大学物理电磁学总结(精华)
- 格式:ppt
- 大小:308.50 KB
- 文档页数:13
大学物理电磁学部分总结本文介绍了电磁学中静电场部分的基本性质和规律。
静电场是物质的一种存在形态,具有能量、动量、质量等属性。
电场的基本物理量是场强和电势,它们之间有密切的关系。
静电场的基本性质可以通过高斯定理和环路定理来反映。
在应用方面,可以通过计算电场强度和电通量来解决问题,同时也可以使用电势的计算方法。
此外,本文还介绍了导体和电介质在静电场中的特性,如导体的静电平衡状态和条件。
1.磁场基础知识a) 利用安培环路定理计算具有高度对称性的磁感应强度分布。
详见课堂例题。
b) 计算磁通量的三种情况:(1)在均匀磁场中,S与磁感应强度方向垂直;(2)在均匀磁场中,S法线方向与磁感应强度方向成θ角;(3)利用高斯定理求某些磁通量。
2.磁场对电荷和电流的作用a) 带电粒子在均匀磁场中的运动有三种情况:(1) v//B;(2) v⊥B;(3) v与B间夹角为θ。
在中学基础上会简单求解即可。
b) 霍尔效应:掌握___电势差的表达式、会判断载流子类型、___电势差的大小,正负。
c) 磁场对电流的作用:会由安培定律计算安培力;会由公式计算载流线圈的磁矩和磁力矩。
简单求解磁力的功。
3.磁介质与静电场相同,掌握无限大、均匀的、各向同性的磁介质的情况:介质的磁导率μ,B=μH,磁介质中的安培环路定理。
能够根据图示分清磁介质的种类,从铁磁质的磁滞回线判断剩磁、矫顽力、硬磁材料、矩磁材料和软磁材料。
4.电磁感应和电磁场部分掌握电磁感应基本定律:法拉第电磁感应定律,楞次定律——判断感应电流(电动势)方向。
掌握动生电动势和感生电动势的产生机理(非静电力或非静电场)、定义及求解。
对于任何感应电动势,都要求会用法拉第电磁感应定律计算。
对于动生电动势:要求会计算均匀磁场中平动和转动导体、非均匀磁场中平动的直导线中的动生电动势。
5.电磁场理论区分传导电流和位移电流。
位移电流与传导电流是完全不同的概念,仅在产生磁场方面二者等价。
传导电流是自由电荷的宏观定向运动,只存在于导体中,有电荷流动,通过导体会产生焦耳热。
大学物理电磁学总结电磁学是物理学中重要的一个分支,研究电荷和电荷之间的相互作用以及电磁场的性质。
它是现代科技和工程学的基础,包括电子学、通信技术、电力工程等领域。
本文将对大学物理电磁学的基本概念、原理和应用进行总结。
大学物理电磁学主要包括电场和磁场。
首先,电场是一种由电荷产生的力场。
电荷可以是正电荷或负电荷,同种电荷相互排斥,异种电荷相互吸引。
电场强度的大小与电荷密度成正比,与距离的平方成反比。
电场强度的方向与正电荷相反。
电场的性质可以通过库仑定律来描述,该定律规定了两个电荷之间的力与它们之间的距离和大小有关。
接下来,磁场是一种由磁荷(电流)产生的力场。
电流是电荷的流动,它可以是直流电流或交流电流。
磁场的强度和方向由安培定律来描述,该定律规定了磁场的大小和电流强度、导线形状以及距离的关系。
根据安培定律,电流在空间中会形成闭合回路,这就是电磁感应的基础。
电场和磁场有很多相互关联的性质。
其中一个最重要的是法拉第定律,该定律描述了磁场变化时所产生的感应电动势。
法拉第定律是电磁感应的基础,也是发电机和变压器等电磁设备的基础原理。
此外,电磁波也是电场和磁场相互作用的结果。
电磁波可以通过振荡的电荷或电流来产生,它既有电场分量也有磁场分量,其传播速度为光速。
电磁学在物理学和工程学中有广泛的应用。
例如,电磁学解释了原子和分子中电子的结构,电磁辐射是元素谱线和光谱的基础。
此外,电磁学也是电动机、发电机、变压器等电力设备的基础原理。
电磁学还包括电子学,研究电路中电流、电压和电阻之间的关系。
电子学是现代通信、计算机和控制工程的基础。
此外,电磁学还研究了天体物理学中的电磁现象,例如太阳风、星际磁场等。
总而言之,大学物理电磁学是研究电荷、电场和磁场的性质、相互作用以及电磁波的传播性质的学科。
电磁学是现代科技和工程学的基础,广泛应用于电力工程、通信技术、电子学和天体物理学等领域。
深入理解电磁学的基本概念和原理对于理解现代科技和工程学的发展具有重要意义。
大一电磁学知识点总结电磁学是物理学中的一个重要分支,它研究电荷和电流之间的相互作用及其产生的电磁力现象。
本文将对大一电磁学涉及的一些重要知识点进行总结和概述。
一、电场与静电力在电磁学中,电场是一个重要的概念。
电荷在空间中产生电场,并对其他电荷施加静电力。
根据库仑定律,两个电荷之间的静电力与它们之间的距离成反比,与电荷的大小成正比。
静电力的方向沿着两个电荷之间的直线,满足叠加原理。
二、电场强度与电势电场强度描述单位正电荷所受到的力,是一个向量量。
电场强度的方向与电荷的正负性质有关。
电势是描述电场能量分布情况的物理量,可以理解为单位正电荷静止在某一位置上时所具有的能量。
电势的计算公式为电势差除以单位正电荷的电荷量。
根据电势与电场强度的关系,电势梯度可以解释为电场强度的负梯度。
三、高斯定理高斯定理是电磁学中一个基本而重要的定理。
它表明,通过任意闭合曲面的电场通量与闭合曲面所包围的总电荷量成正比。
这个定理可以用来简化一些电场计算问题,特别是对具有某种对称性的场情况下。
四、电场能与电介质电场中存在电势能,描述了电场对电荷进行功的能力。
对于电介质而言,由于分子或原子内部的正负电荷分布不均匀,使得电介质内产生极化,导致电场能量在电介质中储存。
电介质的性质可以通过介电常数来描述,介电常数越大,电介质在电场中的极化程度越强。
五、磁场与电磁感应和电场类似,磁场也是一个重要的概念。
电流和电荷运动可以产生磁场。
根据比奥-萨伐尔定律,电流元产生的磁场对于距离电流元很近的位置而言,其大小与距离成反比。
磁场是一个矢量,其方向满足右手定则。
电磁感应是指当磁场变化时,会在回路中产生感应电动势。
根据法拉第电磁感应定律,感应电动势的大小与磁场变化率成正比。
六、安培定律与电磁场安培定律描述了电流元产生的磁场对于距离电流元很远的位置而言,其大小与电流元的大小和距离成正比。
根据安培定律,可以计算通过闭合曲面的总电流。
电磁场是电场和磁场的联合体现,它们互相影响,同时也受到电荷和电流的影响。
电磁学物理学习的个人总结
电磁学是物理学的一个重要分支,研究电荷和电流之间相互作用产生的电磁现象。
以下是我个人对电磁学学习的总结:
1. 静电学:静电学研究电荷的性质以及电荷之间的相互作用。
其中包括库仑定律,描述了两个电荷之间的作用力与其距离和电荷大小的关系;电场的概念,描述了空间中的电场强度与电荷分布的关系;高斯定理,描述了电场通过一个闭合曲面的通量与该曲面内的电荷量的关系。
2. 电磁场的描述:电磁场是电荷和电流产生的物理现象,通过场的概念可以描述电磁场的性质。
麦克斯韦方程组是描述电磁场的基本方程,其中包括了法拉第电磁感应定律、安培环路定理、电荷守恒定律和高斯定律。
3. 电磁波:电磁波是电场和磁场在空间中传播的波动现象。
根据波长和频率的不同,电磁波可以分为不同的类型,包括无线电波、微波、红外线、可见光、紫外线、X射线和γ射线。
电磁波的传播速度是恒定的,也就是光速。
4. 电磁感应:电磁感应是指通过磁场的变化产生电流或者通过电场的变化产生电场的过程。
法拉第电磁感应定律描述了磁场变化引起的感应电动势;电磁感应也是电磁感应定律和楞次定律的应用领域。
5. 电磁波的传播:电磁波的传播是指电磁波在空间中的传播过程。
电磁波既可以在真空中传播,也可以在介质中传播。
电磁波的传播是横波,电场和磁场垂直于传播方向的振动,且振动方向相互垂直。
总的来说,电磁学是一门重要的物理学科,涵盖了静电学、电磁场的描述、电磁波和电磁感应等内容。
通过学习电磁学,可以深入理解电荷和电流之间的相互作用,了解电磁现象的本质,并应用于各个领域,如电子技术、通信和天文学等。
大学物理电磁学部分总结-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN电磁学部分总结 静电场部分第一部分:静电场的基本性质和规律电场是物质的一种存在形态,它同实物一样也具有能量、动量、质量等属性。
静电场的物质特性的外在表现是:(1)电场对位于其中的任何带电体都有电场力的作用(2)带电体在电场中运动,电场力要作功——电场具有能量1、描述静电场性质的基本物理量是场强和电势,掌握定义及二者间的关系。
电场强度电势2、反映静电场基本性质的两条定理是高斯定理和环路定理要掌握各个定理的内容,所揭示的静电场的性质,明确定理中各个物理量的含义及影响各个量的因素。
重点是高斯定理的理解和应用。
3、应用(1)、电场强度的计算q FE =⎰∞⋅==a a a rd E q W U0∑⎰⎰=⋅=ΦiSe qS d E 01ε ⎰=⋅0r d E L 021r q E =a)、由点电荷场强公式 及场强叠加原理 计算场强一、离散分布的点电荷系的场强二、连续分布带电体的场强其中,重点掌握电荷呈线分布的带电体问题b)、由静电场中的高斯 定理计算场源分布具有高度对称性的带电体的场强分布一般诸如球对称分布、轴对称分布和面对称分布,步骤及例题详见课堂笔记。
还有可能结合电势的计算一起进行。
c)、由场强和电势梯度之间的关系来计算场强(适用于电势容易计算或电势分布已知的情形),掌握作业及课堂练习的类型即可。
(2)、电通量的计算iiE E∑=02041i ii i i i r r q E Eπε∑=∑=⎰⎰π==0204d r rq E d EεUgradU E -∇=-=)(k zU j y U i x U ∂∂+∂∂+∂∂-=a)、均匀电场中S 与电场强度方向垂直b)、均匀电场,S 法线方向与电场强度方向成θ角c)、由高斯定理求某些电通量(3)、电势的计算a)、场强积分法(定义法)——根据已知的场强分布,按定义计算b)、电势叠加法——已知电荷分布,由点电荷电势公式,利用电势叠加原理计算第二部分:静电场中的导体和电介质 一、导体的静电平衡状态和条件导体内部和表面都没有电荷作宏观定向运动的状态称为静电平衡状态。
稳恒电流1.电流形成的条件、电流定义、单位、电流密度矢量、电流场(注意我们又涉及到了场的概念)2.电流连续性方程(注意和电荷守恒联系起来)、电流稳恒条件。
3.欧姆定律的两种表述(积分型、微分型)、电导、电阻定律、电阻、电导率、电阻率、电阻温度系数、理解超导现象4.电阻的计算(这是重点)。
5.金属导电的经典微观解释(了解)。
6.焦耳定律两种形式(积分、微分)。
(这里要明白一点:微分型方程是精确的,是强解。
而积分方程是近似的,是弱解。
)7.电动势、电源的作用、电源做功。
、8.含源电路欧姆定律。
9.基尔霍夫定律(节点电流定律、环路电压定律。
明白两者的物理基础。
)习题:13.19;13.20真空中的稳恒磁场电磁学里面极为重要的一章1. 几个概念:磁性、磁极、磁单极子、磁力、分子电流2. 磁感应强度(定义、大小、方向、单位)、洛仑磁力(磁场对电荷的作用)3. 毕奥-萨伐尔定律(稳恒电流元的磁场分布——实验定律)、磁场叠加原理(这是磁场的两大基本定律——对比电场的两大基本定律)4. 毕奥-萨伐尔定律的应用(重点)。
5. 磁矩、螺线管磁场、运动电荷的磁场(和毕奥-萨伐尔定律等价——更基本)6. 稳恒磁场的基本定理(高斯定理、安培环路定理——与电场对比)7. 安培环路定理的应用(重要——求磁场强度)8. 磁场对电流的作用(安培力、安培定律积分、微分形式)9. 安培定律的应用(例14.2;平直导线相互作用、磁场对载流线圈的作用、磁力矩做功)10. 电场对带电粒子的作用(电场力);磁场对带电粒子的作用(洛仑磁力);重力场对带电粒子的作用(引力)。
11. 三场作用叠加(霍尔效应、质谱仪、例14.4)习题:14.20,14.22,14.27,14.32,14.46,14.47磁介质(与电解质对比)1.几个重要概念:磁化、附加磁场、相对磁导率、顺磁质、抗磁质、铁磁质、弱磁质、强磁质。
(请自己阅读并绘制磁场和电场相关概念和公式的对照表)2.磁性的起源(分子电流)、轨道磁矩、自旋磁矩、分子矩、顺磁质、抗磁质的形成原理。
一、教学内容1. 库仑定律:描述静电力的大小和方向,公式为F=kq1q2/r^2,其中k为库仑常数,q1和q2分别为两个点电荷的电量,r为它们之间的距离。
2. 电场强度:描述电场对电荷的作用力,公式为E=F/q,其中F为电场对电荷的作用力,q为电荷的电量。
3. 高斯定律:描述电场通过一个闭合曲面的通量与该闭合曲面内部的总电荷之间的关系,公式为Φ=Q/ε0,其中Φ为电通量,Q为闭合曲面内部的总电荷,ε0为真空中的电常数。
4. 磁感应强度:描述磁场对运动电荷的作用力,公式为B=F/IL,其中F为磁场对运动电荷的作用力,I为电流的大小,L为电流所在导线的有效长度。
5. 安培定律:描述电流产生的磁场,公式为B=μ0I/2πr,其中B为磁场的大小,I为电流的大小,r为电流所在导线到被测点的距离,μ0为真空中的磁常数。
6. 法拉第电磁感应定律:描述磁场变化产生的电动势,公式为E=ΔΦ/Δt,其中E为电动势,ΔΦ为磁通量的变化量,Δt为时间的变化量。
二、教学目标1. 掌握大学物理电磁学的基本概念和公式。
2. 能够运用电磁学的知识解决实际问题。
3. 培养学生的科学思维和解决问题的能力。
三、教学难点与重点重点:库仑定律、电场强度、高斯定律、磁感应强度、安培定律、法拉第电磁感应定律。
难点:高斯定律、安培定律、法拉第电磁感应定律的理解和应用。
四、教具与学具准备教具:黑板、粉笔、PPT课件。
学具:教材、笔记本、笔。
五、教学过程1. 实践情景引入:讲解库仑定律时,可以引入两个点电荷之间的相互作用力。
2. 例题讲解:讲解电场强度时,可以举例一个正点电荷对周围电荷的作用力。
3. 随堂练习:让学生计算一个负点电荷对周围电荷的作用力。
4. 讲解高斯定律:讲解高斯定律时,可以举例一个闭合曲面内部的电荷对曲面外的电场的影响。
5. 讲解磁感应强度:讲解磁感应强度时,可以举例磁场对运动电荷的作用力。
6. 讲解安培定律:讲解安培定律时,可以举例电流产生的磁场对周围导线的影响。
大学物理电磁学心得体会电磁学是大学物理中的一门重要课程,通过学习电场和磁场的相关理论以及它们之间的相互作用,我对电磁学有了更深入的了解。
在学习过程中,我总结了一些心得体会,希望能够对学习电磁学的同学们有所帮助。
第一,理论与实践相结合。
学习电磁学最重要的一点是理论与实践相结合,理论只是为了更好地指导实践。
在学习电磁学的过程中,不能仅仅将重心放在理论推导上,更需要通过实验去验证理论的正确性。
通过实验,我们可以更直观地认识到电场和磁场的特性,加深对其基本原理的理解。
因此,在学习电磁学的过程中,我们应该注重实验操作的训练,积极参与实验课程,亲身体验电磁现象,加深对电磁学知识的理解。
第二,逻辑清晰,问题迎刃而解。
电磁学是一门较为抽象的学科,需要我们掌握一定的数学基础,并且在解题过程中能够运用逻辑思维。
在学习电磁学时,我发现将问题进行逻辑梳理后,会事半功倍。
当遇到一个电磁学问题时,首先应该明确所给条件和要求,然后分析问题的本质,找到问题的关键点和规律。
在解题过程中,要注重逻辑推理,提高自己的思维严谨性,尽可能减少漏洞和错误。
只有掌握了逻辑推理的方法,才能在解决电磁学问题的过程中游刃有余。
第三,培养物理直觉,建立丰富的物理图像。
在学习电磁学过程中,我们要培养自己的物理直觉,形成一种基于物理直觉的思考方式。
通过大量的练习和实践,我们可以建立起丰富的物理图像,将抽象的数学公式转化为直观的图像,从而更好地理解电磁学的概念和原理。
比如,在学习电场时,我们可以通过绘制电场线的方式来形象地表示电场的分布情况;在学习磁场时,可以通过绘制磁感线的方式来理解磁场的特性。
通过建立物理图像,我们可以更好地认识到电磁学的具体应用和现实意义。
第四,注重解题方法和技巧的掌握。
在学习电磁学的过程中,我发现熟练掌握解题方法和技巧对于解决问题非常重要。
通过总结归纳,我发现在解决电磁学问题时,可以采用以下几个常用的解题方法和技巧:首先,要善于运用高斯定律和安培环路定理,这是解决电场和磁场问题的基本工具;其次,要善于运用叠加原理和对称性原理,通过简化复杂问题,降低求解难度;另外,要善于利用数学工具,如矢量分析和微积分等,来加快解题速度和提高解题质量。
大学物理电磁学基础知识点汇总一、电场1、库仑定律库仑定律描述了真空中两个静止点电荷之间的相互作用力与它们电荷量的乘积成正比,与它们之间距离的平方成反比,作用力的方向沿着它们的连线。
其表达式为:$F = k\frac{q_1q_2}{r^2}$,其中$k$为库仑常量,$q_1$和$q_2$为两个点电荷的电荷量,$r$为它们之间的距离。
2、电场强度电场强度是描述电场力的性质的物理量,定义为单位正电荷在电场中所受到的力。
其表达式为:$E =\frac{F}{q}$。
对于点电荷产生的电场,其电场强度的表达式为:$E = k\frac{q}{r^2}$,方向沿径向向外(正电荷)或向内(负电荷)。
3、电场线电场线是用来形象地描述电场的一种工具。
电场线的疏密表示电场强度的大小,电场线的切线方向表示电场强度的方向。
静电场的电场线不闭合,始于正电荷或无穷远,终于负电荷或无穷远。
4、电通量电通量是通过某一面积的电场线条数。
对于匀强电场,通过平面的电通量为:$\Phi = ES\cos\theta$,其中$E$为电场强度,$S$为平面面积,$\theta$为电场强度与平面法线的夹角。
5、高斯定理高斯定理表明,通过闭合曲面的电通量等于该闭合曲面所包围的电荷量的代数和除以$\epsilon_0$。
即:$\oint_S E\cdot dS =\frac{1}{\epsilon_0}\sum q$。
高斯定理是求解具有对称性电场分布的重要工具。
二、电势1、电势电势是描述电场能的性质的物理量,定义为把单位正电荷从电场中某点移动到参考点(通常取无穷远处)时电场力所做的功。
某点的电势等于该点到参考点的电势差。
点电荷产生的电场中某点的电势为:$V = k\frac{q}{r}$。
2、等势面等势面是电势相等的点构成的面。
等势面与电场线垂直,沿电场线方向电势降低。
3、电势差电场中两点之间的电势之差称为电势差,也称为电压。
其表达式为:$U_{AB} = V_A V_B$。
电磁学部分总结 静电场部分第一部分:静电场的基本性质和规律电场是物质的一种存在形态,它同实物一样也具有能量、动量、质量等属性。
静电场的物质特性的外在表现是:(1)电场对位于其中的任何带电体都有电场力的作用 (2)带电体在电场中运动,电场力要作功--电场具有能量1、描述静电场性质的基本物理量是场强和电势,掌握定义及二者间的关系.电场强度 电势2、反映静电场基本性质的两条定理是高斯定理和环路定理要掌握各个定理的内容,所揭示的静电场的性质,明确定理中各个物理量的含义及影响各个量的因素。
重点是高斯定理的理解和应用.3、应用(1)、电场强度的计算a)、由点电荷场强公式 及场强叠加原理 计算场强q FE =⎰∞⋅==aa ar d E q W U 0∑⎰⎰=⋅=ΦiSe qS d E 01ε ⎰=⋅0r d E L 02041r r q E πε=iiE E ∑=一、离散分布的点电荷系的场强二、连续分布带电体的场强其中,重点掌握电荷呈线分布的带电体问题b)、由静电场中的高斯 定理计算场源分布具有高度对称性的带电体的场强分布一般诸如球对称分布、轴对称分布和面对称分布,步骤及例题详见课堂笔记.还有可能结合电势的计算一起进行。
c )、由场强和电势梯度之间的关系来计算场强(适用于电势容易计算或电势分布已知的情形),掌握作业及课堂练习的类型即可。
(2)、电通量的计算a )、均匀电场中S 与电场强度方向垂直b)、均匀电场,S 法线方向与电场强度方向成θ角2041i ii i i i r r q E E πε∑=∑=⎰⎰π==0204d r rq E d E εUgradU E -∇=-=)(k zU j y U i x U ∂∂+∂∂+∂∂-=c)、由高斯定理求某些电通量(3)、电势的计算a )、场强积分法(定义法)——根据已知的场强分布,按定义计算b)、电势叠加法-—已知电荷分布,由点电荷电势公式,利用电势叠加原理计算第二部分:静电场中的导体和电介质 一、导体的静电平衡状态和条件导体内部和表面都没有电荷作宏观定向运动的状态称为静电平衡状态.静电平衡下导体的特性:(1)整个导体是等势体,导体表面是个等势面; (2)导体内部场强处处为零,导体表面附近场强的大小与该表面的电荷面密度成正比,方向与表面垂直; (3)导体内部没有净电荷,净电荷只分布在外表面。
电磁学部分总结静电场部分第一部分:静电场得基本性质与规律电场就是物质得一种存在形态,它同实物一样也具有能量、动量、质量等属性。
静电场得物质特性得外在表现就是:(1)电场对位于其中得任何带电体都有电场力得作用(2)带电体在电场中运动,电场力要作功——电场具有能量1、描述静电场性质得基本物理量就是场强与电势,掌握定义及二者间得关系。
电场强度电势2、反映静电场基本性质得两条定理就是高斯定理与环路定理要掌握各个定理得内容,所揭示得静电场得性质,明确定理中各个物理量得含义及影响各个量得因素。
重点就是高斯定理得理解与应用。
3、应用(1)、电场强度得计算a)、由点电荷场强公式及场强叠加原理计算场强一、离散分布得点电荷系得场强二、连续分布带电体得场强其中,重点掌握电荷呈线分布得带电体问题b)、由静电场中得高斯定理计算场源分布具有高度对称性得带电体得场强分布一般诸如球对称分布、轴对称分布与面对称分布,步骤及例题详见课堂笔记。
还有可能结合电势得计算一起进行。
c)、由场强与电势梯度之间得关系来计算场强(适用于电势容易计算或电势分布已知得情形),掌握作业及课堂练习得类型即可。
(2)、电通量得计算a)、均匀电场中S与电场强度方向垂直b)、均匀电场,S法线方向与电场强度方向成 角c)、由高斯定理求某些电通量(3)、电势得计算a)、场强积分法(定义法)——根据已知得场强分布,按定义计算b)、电势叠加法——已知电荷分布,由点电荷电势公式,利用电势叠加原理计算第二部分:静电场中得导体与电介质一、导体得静电平衡状态与条件导体内部与表面都没有电荷作宏观定向运动得状态称为静电平衡状态。
静电平衡下导体得特性:(1)整个导体就是等势体,导体表面就是个等势面;(2)导体内部场强处处为零,导体表面附近场强得大小与该表面得电荷面密度成正比,方向与表面垂直;(3)导体内部没有净电荷,净电荷只分布在外表面。
有导体存在时静电场得计算1.静电平衡得条件原则: 2、基本性质方程:高斯定理场强环路定理3、电荷守恒定律二、静电场中得电介质掌握无限大、均匀得、各向同性得电介质得情况:充满电场空间得各向同性均匀电介质内部得场强大小等于真空中场强得倍,方向与真空中场强方向一致。
大学物理电磁学公式总结汇总优秀5篇大学物理电磁学公式总结篇一一、电容:1、定义式C=Q/ΔU=Q(U1—U2)2、几种电容器:(1)平行板电容器C=εS/d,(2)圆柱形电容器C=2πεl/ln(R2/R1)(3)球形电容器C=4лεR2R3/(R2-R3)3、并联C=C1+C2+……4、串联1/C=1/C1+1/C2+……二、库仑定律回:F=q1q2r/(4лε。
r )三、电答场强度:E=F/q。
四、电势U:U=∫°E·dlp五、电势差Uab=Ua-Ub大学物理电磁学公式总结篇二第一章(静止电荷的电场)1、电荷的基本性质:两种电荷,量子性,电荷守恒,相对论不变性。
2、库仑定律:两个静止的点电荷之间的作用力F=3、电力叠加原理:F=ΣFikq1q2r2=q1q24πε0r24、电场强度:E=,q0为静止电荷 q05、场强叠加原理:E=ΣEi用叠加法求电荷系的静电场:E=iE=6、电通量:Φe=4πε0r2idqqi(离散型)(连续型)4πε0r27.高斯定律:=Σqintsε018、典型静电场:1)均匀带电球面:E=0(球面内) E=2)均匀带电球体:E=qqq4πε0r2(球面外)ρε04πε0R=3(球体内)E=4πε0r2λ(球体外),方向垂直于带电直线3)均匀带电无限长直线:E=2πε0r4)均匀带电无限大平面:E=ε0,方向垂直于带电平面9、电偶极子在电场中受到的力矩:M=p×E第三章(电势)1、静电场是保守场:=0L2、电势差:φ1φ2=(p1)电势:φp=(P0是电势零点)(p)电势叠加原理:φ=Σφi3.点电荷的电势:φ=q4πε0r(p0)(p2)dq电荷连续分布的带电体的电势:φ=4πεr4、电场强度E与电势φ的关系的微分形式:E=-gradφ=-φ=-(i+j+k)xyzφφφ电场线处处与等势面垂直,并指向电势降低的方向;电场线密处等势面间距小。