第6章 合成孔径雷达(SAR)
- 格式:ppt
- 大小:376.00 KB
- 文档页数:14
合成孔径雷达概述1合成孔径雷达简介 (2)1.1 合成孔径雷达的概念 (2)1.2 合成孔径雷达的分类 (3)1.3 合成孔径雷达(SAR)的特点 (4)2合成孔径雷达的发展历史 (5)2.1 国外合成孔径雷达的发展历程及现状 (5)2.1.1 合成孔径雷达发展历程表 (6)2.1.2 世界各国的SAR系统 (9)2.2 我国的发展概况 (11)2.2.1 我国SAR研究历程表 (11)2.2.2 国内各单位的研究现状 (12)2.2.2.1 电子科技大学 (12)2.2.2.2 中科院电子所 (12)2.2.2.3 国防科技大学 (13)2.2.2.4 西安电子科技大学 (13)3 合成孔径雷达的应用 (13)4 合成孔径雷达的发展趋势 (14)4.1 多参数SAR系统 (15)4.2 聚束SAR (15)4.3极化干涉SAR(POLINSAR) (16)4.4合成孔径激光雷达(Synthetic Aperture Ladar) (16)4.5 小型化成为星载合成孔径雷达发展的主要趋势 (17)4.6 性能技术指标不断提高 (17)4.7 多功能、多模式是未来星载SAR的主要特征 (18)4.8 雷达与可见光卫星的多星组网是主要的使用模式 (18)4.9 分布SAR成为一种很有发展潜力的星载合成孔径雷达 (18)4.10 星载合成孔径雷达的干扰与反干扰成为电子战的重要内容 (19)4.11 军用和民用卫星的界线越来越不明显 (19)5 与SAR相关技术的研究动态 (20)5.1 国内外SAR图像相干斑抑制的研究现状 (20)5.2 合成孔径雷达干扰技术的现状和发展 (20)5.3 SAR图像目标检测与识别 (22)5.4 恒虚警技术的研究现状与发展动向 (25)5.5 SAR图像变化检测方法 (27)5.6 干涉合成孔径雷达 (31)5.7 机载合成孔径雷达技术发展动态 (33)5.8 SAR图像地理编码技术的发展状况 (35)5.9 星载SAR天线方向图在轨测试的发展状况 (37)5.10 逆合成孔径雷达的发展动态 (38)5.11 干涉合成孔径雷达的发展简史与应用 (38)合成孔径雷达概述1合成孔径雷达简介合成孔径雷达(Synthetic Aperture Radar,简称SAR)是一种全天候、全天时的现代高分辨率微波成像雷达。
合成孔径雷达书-回复什么是合成孔径雷达(SAR)?如何工作?它有哪些应用领域和优势?下文将一步一步回答这些问题。
合成孔径雷达(SAR)是一种通过合成孔径信号处理技术来获得雷达图像的高分辨率雷达系统。
简单来说,SAR利用雷达系统从飞行器或卫星上连续发射并接收微波信号。
通过对这些接收到的信号进行处理和合成,SAR可以生成地表的高分辨率雷达图像。
那么,SAR是如何工作的呢?首先,雷达系统发送一系列微波脉冲信号。
当这些信号经过地表反射回来时,接收系统记录下微波信号的相位和振幅。
接下来,SAR系统对这些接收到的信号进行处理和合成。
这个过程包括两个主要步骤:距离向合成和方位向合成。
在距离向合成步骤中,SAR系统将接收到的信号进行快速傅里叶变换(FFT)处理。
这样可以确定信号在距离上的分布情况,也就是目标物体和雷达之间的距离。
通过进一步处理和合成,SAR系统可以消除地形起伏和地球自转等因素对图像质量的影响,从而得到更准确的距离数据。
在方位向合成步骤中,SAR系统将距离向合成得到的数据与航向变化相关联。
通过对接收到的信号在时间域上进行处理,系统可以得到地面目标的方位信息。
这个过程类似于通过拼接多张相机拍摄的照片来获得全景图像。
SAR的应用非常广泛。
首先,由于其高分辨率和天气无关性,SAR在军事领域被广泛应用于侦察和目标识别等任务。
其次,SAR在地球观测领域也有很多应用。
例如,通过对大气和海洋表面的观测,科学家可以研究气象和海洋学等领域的现象。
此外,SAR还可以用于土地覆盖分类、资源探测和环境监测等方面。
与其他传统雷达系统相比,SAR具有一些独特的优势。
首先,由于其使用的是合成孔径信号处理技术,SAR可以获得非常高的图像分辨率。
这对于细节分析和目标识别非常有帮助。
其次,SAR对天气条件不敏感,无论是晴天、阴天还是夜晚,都可以获得高质量的雷达图像。
这使得SAR成为一种可靠的地表观测工具。
此外,SAR还可以对地表进行高度测量,对于数字地形建模和地球物理测量等领域非常有用。
合成孔径雷达(SAR)合成孔径雷达产生的过程为了形成一幅真实的图像增加两个关键参数:分辨率、识别能力。
合成孔径打开了无限分辨能力的道路相干成像特性:以幅度和相位的形式收集信号的能力相干成像的特性可以用来进行孔径合成民用卫星接收系统SEASA T、SIR-A、SIR-B美国军用卫星(LACROSSE)欧洲民用卫星(ERS系列)合成孔径雷达(SAR)是利用雷达与目标的相对运动将较小的真实天线孔径用数据处理的方法合成一个较大孔径的等效天线孔径的雷达。
特点:全天候、全天时、远距离、和高分辨率成像并且可以在不同频段不同极化下得到目标的高分辨率图像SAR高分辨率成像的距离高分辨率和方位高分辨率距离分辨率取决于信号带宽方位高分辨率取决于载机与固定目标相对运动时产生的具有线性调频性质的多普勒信号带宽相干斑噪声机载合成孔径雷达是合成孔径雷达的一种极化:当一个平面将空间划分为各向同性和半无限的两个均匀介质,我们就可以定义一个电磁波的入射平面,用波矢量K来表征:该平面包含矢量K以及划分这两种介质的平面法线垂直极化(V):无线电波的振动方向是垂直方向与水平极化(H):无线电波的振动方向是水平方向TE波:电场E与入射面垂直TH波:电场E属于入射平面合成孔径雷达的应用军事上、地质和矿物资源勘探、地形测绘和制图学、海洋应用、水资源、农业和林业合成孔径雷达在军事领域的应用:战略应用、战术应用、特种应用。
SAR系统的几个发展趋势:多波段、多极化、多视角、多模式、多平台、高分辨率成像、实时成像。
SAR图像相干斑抑制的研究现状分类:成像时进行多视处理、成像后进行滤波多视处理就是对同一目标生成多幅独立的像,然后进行平均。
这是最早提出的相干斑噪声去除的方法,这种技术以牺牲空间分辨率为代价来获取对斑点的抑制成像后的滤波技术成为SAR图像相干噪声抑制技术发展的主流均值滤波、中值滤波、维纳滤波用来滤去相干斑噪声,这种滤波方法能够在一定程度上减小相干斑噪声的方差合成孔径雷达理论概述合成孔径雷达是一种高分辨率成像雷达,高分辨率包含两个方面的含义:方位向的高分辨率和距离向高分辨率。
合成孔径雷达SAR综述合成孔径雷达(SAR) 是一种高分辨机载和星载遥感技术,用于对地形等场景上的远程目标进行成像。
1951 年,Carl Wiley 意识到,如果在雷达沿直线路径移动时收集回波信号,则接收信号的多普勒频谱可用于合成更长的孔径,以便提高沿轨道维度的分辨率。
1953 年,当一架 C-46 飞机绘制佛罗里达州基韦斯特的一段地图时,形成了第一张实测SAR 图像。
第一个星载卫星SAR 系统由美国国家航空航天局 (NASA) 的研究人员开发并于 1978 年投入 Seasat。
SAR 模式根据雷达天线的扫描方式,SAR 的模式可分为三种。
如下图所示,当雷达收集其行进区域的电磁 (EM) 反射波,观察与飞行路径平行的地形带时,这种模式称为侧视 SAR或带状 SAR。
当雷达跟踪并将其电磁波聚焦到一个固定的、特定的感兴趣区域时,这种模式称为聚束 SAR,如下图所示。
SAR 操作的另一种模式称为扫描SAR,它适用于雷达在高空飞行并获得比模糊范围更宽的条带时。
条带的这种增强会导致距离分辨率的下降。
如下图所示。
对于这种模式,照射区域被划分为几段,每段被分配到不同的条带的观察。
随着雷达平台的移动,雷达在一段时间内照射一个段,然后切换到另一个段。
这种切换是在特定的方法中完成的,使得所需的条带宽度被覆盖,并且当平台在其轨道上前进时没有留下任何空白段。
SAR 系统设计通用 SAR 系统框图如下图所示。
所有的定时和控制信号都由处理器控制单元产生。
首先,SAR 信号(线性频率调制(LFM)脉冲或阶跃频率波形)由波形发生器生成并传递到发射机。
大多数 SAR 系统使用单个天线或两个紧密放置的天线进行发射和接收,这样系统通常在单站配置下工作。
SAR 天线、转换器和天线波束形成器可沿场景或目标方向形成和引导主波束。
发射的 SAR 信号从场景或目标反射回来后,接收到的信号由 SAR 天线收集并传递给接收机。
接收机输出后的信号被模数转换器采样和数字化。
合成孔径雷达合成孔径雷达(SAR)合成孔径雷达产⽣的过程为了形成⼀幅真实的图像增加两个关键参数:分辨率、识别能⼒。
合成孔径打开了⽆限分辨能⼒的道路相⼲成像特性:以幅度和相位的形式收集信号的能⼒相⼲成像的特性可以⽤来进⾏孔径合成民⽤卫星接收系统SEASA T、SIR-A、SIR-B美国军⽤卫星(LACROSSE)欧洲民⽤卫星(ERS系列)合成孔径雷达(SAR)是利⽤雷达与⽬标的相对运动将较⼩的真实天线孔径⽤数据处理的⽅法合成⼀个较⼤孔径的等效天线孔径的雷达。
特点:全天候、全天时、远距离、和⾼分辨率成像并且可以在不同频段不同极化下得到⽬标的⾼分辨率图像SAR⾼分辨率成像的距离⾼分辨率和⽅位⾼分辨率距离分辨率取决于信号带宽⽅位⾼分辨率取决于载机与固定⽬标相对运动时产⽣的具有线性调频性质的多普勒信号带宽相⼲斑噪声机载合成孔径雷达是合成孔径雷达的⼀种极化:当⼀个平⾯将空间划分为各向同性和半⽆限的两个均匀介质,我们就可以定义⼀个电磁波的⼊射平⾯,⽤波⽮量K来表征:该平⾯包含⽮量K以及划分这两种介质的平⾯法线垂直极化(V):⽆线电波的振动⽅向是垂直⽅向与⽔平极化(H):⽆线电波的振动⽅向是⽔平⽅向TE波:电场E与⼊射⾯垂直TH波:电场E属于⼊射平⾯合成孔径雷达的应⽤军事上、地质和矿物资源勘探、地形测绘和制图学、海洋应⽤、⽔资源、农业和林业合成孔径雷达在军事领域的应⽤:战略应⽤、战术应⽤、特种应⽤。
SAR系统的⼏个发展趋势:多波段、多极化、多视⾓、多模式、多平台、⾼分辨率成像、实时成像。
SAR图像相⼲斑抑制的研究现状分类:成像时进⾏多视处理、成像后进⾏滤波多视处理就是对同⼀⽬标⽣成多幅独⽴的像,然后进⾏平均。
这是最早提出的相⼲斑噪声去除的⽅法,这种技术以牺牲空间分辨率为代价来获取对斑点的抑制成像后的滤波技术成为SAR图像相⼲噪声抑制技术发展的主流均值滤波、中值滤波、维纳滤波⽤来滤去相⼲斑噪声,这种滤波⽅法能够在⼀定程度上减⼩相⼲斑噪声的⽅差合成孔径雷达理论概述合成孔径雷达是⼀种⾼分辨率成像雷达,⾼分辨率包含两个⽅⾯的含义:⽅位向的⾼分辨率和距离向⾼分辨率。
合成孔径雷达(SAR)的点目标仿真(附件带代码程序)合成孔径雷达(SAR)的点目标仿真一. SAR原理简介合成孔径雷达(Synthetic Aperture Radar ,简称SAR)是一种高分辨率成像雷达技术。
它利用脉冲压缩技术获得高的距离向分辨率,利用合成孔径原理获得高的方位向分辨率,从而获得大面积高分辨率雷达图像。
SAR回波信号经距离向脉冲压缩后,雷达的距离分辨率由雷达发射信号带宽决定:,式中表示雷达的距离分辨率,表示雷达发射信号带宽,表示光速。
同样,SAR回波信号经方位向合成孔径后,雷达的方位分辨率由雷达方位向的多谱勒带宽决定:,式中表示雷达的方位分辨率,表示雷达方位向多谱勒带宽,表示方位向SAR平台速度。
二. SAR的成像模式和空间几何关系根据SAR波束照射的方式,SAR的典型成像模式有Stripmap(条带式),Spotlight(聚束式)和Scan(扫描模式),如图2.1。
条带式成像是最早研究的成像模式,也是低分辨率成像最简单最有效的方式;聚束式成像是在一次飞行中,通过不同的视角对同一区域成像,因而能获得较高的分辨率;扫描模式成像较少使用,它的信号处理最复杂。
图2.1:SAR典型的成像模式这里分析SAR点目标回波时,只讨论正侧式Stripmap SAR,正侧式表示SAR波束中心和SAR平台运动方向垂直,如图2.2,选取直角坐标系XYZ为参考坐标系,XOY平面为地平面;SAR平台距地平面高h,沿X轴正向以速度V匀速飞行;P点为SAR平台的位置矢量,设其坐标为(x,y,z);T点为目标的位置矢量,设其坐标为;由几何关系,目标与SAR平台的斜距为:(2.1)由图可知:;令,其中为平台速度,s为慢时间变量(slow time),假设,其中表示SAR平台的x 坐标为的时刻;再令,表示目标与SAR的垂直斜距,重写2.1式为:(2.2)就表示任意时刻时,目标与雷达的斜距。
一般情况下,,于是2.2式可近似写为:(2.3)可见,斜距是的函数,不同的目标,也不一样,但当目标距SAR较远时,在观测带内,可近似认为不变,即。