1,2}B =-- ∴ }{()2,1R A B =--e,选D 。 2、(安徽卷文1)若A 为全体正实数的集合,{}2,1,1,2B =--则下列结论正确的是( ) A .}{2,1A B =-- B . ()(,0)R C A B =-∞ C .(0,)A B =+∞ D . }{()2,1R C A B =-- 解:R A e是全体非正数的集合即负数和0,所以}{() 2,1R A B =--e 3、(北京卷理1)已知全集U =R ,集合{} |23A x x =-≤≤,{}|14B x x x =<->或,那么集合A ∩(C U B )等于( ) A .{}|24x x -<≤ B .{}|34x x x 或≤≥ C .{}|21x x -<-≤ D .{}|13x x -≤≤ 【标准答案】: D 【试题分析】: C U B=[-1, 4],()U A B e={}|13x x -≤≤

高考数学试题分类汇编个专题

2017年高考数学试题分类汇编及答案解析(22个专题)目录 专题一 集合 ............................................................................................................................................................................... 1 专题二 函数 ............................................................................................................................................................................... 6 专题三 三角函数...................................................................................................................................................................... 21 专题四 解三角形...................................................................................................................................................................... 32 专题五 平面向量...................................................................................................................................................................... 40 专题六 数列 ............................................................................................................................................................................. 48 专题七 不等式 ......................................................................................................................................................................... 68 专题八 复数 ............................................................................................................................................................................. 80 专题九 导数及其应用 .............................................................................................................................................................. 84 专题十 算法初步.................................................................................................................................................................... 111 专题十一 常用逻辑用语 ........................................................................................................................................................ 120 专题十二 推理与证明 ............................................................................................................................................................ 122 专题十三 概率统计 ................................................................................................................................................................ 126 专题十四 空间向量、空间几何体、立体几何 .................................................................................................................... 149 专题十五 点、线、面的位置关系 ........................................................................................................................................ 185 专题十六 平面几何初步 ........................................................................................................................................................ 186 专题十七 圆锥曲线与方程 .................................................................................................................................................... 191 专题十八 计数原理 .............................................................................................................................................................. 217 专题十九 几何证明选讲 ...................................................................................................................................................... 220 专题二十 不等式选讲 .......................................................................................................................................................... 225 专题二十一 矩阵与变换 ........................................................................................................................................................ 229 专题二十二 坐标系与参数方程 .. (230) 专题一 集合 1.(15年北京文科)若集合{}52x x A =-<<,{} 33x x B =-<<,则A B =I ( ) A .{} 32x x -<< B .{} 52x x -<< C .{} 33x x -<< D .{} 53x x -<< 【答案】A 考点:集合的交集运算. 2.(15年广东理科) 若集合{|(4)(1)0}M x x x =++=,{|(4)(1)0}N x x x =--=,则M N =I A .? B .{}1,4-- C .{}0 D .{}1,4

2020年高考数学试题分类汇编之立体几何

2018年高考数学试题分类汇编之立体几何 一、选择题 1.(北京卷文)(6)某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为( )。 (A )1 (B )2 (C )3 (D )4 2.(北京卷理)(5)某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为 (A )1 (B )2 (C )3 (D )4 3.(浙江)(3)某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:cm 3)是 A .2 B .4 C .6 D .8 4.(全国卷一文)(5)已知圆柱的上、下底面的中心分别为1O ,2O ,过直线12O O 的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为 A .122π B .12π C .82π D .10π 5.(全国卷一文)(9)某圆柱的高为2,底面周长为16,其三视图如右图.圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为 A .217 B .25 C .3 D .2 6.(全国卷一文)(10)在长方体1111ABCD A B C D -中, 2AB BC ==,1AC 与平面11BB C C 所成的角为30?,则该长方体的体积为 A .8 B .62 C .82 D .83 7.(全国卷一理)(7)某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为 A .172 B .52 C .3 D .2 8.(全国卷一理)(12)已知正方体的棱长为1,每条棱所在直线与平面α所成的角相等,则α截此正方 体所得截面面积的最大值为 A . 33 B .23 C .324 D .3 9.(全国卷二文)(9)在正方体1111ABCD A B C D -中, E 为棱1CC 的中点,则异面直线AE 与CD 所成角

高考文科数学试题解析分类汇编

2013年高考解析分类汇编16:选修部分 一、选择题 1 .(2013年高考大纲卷(文4))不等式 222x -<的解集是 ( ) A .()-1,1 B .()-2,2 C .()()-1,00,1U D .()()-2,00,2U 【答案】D 2|2|2 <-x ,所以?????->-<-222222 x x ,所以402 <2, 则关于实数x 的不等式||||2x a x b -+->的解集是______. 【答案】R 考察绝对值不等式的基本知识。函数||||)(b x a x x f -+-=的值域为:

2020年高考数学试题分类汇编 平面向量

九、平面向量 一、选择题 1.(四川理4)如图,正六边形ABCDEF 中,BA CD EF ++u u u r u u u r u u u r = A .0 B .BE u u u r C .AD u u u r D .CF uuu r 【答案】D 【解析】BA CD EF BA AF EF BF EF C E E F CF ++=++=+=+=u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r 2.(山东理12)设1A ,2A ,3A ,4A 是平面直角坐标系中两两不同的四点,若1312A A A A λ=u u u u v u u u u v (λ∈R ),1412A A A A μ=u u u u v u u u u v (μ∈R ),且112λμ+=,则称3A ,4A 调和分割1A ,2A ,已知平面上的点C ,D 调和分割点A , B 则下面说法正确的是 A .C 可能是线段A B 的中点 B .D 可能是线段AB 的中点 C .C , D 可能同时在线段AB 上 D .C ,D 不可能同时在线段AB 的延长线上 【答案】D 3.(全国新课标理10)已知a ,b 均为单位向量,其夹角为θ,有下列四个命题 12:||1[0,)3p a b πθ+>?∈ 22:||1(,]3p a b πθπ+>?∈ 13:||1[0,)3p a b πθ->?∈ 4:||1(,]3p a b πθπ->?∈ 其中真命题是 (A ) 14,p p (B ) 13,p p (C ) 23,p p (D ) 24,p p 【答案】A 4.(全国大纲理12)设向量a ,b ,c 满足a =b =1,a b g =12- ,,a c b c --=060,则c 的最大值等于 A .2 B .3 C .2 D .1 【答案】A 5.(辽宁理10)若a ,b ,c 均为单位向量,且0=?b a ,0)()(≤-?-c b c a ,则||c b a -+的 最大值为 (A )12- (B )1 (C )2 (D )2 【答案】B 6.(湖北理8)已知向量a=(x +z,3),b=(2,y-z ),且a ⊥ b .若x ,y 满足不等式 1x y +≤, 则z 的取值范围为 A .[-2,2] B .[-2,3] C .[-3,2] D .[-3,3] 【答案】D 7.(广东理3)若向量a,b,c满足a∥b且a⊥b,则(2)c a b ?+= A .4 B .3 C .2 D .0 【答案】D

全国高考理科数学历年试题分类汇编

全国高考理科数学历年试题分类汇编 (一)小题分类 集合 (2015卷1)已知集合A={x x=3n+2,n ∈N},B={6,8,10,12,14},则集合A ?B 中的元素个( )(A ) 5 (B )4 (C )3 (D )2 1. (2013卷2)已知集合M ={x|-3<x <1},N ={-3,-2,-1,0,1},则M∩N =( ). A .{-2,-1,0,1} B .{-3,-2,-1,0} C .{-2,-1,0} D .{-3,-2,-1} 2. (2009卷1)已知集合A=1,3,5,7,9},B={0,3,6,9,12},则A ?B= A .{3,5} B .{3,6} C .{3,7} D .{3,9} 3. (2008卷1)已知集合M ={ x|(x + 2)(x -1) < 0 }, N ={ x| x + 1 < 0 },则M∩N =( ) {A. (-1,1) B. (-2,1) C. (-2,-1) D. (1,2) 复数 1. (2015卷1)已知复数z 满足(z-1)i=1+i ,则z=( ) (A ) -2-i (B )-2+i (C )2-i (D )2+i 2. (2015卷2)若a 实数,且 i ai ++12=3+i,则a= ( ) A.-4 B. -3 C. 3 D. 4 3. (2010卷1)已知复数() 2 313i i z -+= ,其中=?z z z z 的共轭复数,则是( ) A= 4 1 B= 2 1 C=1 D=2 向量 1. (2015卷1)已知点A(0,1),B(3,2),向量AC =(-4,-3),则向量BC = ( ) (A ) (-7,-4) (B )(7,4) (C )(-1,4) (D )(1,4) 2. (2015卷2)已知向量=(0,-1),=(-1,2),则() ?+2=( ) A. -1 B. 0 C. 1 D. 2 3. (2013卷3)已知两个单位向量,的夹角为60度,()0,1=?-+=t t 且,那么t= 程序框图 (2015卷2)右边程序框图的算法思路来源于我国古代数学名著《九章算术》中的“更相减损术”。执行该程序框图,若输入的a,b 分别为14,18,则输出的a 为 A . 0 B. 2 C. 4 D.14

理科数学高考试题分类汇编

1、集合与简易逻辑 (2014)1.设集合M={0,1,2},N={}2|320x x x -+≤,则M N ?=( ) A. {1} B. {2} C. {0,1} D. {1,2} (2013课标全国Ⅱ,理1)已知集合M ={x |(x -1)2 <4,x ∈R },N ={-1,0,1,2,3},则M ∩N =( ). A .{0,1,2} B .{-1,0,1,2} C .{-1,0,2,3} D .{0,1,2,3} (2012)1、已知集合A={1,2,3,4,5},B={(x ,y )|x ∈A ,y ∈A ,x-y ∈A},则B 中所含元素的个数为 (A )3 (B )6 (C )8 (D )10 (2010)(1)已知集合{||2,}A x x R =≤∈},{| 4,}B x x Z =≤∈,则A B ?= (A)(0,2) (B)[0,2] (C){0,2] (D){0,1,2} 2、平面向量 (2014)3.设向量a,b 满足|a+b |a-b ,则a ?b = ( ) A. 1 B. 2 C. 3 D. 5 (2013课标全国Ⅱ,理13)已知正方形ABCD 的边长为2,E 为CD 的中点,则AE BD ?=__________. (2012)13、已知向量a ,b 夹角为45°,且1=a ,102=-b a ,则b =____________. (2011)(10)已知a 与b 均为单位向量,其夹角为θ,有下列四个命题 12:10,3P a b πθ??+>?∈???? 22:1,3P a b πθπ?? +>?∈ ??? 3:10,3P a b πθ??->?∈???? 4:1,3P a b πθπ?? ->?∈ ??? 其中的真命题是 (A )14,P P (B )13,P P (C )23,P P (D )24,P P 3、复数 (2014)2.设复数1z ,2z 在复平面内的对应点关于虚轴对称, 12z i =+,则12z z =( ) A. – 5 B. 5 C. - 4+ I D. - 4 – i (2013课标全国Ⅱ,理2)设复数z 满足(1-i)z =2i ,则z =( ). A .-1+i B .-1-I C .1+i D .1-i (2012)3、下面是关于复数z= 2 1i -+的四个命题 P1:z =2 P2: 2z =2i

相关主题
相关文档 最新文档