勾股定理(3)
- 格式:ppt
- 大小:293.50 KB
- 文档页数:12
第1讲勾股定理第一部分知识梳理1.勾股定理:直角三角形的两直角边的平方和等于斜边的平方。
若直角三角形的两条直角边为a、b,斜边为c,则a²+b²=c²。
2.勾股定理的逆定理:如果三角形的三边长a,b,c有下面关系:a²+b²=c²,那么这个三角形是直角三角形。
3.满足a²+b²=c²的三个正整数,称为勾股数。
若a,b,c是一组勾股数,则ak,bk,ck(k为正整数)也必然是一组勾股数。
常用的几组勾股数有3,4,5;5,12,13;6,8,10;7,24,25;8,15,17;9,40,41等。
4.勾股定理的应用:①圆柱形物体表面上的两点间的最短距离;②长方体或正方体表面上两点间的最短距离问题。
5.直角三角形的判别:①定义,判断一个三角形中有一个角是直角;②根据勾股定理的逆定理,三角形一边的平方等于另外两边的平方和,则该三角形是直角三角形。
6.勾股定理中的方程思想:勾股定理三角形有一个直角的“形”的特征,转化为三边“数”的关系,因此它是数形结合的一个典范.对于一些几何问题,往往借助于勾股定理,利用代数方法来解决.把一条边的长设为未知数,根据勾股定理列出方程,解方程求出未知数的值,即使有时出现了二次方程,大多可通过抵消而去掉二次项。
7.勾股定理中的转化思想:在利用勾股定理计算时,常先利用转化的数学思想构造出直角三角形,比如立体图形上两点之间的最短距离的求解,解答时先把立体图形转化为平面图形,在平面图形中构造直角三角形求解。
8.拓展:特殊角的直角三角形相关性质定理。
第二部分精讲点拨考点1. 勾股定理【例1】在Rt△ABC中,已知两边长为3、4,则第三边的长为变式1 等腰三角形的两边长为10和12,则周长为______,底边上的高是________,面积是_________。
变式2 等边三角形的边长为6,则它的高是________变式3 在Rt△ABC中,∠C=90°,a,b,c分别为∠A,∠B,∠C所对的边,(1)已知c=4,b=3,求a;(2)若a:b=3:4,c=10cm,求a、b。
常用勾股定理三边数字
勾股定理常用的数字
1、(3、4、5)
2、(6、8、10)
3、(5、12、13)
4、(8、1
5、17)
5、(7、24、25)
勾股数,又名毕氏三元数。
勾股数就是可以构成一个直角三角形三边的一组正整数。
勾股定理:直角三角形两条直角边a、b的平方和等于斜边c的平方(a²+b²=c²)。
扩展资料:
勾股定理的意义
1.勾股定理的证明是论证几何的发端;
2.勾股定理是历史上第一个把数与形联系起来的定理,即它是第一个把几何与代数联系起来的定理;
3.勾股定理导致了无理数的发现,引起第一次数学危机,大大加深了人们对数的理解;
4.勾股定理是历史上第—个给出了完全解答的不定方程,它引出了费马大定理。
第1篇一、勾股定理简介勾股定理,又称为毕达哥拉斯定理,是数学中一个重要的几何定理。
它指出,在直角三角形中,直角边的平方和等于斜边的平方。
这个定理不仅在我国古代数学著作《周髀算经》中有记载,而且在古希腊、印度、埃及等地的数学文献中也有所体现。
勾股定理是解决直角三角形问题的基础,也是许多数学领域的重要工具。
二、勾股定理的证明1. 证明方法一:几何证明如图所示,设直角三角形ABC中,∠C为直角,AC、BC分别为直角边,AB为斜边。
作辅助线CD,使得CD⊥AB于点D。
(1)证明AC²+BC²=AB²由于CD⊥AB,∠ACD和∠BCD都是直角。
因此,三角形ACD和三角形BCD都是直角三角形。
根据直角三角形的性质,有:AC² = AD² + CD²BC² = BD² + CD²将上述两个等式相加,得到:AC² + BC² = (AD² + CD²) + (BD² + CD²)AC² + BC² = AD² + BD² + 2CD²由于AD+BD=AB,将AD+BD替换为AB,得到:AC² + BC² = AB² + 2CD²由于CD是AB的一半,即CD=AB/2,代入上式,得到:AC²+ BC² = AB² + 2(AB/2)²AC² + BC² = AB² + AB²AC² + BC² = 2AB²由于2AB²=AB²,因此:AC² + BC² = AB²(2)证明结论根据上述证明,得出勾股定理:在直角三角形中,直角边的平方和等于斜边的平方。
2023-2024学年苏科版数学八年级上册章节知识讲练知识点01:勾股定理1.勾股定理:直角三角形两直角边的平方和等于 .(即: )勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一,其主要应用是:(1)已知直角三角形的两边,求 ;(2)利用勾股定理可以证明 的问题;(3)解决与勾股定理有关的 ;(4)勾股定理在 的应用.知识点02:勾股定理的逆定理如果三角形的三边长,满足 ,那么这个三角形是直角三角形. 细节剖析:应用勾股定理的逆定理判定一个三角形是不是 的基本步骤: (1)首先确定最大边,不妨设 ;(2)验证:与a b 、c a b c 、、c 22a b 2c若若满足不定方程的 称为勾股数(又称为高数或毕达哥拉斯数),显然,以为三边长的三角形一定是直角三角形.细节剖析:常见的勾股数:①3、4、5; ②5、12、13;③8、15、17;④7、24、25;⑤9、40、41.如果()是勾股数,当t 为 时,以为三角形的三边长,此三角形必为直角三角形.观察上面的①、②、④、⑤四组勾股数,它们具有以下特征:;.,且,那么存在 成立.(例如④中存在=24+25、=40+41等)知识点03:勾股定理与勾股定理逆定理的区别与联系区别:勾股定理是直角三角形的 ,而其逆定理是联系:勾股定理与其逆定理的题设和结论正好相反,两者 ,都与 有关.一.选择题(共10小题,满分20分,每小题2分)1.(2分)(2022秋•海门市期末)以下列各组数为边长的三角形中,能组成直角三角形的是( )A .2,4,5B .4,6,8C .5,12,13D .8,10,12mm ,则梯子顶端的高度h 是( )222a b c +=222a b c +>222b c +<222x y z +=x y z 、、a b c 、、at bt ct 、、a bc 、、a b c <<2729m B.2m m m3.(2分)(2022秋•玄武区期末)如图,在5×5的正方形网格中,已知线段a,b和点P,且线段的端点和点P都在格点上,在网格中找一格点Q,使线段a,b,PQ恰好能构成直角三角形,则满足条件的格点Q 有()A.2个B.3个C.4个D.5个4.(2分)(2022秋•南通期末)如图,△ABC的顶点A,B,C在边长为1的正方形网格的格点上,则AC边上的高为()A.3B.C.D.25.(2分)(2022秋•南京期末)如图,在等腰Rt△ACB中,∠ACB=90°,AC=BC,且AB=2,以边AB、AC、BC为直径画半圆,其中所得两个月形图案AFCD和BGCE(图中阴影部分)的面积之和等于()A.8 B.4 C.2 D.46.(2分)(2022秋•泗阳县期末)如图,在Rt△ABC中,∠B=90°,CD、AE是中线,CD=,AC=,则AE的长为()A.B.5 C.6 D.47.(2分)(2022秋•吴江区校级月考)已知,如图长方形ABCD中,AB=3cm,AD=9cm,将此长方形折叠,使点B与点D重合,折痕为EF,则△ABE的面积为()A.3cm2B.4cm2C.6cm2D.12cm28.(2分)(2022秋•宿城区期中)在《九章算术》中有一个问题(如图):今有竹高一丈,末折抵地,去本三尺,问折者高几何?它的意思是:一根竹子原高一丈(10尺),中部一处折断,竹梢触地面处离竹根3尺,试问折断处离地面()尺.A.49.(2分)(2022秋•沭阳县期中)为加强疫情防控,云南某中学在校门口区域进行入校体温检测.如图,入校学生要求沿着直线AB单向单排通过校门口,测温仪C与直线AB的距离为3m,已知测温仪的有效测温距离为5m,则学生沿直线AB行走时测温的区域长度为()A.4 m B.5m C.6m D.8m10.(2分)(2021秋•东台市期末)如图,设小方格的面积为1,则图中以格点为端点且长度为的线段有()A.2条B.3条C.4条D.5条二.填空题(共10小题,满分20分,每小题2分)11.(2分)(2022秋•邳州市期末)如图,在△ABC中,∠C=90°,AD平分∠CAB,AD=13cm,AC=12cm,那么点D到直线AB的距离是cm.12.(2分)(2022秋•海门市期末)如图,Rt△ABC中,∠C=90°,AC=3,AB=5,△ABC的外角平分线与边BC的垂直平分线交于点D,则AD=.13.(2分)(2022秋•常州期末)如图,分别以△ABC的各边为一边向三角形外部作正方形,三个正方形面积分别用S1、S2、S3表示,则下列:①S2>S3;②S2<S1+S3;③S2>S1+S3;④,结论正确的是(填写序号).14.(2分)(2022秋•常州期末)如图,在四边形ABCD中,AB=10,AD=6,AC平分∠BAD,且∠ACB=90°.当点C在BD的垂直平分线上时,CD2的值为.15.(2分)(2023春•宿豫区期末)如图,在△ABC中,∠BAC=90°,∠C=40°,AH、BD分别是△ABC的高和角平分线,点E为BC边上一点,当△BDE为直角三角形时,则∠CDE=.16.(2分)(2022秋•亭湖区期末)如图,在△ABC中,∠ACB=90°,AC=6,AB=10,点O是AB边的中点,点P是射线AC上的一个动点,BQ∥CA交PO的延长线于点Q,OM⊥PQ交BC边于点M.当CP=1时,BM的长为.17.(2分)(2022秋•南通期末)如图,Rt△ABC中,∠C=90°,BC>AC,以AB,BC,AC三边为边长的三个正方形面积分别为S1,S2,S3.若△ABC的面积为7,S1=40,则S2﹣S3的值等于.18.(2分)(2022秋•广陵区校级期末)直角三角形纸片ABC中,∠C=Rt∠,AC=8,AB=10,AD是∠BAC 的角平分线,则BD=.19.(2分)(2022秋•泰兴市期末)已知,如图,四边形ABCD中,AD=6,CD=8,∠ADC=90°,点M是AC 的中点,连接BM,若BM=AC,∠BAD+∠BDC=180°,则BC2的值为.20.(2分)(2021秋•建邺区期末)如图,一根长为18cm的牙刷置于底面直径为5cm、高为12cm的圆柱形水杯中,牙刷露在杯子外面的长度hcm,则h的取值范围是.三.解答题(共9小题,满分60分)21.(6分)(2022秋•徐州期末)《九章算术》卷九中记载:今有立木,系索其末,委地三尺,引索却行,去本八尺而索尽,问索长几何?译文:今有一竖立着的木柱,在木柱的上端系有绳索,绳索从木柱上端顺木柱下垂后,堆在地面的部分尚有3尺,牵着绳索(绳索头与地面接触)退行,在距木柱根部8尺处时绳索用尽,问绳索长是多少?22.(6分)(2022秋•江都区期末)看着冉冉升起的五星红旗,你们是否想过旗杆到底有多高呢?某数学兴趣小组为了测量旗杆高度,进行以下操作:如图1,先将升旗的绳子拉到旗杆底端,发现绳子末端刚好接触到地面;如图2,再将绳子末端拉到距离旗杆8m处,发现绳子末端距离地面2m.请根据以上测量情况,计算旗杆的高度.23.(6分)(2022秋•宿豫区期末)如图,一艘军舰甲在A处停留,此时在A处的南偏西45°方向,距离A 处600公里的B处一艘军舰乙正由南向北航行,若军舰甲的雷达可测距离为450公里,军舰乙的航行方向不变,试问在军舰乙航行的过程中,军舰甲的雷达能否测到军舰乙?请通过计算说明理由.24.(6分)(2022秋•海陵区校级期末)如图,在△ABC中,AB=AC,点D,E分别是BC,AC的中点,CF⊥AB于点F,连结DE,DF,EF.(1)求证:△DEF是等腰三角形.(2)若AB=5,BC=6,求CF的长.25.(6分)(2022秋•常州期末)数学兴趣小组要测量旗杆的高度,同学们发现系在旗杆顶端A的绳子沿旗杆垂到地面时,测得多出部分BC的长为2m(如图1),再将绳子拉直(如图2),测得绳子末端的位置D 到旗杆底部B的距离为6m,求旗杆AB的长.26.(8分)(2022秋•广陵区校级期末)如图,有一架秋千,当它静止在ADm,将秋千AD往前推送3m,到达ABm,秋千的绳索始终保持拉直的状态.(1)根据题意,BF=m,BC=m,CD=m;(2)根据(1)中求得的数据,求秋千的长度.m时,需要将秋千AD往前推送m.27.(6分)(2022秋•兴化市期末)如图是一个长方形的大门,小强拿着一根竹竿要通过大门.他把竹竿竖放,发现竹竿比大门高1尺;然后他把竹竿斜放,竹竿恰好等于大门的对角线的长.已知大门宽4尺,请求出竹竿的长.28.(8分)(2022秋•天宁区校级期中)如图,在Rt△ABC中,∠C=90°,AB=10cm,AC=6cm,动点P从点B出发沿射线BC以2cm/s的速度移动,设运动的时间为t秒.(1)求BC边的长;(2)当△ABP为直角三角形时,求t的值;(3)当△ABP为等腰三角形时,求t的值.29.(8分)(2022秋•秦淮区月考)如图,△ABC中,CD⊥AB于D,且BD:AD:CD=2:3:4;已知S△ABC=40cm2,如图,动点M从点B出发以每秒1cm的速度沿线段BA向点A运动,同时动点N从点A出发以相同速度沿线段AC向点C运动,当其中一点到达终点时整个运动都停止.设点M运动的时间为t(秒).(1)若△DMN的边与BC平行,求t的值;(2)在点N运动的过程中,△ADN能否成为等腰三角形?若能,求出t的值;若不能,请说明理由.。
勾3股4定理公式大全勾股定理是数学中最基本的定理之一,它描述了直角三角形中直角边与斜边的关系。
而勾三股四定理,则是一种推广的勾股定理,它描述了三个直角三角形的边长之间的比例关系。
以下是勾三股四定理的三个公式及其推导过程。
一、第一个勾三股四定理公式:设直角三角形ABC,其中∠C=90°,则有AB^2=BC×AC这个公式可以通过勾股定理的推导得出。
根据勾股定理,有AC^2=AB^2+BC^2带入角C=90°,则有AB^2=AC^2-BC^2即AB^2=BC×AC。
二、第二个勾三股四定理公式:设直角三角形ABC,其中∠A=90°,则有AC^2=AB×BC这个公式可以通过将公式一中的AB和BC互换得出。
即将AB^2=BC×AC两边的AB和BC互换,得到AC^2=AB×BC。
三、第三个勾三股四定理公式:设直角三角形ABC,其中∠B=90°,则有BC^2=AB×AC这个公式可以通过将公式一中的AB和AC互换得出。
即将AB^2=BC×AC两边的AB和AC互换,得到BC^2=AB×AC。
ABCB,C在直角三角形ABC中,根据勾三股四定理公式一的推导过程,可以得到AB^2=BC×A C。
同理,根据勾三股四定理公式二和公式三的推导过程,可以得到AC^2=AB×BC以及BC^2=AB×AC。
勾三股四定理公式在解决问题时非常实用,它可以帮助我们在已知两条边后,快速求解剩余边的长度。
举个例子,假设在一个直角三角形ABC中,已知AC=5cm,BC=12cm,我们需要求解AB的长度。
根据勾三股四定理公式一,我们有AB^2=BC×AC代入已知值,即可得到AB^2 = 12cm × 5cm计算得到AB^2 = 60 cm^2再开平方根,即可得到AB的长度,约为7.746cm。
勾股定理三条边的公式
勾股定理是数学中的一个重要定理,它描述了直角三角形中的关系。
勾股定理有三个公式,它们分别是:
1. a² = b² + c²
2. b² = a² - c²
3. c² = a² - b²
这三个公式中,a、b、c分别代表直角三角形的三条边,其中a为斜边,b、c为直角边。
这三个公式是勾股定理的不同表述,它们之间是等价的。
以第一个公式为例,它的意思是直角三角形中斜边的平方等于直角边的平方和。
这个公式可以用来求解直角三角形中未知的边长,只需要已知两条边的长度,就可以通过勾股定理求出第三条边的长度。
第二个和第三个公式则是将第一个公式中的某一条边表示为其他两条边的函数形式。
这样做的好处是,在一些特定的问题中,可以更方便地使用这些公式。
除了上述三个公式以外,勾股定理还有其他形式的表述,比如三角函数形式、向量形式等。
这些表述方式在不同的数学领域和问题中都有着广泛的应用,比如在物理学、工程学、计算机科学等领域中都有着重要的作用。
总之,勾股定理是数学中的一个经典定理,它有着多种不同
的表述方式和应用场景。
掌握这个定理,不仅可以帮助我们更好地理解直角三角形的性质,还可以在实际问题中提供有效的解决方法。
知识点一:勾股定理如果直角三角形的两直角边长分别为a ,b ,斜边长为c ,那么a 2+b 2=c 2.即直角三角形中两直角边的平方和等于斜边的平方.要点诠释:(1)勾股定理揭示的是直角三角形平方关系的定理。
勾股定理只适用于直角三角形,而不适用于锐角三角形和钝角三角。
(2) 勾:直角三角形较短的直角边股:直角三角形较长的直角边弦:斜边(3)理解勾股定理的一些变式(在三角形ABC 中,∠C=90°): c 2=a 2+b 2,a2=c 2-b 2, b 2=c 2-a 2 , c 2=(a+b)2-2ab知识点二:用面积证明勾股定理方法一:将四个全等的直角三角形拼成如图(1)所示的正方形。
图(1)中,所以。
方法二:将四个全等的直角三角形拼成如图(2)所示的正方形。
图(2)中,所以。
方法三:将四个全等的直角三角形分别拼成如图(3)—1和(3)—2所示的两个形状相同的正方形。
c a b =+22a cb =-22b c a =-22在(3)—1中,甲的面积=(大正方形面积)—(4个直角三角形面积),在(3)—2中,乙和丙的面积和=(大正方形面积)—(4个直角三角形面积),所以,甲的面积=乙和丙的面积和,即:.方法四:如图(4)所示,将两个直角三角形拼成直角梯形。
,所以。
知识点三:勾股定理的作用1.已知直角三角形的两条边长求第三边;2.已知直角三角形的一条边,求另两边的关系;3.用于证明平方关系的问题;知识点四:勾股数满足a2+b2=c2的三个正整数叫做勾股数(注意:若a,b,c、为勾股数,那么当k>0时,ka,kb,kc同样也是勾股数组)常见勾股数:①3、4、5;②5、12、13;口诀:5月12记一生(13)③8、15、17;口诀:八月十五在一起(17)④7、24、25;⑤10、24、26;⑥9、40、41;⑦6、8、10;⑧9;12;15;⑨15、20、25.知识点五:勾股树知识点六:勾股定理的逆定理如果三角形的三边长分别为:a、b、c,且满足a2+b2=c2,那么这个三角形是直角三角形。
第二章勾股定理、平方根专题第一节勾股定理一、勾股定理:1、勾股定理定义:如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a2+b2=c2. 即直角三角形两直角边的平方和等于斜边的平方ABCabc弦股勾勾:直角三角形较短的直角边股:直角三角形较长的直角边弦:斜边勾股定理的逆定理:如果三角形的三边长a,b,c有下面关系:a2+b2=c2,那么这个三角形是直角三角形。
2. 勾股数:满足a2+b2=c2的三个正整数叫做勾股数(注意:若a,b,c、为勾股数,那么ka,kb,kc同样也是勾股数组。
)*附:常见勾股数:3,4,5; 6,8,10; 9,12,15; 5,12,133. 判断直角三角形:如果三角形的三边长a、b、c满足a2+b2=c2 ,那么这个三角形是直角三角形。
(经典直角三角形:勾三、股四、弦五)其他方法:(1)有一个角为90°的三角形是直角三角形。
(2)有两个角互余的三角形是直角三角形。
用它判断三角形是否为直角三角形的一般步骤是:(1)确定最大边(不妨设为c);(2)若c 2=a 2+b 2,则△ABC 是以∠C 为直角的三角形; 若a 2+b 2<c 2,则此三角形为钝角三角形(其中c 为最大边); 若a 2+b 2>c 2,则此三角形为锐角三角形(其中c 为最大边)4.注意:(1)直角三角形斜边上的中线等于斜边的一半(2)在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。
(3)在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的角等于30°。
5. 勾股定理的作用:(1)已知直角三角形的两边求第三边。
(2)已知直角三角形的一边,求另两边的关系。
(3)用于证明线段平方关系的问题。
(4)利用勾股定理,作出长为n 的线段二、平方根:(11——19的平方)1、平方根定义:如果一个数的平方等于a ,那么这个数就叫做a 的平方根。
第03讲勾股定理的应用(3种题型)【知识梳理】一.勾股定理的应用(1)在不规则的几何图形中,通常添加辅助线得到直角三角形.(2)在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.(3)常见的类型:①勾股定理在几何中的应用:利用勾股定理求几何图形的面积和有关线段的长度.②由勾股定理演变的结论:分别以一个直角三角形的三边为边长向外作正多边形,以斜边为边长的多边形的面积等于以直角边为边长的多边形的面积和.③勾股定理在实际问题中的应用:运用勾股定理的数学模型解决现实世界的实际问题.④勾股定理在数轴上表示无理数的应用:利用勾股定理把一个无理数表示成直角边是两个正整数的直角三角形的斜边.二.平面展开-最短路径问题(1)平面展开﹣最短路径问题,先根据题意把立体图形展开成平面图形后,再确定两点之间的最短路径.一般情况是两点之间,线段最短.在平面图形上构造直角三角形解决问题.(2)关于数形结合的思想,勾股定理及其逆定理它们本身就是数和形的结合,所以我们在解决有关结合问题时的关键就是能从实际问题中抽象出数学模型.【考点剖析】题型一.勾股定理的实际应用例1.如图,一棵树从3m处折断了,树顶端离树底端距离4m,那么这棵树原来的高度是() A.8m B.5m C.9m D.7m【变式】如图在实践活动课上,小华打算测量学校旗杆的高度,她发现旗杆顶端的绳子垂到地面后还多出1m,当她把绳子斜拉直,且使绳子的底端刚好接触地面时,测得绳子底端距离旗杆底部5m,由此可计算出学校旗杆的高度是()A.8m B.10m C.12m D.15m例2.如图,一个直径为20cm的杯子,在它的正中间竖直放一根小木棍,木棍露出杯子外2cm,当木棍倒向杯壁时(木棍底端不动),木棍顶端正好触到杯口,求木棍长度.【变式】小明想知道学校旗杆的高,他发现旗杆上的绳子垂到地面还多了1m,当他把绳子的下端拉开5m后,发现下端刚好接触地面,求旗杆的高.题型二.平面展开-最短路径问题例3.如图,长方体的底面边长是1cm和3cm,高是6cm,如果用一根细线从点A开始经过4个侧面缠绕一圈到达B,那么用细线最短需要()A.12cm B.10cm C.13cm D.11cm例4.一个上底和下底都是等边三角形的盒子,等边三角形的高为70cm,盒子的高为240cm,M为AB的中点,在M处有一只飞蛾要飞到E处,它的最短行程多少?【变式】如图①,有一个圆柱,它的高等于12cm,底面半径等于3cm,在圆柱的底面A点有一只蚂蚁,它想吃到上底面上与A点相对的B点的食物,需要爬行的最短路程是多少?(π取3)题型三:勾股定理中的折叠问题例5.如图,矩形纸片ABCD中,4AB=,3AD=,折叠纸片使AD边与对角线BD重合,折痕为DG,则AG的长为()A.1B.43C.32D.2【变式】如图,将矩形ABCD沿直线AE折叠,顶点D恰好落在BC边上F点处,已知3CE cm=,8AB cm=,求图中阴影部分的面积.【过关检测】一.选择题1.如图,在水池的正中央有一根芦苇,池底长10尺,它高出水面1尺,如果把这根芦苇拉向水池一边,它的顶端恰好到达池边的水面则这根芦苇的长度是()A.10尺B.11尺C.12尺D.13尺2.如图,已知圆柱底面的周长为12cm,圆柱高为8cm,在圆柱的侧面上,过点A和点C嵌有一圈金属丝,则这圈金属丝的周长最小为()A.10cm B.20cm C.cm D.100cm3.如图,小巷左右两侧是竖直的墙壁,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米.若梯子底端位置保持不动,将梯子斜靠在右墙时,顶端距离地面1.5米,则小巷的宽度为()A.0.8米B.2米C.2.2米D.2.7米4.如图,台阶阶梯每一层高20cm,宽30cm,长50cm,一只蚂蚁从A点爬到B点,最短路程是()A.10B.50C.120D.1305.如图,圆柱的高为8cm,底面半径为2cm,在圆柱下底面的A点处有一只蚂蚁,它想吃到上底面B处的食物,已知四边形ADBC的边AD、BC恰好是上、下底面的直径,问:蚂蚁吃到食物爬行的最短距离是cm.(π取3)6.《九章算术》中的“引葭赴岸”问题:今有池方一丈,葭(一种芦苇类植物)生其中央,出水一尺.引葭赴岸,适与岸齐,水深几何?其大意是:有一个边长为10尺的正方形池塘,一棵芦苇生长在它的正中央,高出水面1尺.如果把该芦苇拉向岸边,那么芦苇的顶部恰好碰到岸边(如图所示),则水深________尺.7.《九章算术》是我国古代一部著名的数学专著,其中记载了一个“折竹抵地”问题:今有竹高一丈,未折抵地,去本三尺,问折者高几何?其意思是:有一根与地面垂直且高一丈的竹子(1丈10尺),现被大风折断成两截,尖端落在地面上,竹尖与竹根的距离为三尺,问折断处离地面的距离为.8.《九章算术》是我国古代最重要的数学著作之一,在“勾股”章中记载了一道“折竹抵地”问题:“今有竹高一丈,末折抵地,去根四尺,问折者高几何?”翻译成数学问题是:如图所示,△ABC中,∠ACB=90°,AC+AB =10,BC=4,求AC的长.9.如图,一架25米长的梯子AB斜靠在一竖直的墙AO上,梯子底端B离墙AO有7米.(1)求梯子靠墙的顶端A距地面有多少米?(2)小燕说“如果梯子的顶端A沿墙下滑了4米,那么梯子的底端B在水平方向就滑动了4米.”她的说法正确吗?若不正确,请说明理由.10.已知某开发区有一块四边形的空地ABCD,如图所示,现计划在空地上种植草皮,经测量∠A=90°,AB=3m,BC=12m,CD=13m,DA=4m,若每平方米草皮需要200元,问要多少投入?11.我国古代的数学名著《九章算术》中记载“今有竹高一丈,末折抵地,去本三尺.问:折者高几何?”译文:一根竹子,原高一丈,虫伤有病,一阵风将竹子折断,其竹梢恰好着地,着地处离原竹子根部3尺远.问:尺)原处还有多高的竹子?(1丈1012.如图,一个梯子AB,顶端A靠在墙AC上,这是梯子的顶端距地面的垂直高度为24米,若梯子的顶端下滑4米,底端将水平滑动了8米,求滑动前梯子底端与墙的距离CB是多少?13.(2022春•蜀山区期中)在一款名为超级玛丽的游戏中,玛丽到达一个高为10米的高台A,利用旗杆顶部的绳索,划过90°到达与高台A水平距离为17米,高为3米的矮台B,(1)求高台A比矮台B高多少米?(2)求旗杆的高度OM;(3)玛丽在荡绳索过程中离地面的最低点的高度MN.14.如图,四边形ABCD是舞蹈训练场地,要在场地上铺上草坪网.经过测量得知:∠B=90°,AB=24m,BC =7m,CD=15m,AD=20m.(1)判断∠D是不是直角,并说明理由;(2)求四边形ABCD需要铺的草坪网的面积.15.如图,A,B两村在河L的同侧,A,B到河L的距离分别为1.5km和2km,AB=1.3km,现要在河边建一供水厂,同时向A,B 1.8万元,问水厂与A村的水平距离为多远时,能使铺设费用最省,并求出总费用约多少万元.。