( x ,t0) ( x )
波方程的Cauchy问题
由泛定方程和相应边界条件构成的定解问题称为 边值问题。
u0, (x,y),
u f (x, y).
Laplace方程的边值问题
由偏微分方程和相应的初始条件及边界条件构成 的定解问题称为混合问题。
uutt0a2(u(xxx,y,uzy)yuzz)0
kn|x0k(x) qnq0
u x
|xl
q0 k
u x |x0
q0 k
xl
若端点是绝热的,则
u u x|xl x x0 0
三、定解问题
定义1 在区域 G[0,) 上,由偏微分方程、初 始条件和边界条件中的其中之一组成的定解问题称为 初边值问题或混合问题。
u ut x,a 02 u xx (x 0),,
注 1、热传导方程不仅仅描述热传导现象,也可以
刻画分子、气体的扩散等,也称扩散方程;
2、上述边界条件形式上与波动方程的边界条件 一样,但表示的物理意义不一样;
3、热传导方程的初始条件只有一个,而波动方 程有两个初始条件。
4、除了三维热传导方程外,物理上,温度的分 布在同一个界面上是相同的,可得一维热传导方
gk1 k
u1.
注意第三边界条件的推导:
研究物体与周围介质在物体表面上的热交换问题
把一个温度变化规律为 u(x, y, z, t)的物体放入 空
气介质中,已知与物体表面接触处的空气介质温度
为 u1(x, y, z, t),它与物体表面的温度u(x, y, z, t)并不
相同。这给出了第三边界条件的提法。
或
u knk1(uu1).
即得到(1.10): ( u nu)|(x,y,z) g(x,y,z,t).