高等无机化学第二章
- 格式:ppt
- 大小:1.26 MB
- 文档页数:71
大学无机化学第二章试题及标准答案第二章化学热力学基础本章总目标:1:掌握四个重要的热力学函数及相关的计算。
2:会用盖斯定律进行计算。
3:理解化学反应等温式的含义,初步学会用吉布斯自由能变化去判断化学反应的方向。
各小节目标:第一节:热力学第一定律了解与化学热力学有关的十个基本概念(敞开体系、封闭体系、孤立体系、环境、状态、状态函数、过程、途径、体积功、热力学能),掌握热力学第一定律的内容(△U=Q-W )和计算。
第二节:热化学1:掌握化学反应热的相关概念:○1反应热——指恒压或恒容而且体系只做体积功不做其它功的条件下,当一个化学反应发生后,若使产物的温度回到反应物的起始温度,这时体系放出或吸收的热量称为反应热。
()。
○2标准生成热——某温度下,由处于标准状态的各元素的指定单质生成标准状态的1mol 某纯物质的热效应。
符号f m H θ?,单位:1J mol -?或1kJ mol -?)。
○3燃烧热——在100kPa 的压强下1mol 物质完全燃烧时的热效应。
符号:c m H θ?;单位:1kJ mol -?。
2:掌握恒容反应热△U=Q v -W;恒压反应热Q p =△H 恒容反应热和恒压反应热的关系:p V Q Q nRT =+? 3:掌握盖斯定律内容及应用○1内容:一个化学反应若能分解成几步来完成,总反应的热效应等于各步反应的热效应之和。
○2学会书写热化学方程式并从键能估算反应热。
第三节:化学反应的方向1:了解化学热力学中的四个状态函数——热力学能、焓、熵、吉布斯自由能。
2:重点掌握吉——赫公式r m r m r m G H T S θθθ=?-?的意义及计算。
3;建立混乱度、标准摩尔反应焓、标准摩尔反应自由能和标准熵以及标准摩尔反应熵的概念,并学会对化学反应的方向和限度做初步的讨论会运用吉布斯自由能判断反应的自发性。
Ⅱ 习题一选择题1.如果反应的H 为正值,要它成为自发过程必须满足的条件是()A.S 为正值,高温B.S 为正值,低温C.S 为负值,高温D.S 为负值,低温 2.已知某反应为升温时rG 0值减小,则下列情况与其相符的是()A.rS 0<0B.rS 0>0C.rH 0>0D.rH 0<0 3.该死定律认为化学反应的热效应与途径无关。
第二章 化学反应的基本原理知识点一、基本概念:体系和环境;状态和状态函数;过程和途径;热与功;相;化学计量数与反应进度;焓;熵;吉布斯自由能。
① 状态函数的特征:状态一定值一定,途殊回归变化等,周而复始变化零。
② 热和功(非状态函数)符号:体系吸热 Q 为+ 体系放热 Q 为— 体系做功 W 为— 环境做功 W 为+ 体积功 : W=-P 外·ΔV ③ 化学计量数与反应进度:N 2 (g) + 3 H 2 (g) = 2 NH 3 (g)化学计量数 ν(N 2)= -1 ν(H 2) =-3 ν(NH 3) = 2 反应进度1mol :表示1mol N 2与3mol H 2作用生成2mol NH 312N 2 (g) + 32H 2 (g) = NH 3 (g) 化学计量数:ν(N 2)=-12 ν(H 2)=-32 ν(NH 3) = 1反应进度1mol :表示12mol N 2与32mol H 2作用生成1mol NH 3④ 熵:S(g)>S(l)>S(s) ; S (复杂)> S(简单) ; 气体:S(高温) > S (低温); S(低压) > S (高压); 固~液相溶,S 增大; 晶体析出,S 减小;气~液相溶,S 减小; 固体吸附气体,S 减小; 气体等温膨胀,S 增大 二、盖斯定律总反应的反应热等于各分反应的反应热之和。
若反应①+反应②→反应③,则()()()312r mr m r m H H H θθθ∆=∆+∆若反应①×2—反应②→反应③,则()()()3212r mr m r m H H H θθθ∆=∆-∆三、热力学第一定律:U Q W ∆=+ 四、化学反应的方向(298.15)()r m B f m BH k H B θθν∆=∆∑(298.15)()r m B m BS k S B θθν∆=∑(298.15)()r m B f m BG k G B θθν∆=∆∑(注:指定单质通常为稳定单质的()0f m H B θ∆=,()0f m G B θ∆=()()()()T (298k)T 298r m r m r m r m r m G T H T S T H S K θθθθθ∆=∆-∆≈∆-∆ 反应在标准状态下进行:若()0r mG T θ∆<,则反应正向自发进行;若()0r m G T θ∆=,则反应处于平衡状态;若()0r m G T θ∆>,则反应逆向自发进行。
第二章原子结构和分子结构一、判断题3.杂化轨道中含p成分越多,原子的电负性越大。
×4.根据VSEPR理论,在SiF62-中,中心原子的价层电子总数为10个。
×5.根据VSEPR理论,氧族原子提供的电子数为6。
×6.在SO3-中,中心原子的价层电子总数为12个。
×7.SnCl2几何构型为直线型。
×8.ICl4—几何构型为四面体。
×9.NH3和NO3-的几何构型均为平面三角型。
×10.H2O和XeF2的几何构型均为平面三角型。
×11.SO32-和NO3-的几何构型均为平面三角型。
×12.下列三种离子,其极化作用顺序为:Al3+ > Mg2+ > Na+ √13.下列三种离子,其极化作用顺序为:Pb2+ > Fe2+ > Mg2+√14.Ag+的极化作用大于K+的极化作用,因此Ag+的极化率小于K+的极化率。
×15.H+的极化能力很强。
√16.极化作用愈强,激发态和基态能量差愈小,化合物的颜色就愈深。
√17.温度升高,离子间的相互极化作用增强。
√18.半径相近、电子层构型相同时,阳离子正电荷越大,极化作用越强。
√19.其它条件相同或相近时,阴离子半径越大,变形性越大。
√20.无机阴离子团的变形性通常较大。
×二、选择题3、与元素的电离能和电子亲和能有关的电负性标度是(B):(A)鲍林标度(B)密立根标度(C)阿莱-罗周标度(D)埃伦标度4、下列基团中,电负性值最大的是(A):(A)CF3- (B)CCl3- (C)CBr3- (D)CI3-5、在以下化合物中,碳原子电负性最大的是(C):(A)CH4 (B)C2H4 (C)C2H2 (D)电负性相同7、XeO3离子的几何构型为(A)(A) 三角锥 (B) 四面体 (C) V型 (D) 平面三角形8、根据VSEPR理论,多重键对成键电子对的排斥作用最大的是(A)(A) 叁重键 (B) 双重键 (C) 单重键9、根据VSEPR理论,成键电子对(BP)和孤电子对(LP)之间相互排斥作用最大的是(A)(A) LP-LP (B) LP-BP (C) BP-BP10、ClO3-离子的几何构型为(A)(A) 三角锥 (B) 四面体 (C) V型 (D) 平面三角形11、ClF3的几何构型为(C):(A)平面三角型(B)三角锥型(C)T型(D)V型12、NF3的几何构型为(B):(A)平面三角型(B)三角锥型(C)T型(D)V型13、BrF3的几何构型为(C):(A)平面三角型(B)三角锥型(C)T型(D)V型14、下列分子中键角最大的是(A):(A)NH3(B)NBr3(C)NCl3(D)NF315、下列分子中键角最大的是(A)(A) CH4 (B) NH3 (C)H2O (D)H2S16、下列分子中键角最大的是(A)(A) NH3 (B) PH3 (C) AsH3 (D)SbH317、下列分子中键角最小的是(D):(A)PI3(B)PBr3(C)PCl3(D)PF318、若阳离子电荷相同,半径相近,则最外层电子层构型为(A)电子构型的阳离子的变形性最小。
第五章 原子结构和元素周期表本章总目标:1:了解核外电子运动的特殊性,会看波函数和电子云的图形2:能够运用轨道填充顺序图,按照核外电子排布原理,写出若干元素的电子构型。
3:掌握各类元素电子构型的特征4:了解电离势,电负性等概念的意义和它们与原子结构的关系。
各小节目标:第一节:近代原子结构理论的确立 学会讨论氢原子的玻尔行星模型213.6E eV n =。
第二节:微观粒子运动的特殊性1:掌握微观粒子具有波粒二象性(h h P mv λ==)。
2:学习运用不确定原理(2h x P mπ∆∙∆≥)。
第三节:核外电子运动状态的描述1:初步理解量子力学对核外电子运动状态的描述方法——处于定态的核外电子在核外空间的概率密度分布(即电子云)。
2:掌握描述核外电子的运动状态——能层、能级、轨道和自旋以及4个量子数。
3:掌握核外电子可能状态数的推算。
第四节:核外电子的排布1:了解影响轨道能量的因素及多电子原子的能级图。
2;掌握核外电子排布的三个原则:○1能量最低原则——多电子原子在基态时,核外电子尽可能分布到能量最低的院子轨道。
○2Pauli 原则——在同一原子中没有四个量子数完全相同的电子,或者说是在同一个原子中没有运动状态完全相同的电子。
○3Hund 原则——电子分布到能量简并的原子轨道时,优先以自旋相同的方式分别占据不同的轨道。
3:学会利用电子排布的三原则进行第五节:元素周期表认识元素的周期、元素的族和元素的分区,会看元素周期表。
第六节:元素基本性质的周期性掌握元素基本性质的四个概念及周期性变化1:原子半径——○1从左向右,随着核电荷的增加,原子核对外层电子的吸引力也增加,使原子半径逐渐减小;○2随着核外电子数的增加,电子间的相互斥力也增强,使得原子半径增加。
但是,由于增加的电子不足以完全屏蔽增加的核电荷,因此从左向右有效核电荷逐渐增加,原子半径逐渐减小。
2:电离能——从左向右随着核电荷数的增多和原子半径的减小,原子核对外层电子的引力增大,电离能呈递增趋势。