带电粒子在叠加场中运动的处理方法
- 格式:docx
- 大小:100.53 KB
- 文档页数:4
课题:带电粒子在复合场中的运动知识点总结:一、带电粒子在有界磁场中的运动1.解决带电粒子在有界磁场中运动问题的方法可总结为:(1)画轨迹(草图);(2)定圆心;(3)几何方法求半径.2.几个有用的结论:(1)粒子进入单边磁场时,进、出磁场具有对称性,如图2(a)、(b)、(c)所示.(2)在圆形磁场区域内,沿径向射入的粒子,必沿径向射出,如图(d)所示.(3)当速率一定时,粒子运动的弧长越长,圆心角越大,运动时间越长.二、带电粒子在有界磁场中运动的临界问题带电粒子刚好穿出或刚好不穿出磁场的条件是带电粒子在磁场中运动的轨迹与边界相切.这类题目中往往含有“最大”、“最高”、“至少”、“恰好”等词语,其最终的求解一般涉及极植,但关键是从轨迹入手找准临界状态.(1)当粒子的入射方向不变而速度大小可变时,由于半径不确定,可从轨迹圆的缩放中发现临界点.(2)当粒子的入射速度大小确定而方向不确定时,轨迹圆大小不变,只是位置绕入射点发生了旋转,可从定圆的动态旋转中发现临界点.三、带电粒子在叠加场中的运动1.带电粒子在叠加场中无约束情况下的运动情况分类(1)磁场力、重力并存①若重力和洛伦兹力平衡,则带电体做匀速直线运动.②若重力和洛伦兹力不平衡,则带电体将做复杂的曲线运动,因洛伦兹力不做功,故机械能守恒,由此可求解问题.(2)电场力、磁场力并存(不计重力的微观粒子)①若电场力和洛伦兹力平衡,则带电体做匀速直线运动.②若电场力和洛伦兹力不平衡,则带电体将做复杂的曲线运动,因洛伦兹力不做功,可用动能定理求解问题.(3)电场力、磁场力、重力并存①若三力平衡,一定做匀速直线运动.②若重力与电场力平衡,一定做匀速圆周运动.③若合力不为零且与速度方向不垂直,将做复杂的曲线运动,因洛伦兹力不做功,可用能量守恒或动能定理求解问题.四、带电粒子在叠加场中有约束情况下的运动带电体在复合场中受轻杆、轻绳、圆环、轨道等约束的情况下,除受场力外,还受弹力、摩擦力作用,常见的运动形式有直线运动和圆周运动,此时解题要通过受力分析明确变力、恒力做功情况,并注意洛伦兹力不做功的特点,运用动能定理、能量守恒定律结合牛顿运动定律求出结果.五、带电粒子在组合场中的运动带电粒子在组合场中的运动,实际上是几个典型运动过程的组合,因此解决这类问题要分段处理,找出各分段之间的衔接点和相关物理量,问题即可迎刃而解.常见类型如下:1.从电场进入磁场(1)粒子先在电场中做加速直线运动,然后进入磁场做圆周运动.在电场中利用动能定理或运动学公式求粒子刚进入磁场时的速度.(2)粒子先在电场中做类平抛运动,然后进入磁场做圆周运动.在电场中利用平抛运动知识求粒子进入磁场时的速度.2.从磁场进入电场(1)粒子进入电场时的速度与电场方向相同或相反,做匀变速直线运动(不计重力).(2)粒子进入电场时的速度方向与电场方向垂直,做类平抛运动典例强化例1、在以坐标原点O 为圆心、半径为r 的圆形区域内,存在磁感应强度大小为B 、方向垂直于纸面向里的匀强磁场,如图3所示.一个不计重力的带电粒子从磁场边界与x 轴的交点A 处以速度v 沿-x 方向射入磁场,它恰好从磁场边界与y 轴的交点C 处沿+y 方向飞出.(1)请判断该粒子带何种电荷,并求出其荷质比q m ;(2)若磁场的方向和所在空间范围不变,而磁感应强度的大小变为B ′,该粒子仍从A 处以相同的速度射入磁场,但飞出磁场时的速度方向相对于入射方向改变了60°角,求磁感应强度B ′多大?此次粒子在磁场中运动所用时间t 是多少?例2、真空区域有宽度为L 、磁感应强度为B 的匀强磁场,磁场方向如图4所示,MN 、PQ 是磁场的边界.质量为m 、电荷量为+q 的粒子沿着与MN 夹角为θ=30°的方向垂直射入磁场中,粒子刚好没能从PQ 边界射出磁场(不计粒子重力的影响),求粒子射入磁场的速度大小及在磁场中运动的时间.例3、如图所示的直角坐标系xOy 中,x <0,y >0的区域内有沿x 轴正方向的匀强电场,x ≥0的区域内有垂直于xOy 坐标平面向外的匀强磁场,x 轴上P 点坐标为(-L,0),y 轴上M 点的坐标为(0,233L ).有一个带正电的粒子从P 点以初速度v 沿y 轴正方向射入匀强电场区域,经过M 点进入匀强磁场区域,然后经x 轴上的C 点(图中未画出)运动到坐标原点O .不计重力.求:(1)粒子在M 点的速度v ′;(2)C 点与O 点的距离x ;(3)匀强电场的电场强度E 与匀强磁场的磁感应强度B 的比值.例4、如图5所示,在NOQ 范围内有垂直于纸面向里的匀强磁场Ⅰ,在MOQ 范围内有垂直于纸面向外的匀强磁场Ⅱ,M 、O 、N 在一条直线上,∠MOQ =60°,这两个区域磁场的磁感应强度大小均为B 。
高中物理专题:带电粒子(带电体)在叠加场中的运动学习目标:1.了解带电粒子在复合场中的应用实例.2.能求解较复杂的单个粒子在复合(组合)场中的运动问题.考点一带电粒子(带电体)在叠加场中的运动【知识梳理】1.分析方法2.三种场的比较1【命题突破】命题点1电场与磁场共存类1.如图所示,空间中存在匀强电场和匀强磁场,电场和磁场的方向水平且互相垂直。
一带电微粒沿直线由a 向b 运动,在此过程中()。
A.微粒做匀加速直线运动B.微粒的动量减小C.微粒的电势能增加D.微粒的机械能增加命题点2磁场与重力场共存类2.如图所示,整个空间有一方向垂直纸面向里的匀强磁场,一绝缘木板(足够长)静止在光滑水平面上,一带正电的滑块静止在木板上,滑块和木板之间的接触面粗糙程度处处相同.不考虑空气阻力的影响,下列判断正确的是()A.若对木板施加一水平向右的瞬时冲量,最终木板和滑块一定相对静止B.若对木板施加一水平向右的瞬时冲量,最终滑块和木板间一定没有弹力C.若对木板施加一水平向右的瞬时冲量,最终滑块和木板间一定没有摩擦力D.若对木板始终施加一水平向右的恒力,最终滑块做匀速运动命题点3电场、磁场与重力场共存类3..如图所示,表面粗糙的斜面固定于地面上,并处于方向垂直纸面向里的磁场和竖直向下的匀强电场中,磁感应强度大小为B,电场强度大小为E,一质量为m、电荷量为Q的带负电小滑块从斜面顶端由静止下滑,在滑块下滑过程中,下列判断正确的是()A.滑块受到的摩擦力不变2B.若斜面足够长,滑块最终可能在斜面上匀速下滑C.若B足够大,滑块最终可能静止于斜面上D.滑块到达地面时的动能与B有关考点二带电粒子(带电体)在叠加场中运动的实例分析【知识梳理】3命题点1应用实例1——速度选择器4.如图所示,含有11H、21H、42He的带电粒子束从小孔O1处射入速度选择器,沿直线O1O2运动的粒子在小孔O2处射出后垂直进入偏转磁场,最终打在P1、P2两点.则()A.粒子在偏转磁场中运动的时间都相等B.打在P1点的粒子是42HeC.打在P2点的粒子是21H和42HeD.O2P2的长度是O2P1长度的4倍命题点2应用实例2——磁流体发电机5.如图所示为一利用海流发电的原理图,用绝缘材料制成一个横截面为矩形的管道,在管道的上、下两个内表面装有两块电阻不计的金属板M、N,板长为a,宽为b,板间的距离为d,将管道沿海流方向固定在海水中,在管道中加与前后表面垂直的匀强磁场,磁感应强度大小为B,将航标灯与两金属板连接(图中未画出).海流方向如图,海流速率为v,下列说法正确的是()A.M板电势高于N板的电势B.该海流发电机的电动势为Bd vC.该海流发电机的电动势为Ba vD.管道内海水受到的安培力方向向左命题点3应用实例3——电磁流量计6.医生做某些特殊手术时,利用电磁血流计来监测通过动脉的血流速度.电磁血流计由一对电极a和b以及一对磁极N和S构成,磁极间的磁场是均匀的.使用时,两电极a、b均与血管壁接触,两触点的连线、磁场方向和血流速度方向两两垂直,如图所示.由于血液中的正、负45离子随血液一起在磁场中运动,电极a 、b 之间会有微小电势差.在达到平衡时,血管内部的电场可看做是匀强电场,血液中的离子所受的电场力和洛伦兹力的合力为零.在某次监测中,两触点间的距离为3.0 mm ,血管壁的厚度可忽略,两触点间的电势差为160 μV ,磁感应强度的大小为0.040 T .则血流速度的近似值和电极a 、b 的正负为( )A .1.3 m/s ,a 正、b 负B .2.7 m/s ,a 正、b 负C .1.3 m/s ,a 负、b 正D .2.7 m/s ,a 负、b 正命题点4 应用实例4——霍尔元件7.如图所示,导电物质为电子的霍尔元件位于两串联线圈之间,线圈中电流为I ,线圈间产生匀强磁场,磁感应强度大小B 与I 成正比,方向垂直于霍尔元件的两侧面,此时通过霍尔元件的电流为I H ,与其前后表面相连的电压表测出的霍尔电压U H 满足:U H =k I H Bd ,式中k 为霍尔系数,d 为霍尔元件两侧面间的距离.电阻R 远大于R L ,霍尔元件的电阻可以忽略,则( )A .霍尔元件前表面的电势低于后表面B .若电源的正负极对调,电压表将反偏C .I H 与I 成正比D .电压表的示数与R L 消耗的电功率成正比命题点5 综合应用实例8.如图所示,某粒子分析器由区域Ⅰ、区域Ⅱ和检测器Q组成。
专题拓展课二带电粒子在复合场中的运动[学习目标要求] 1.知道复合场的概念。
2.能够运用运动组合的理念分析带电粒子在组合场中的运动。
3.能分析带电粒子在叠加场中的受力情况和运动情况,能够正确选择物理规律解答问题。
拓展点1带电粒子在组合场中的运动1.组合场:电场与磁场各位于一定的区域内,并不重叠,一般为两场相邻或在同一区域电场、磁场交替出现。
2.四种常见的运动模型(1)带电粒子先在电场中做匀加速直线运动,然后垂直进入磁场做圆周运动,如图所示。
(2)带电粒子先在电场中做类平抛运动,然后垂直进入磁场做圆周运动,如图所示。
(3)带电粒子先在磁场中做圆周运动,然后垂直进入电场做类平抛运动,如图所示。
(4)带电粒子先在磁场Ⅰ中做圆周运动,然后垂直进入磁场Ⅱ做圆周运动,如图所示。
3.三种常用的解题方法(1)带电粒子在电场中做加速运动,根据动能定理求速度。
(2)带电粒子在电场中做类平抛运动,需要用运动的合成和分解处理。
(3)带电粒子在磁场中的圆周运动,可以根据磁场边界条件,画出粒子轨迹,用几何知识确定半径,然后用洛伦兹力提供向心力和圆周运动知识求解。
4.要正确进行受力分析,确定带电粒子的运动状态。
(1)仅在电场中运动①若初速度v0与电场线平行,粒子做匀变速直线运动;②若初速度v0与电场线垂直,粒子做类平抛运动。
(2)仅在磁场中运动①若初速度v0与磁感线平行,粒子做匀速直线运动;②若初速度v0与磁感线垂直,粒子做匀速圆周运动。
5.分析带电粒子的运动过程,画出运动轨迹是解题的关键。
特别提醒从一个场射出的末速度是进入另一个场的初速度,因此两场界面处的速度(大小和方向)是联系两运动的桥梁,求解速度是重中之重。
【例1】(2021·广东深圳市高二期末)某些肿瘤可以用“质子疗法”进行治疗,在这种疗法中,质子先被加速到具有较高的能量,然后被引向轰击肿瘤,杀死细胞,如图甲。
图乙为某“质子疗法”仪器部分结构的简化图,Ⅰ是质子发生器,质子的质量m=1.6×10-27 kg,电量e=1.6×10-19 C,质子从A点进入Ⅱ;Ⅱ是加速装置,内有匀强电场,加速长度d1=4.0 cm;Ⅲ装置由平行金属板构成,板间有正交的匀强电场和匀强磁场,板间距d2=2.0 cm,上下极板电势差U2=1000 V;Ⅳ是偏转装置,以O为圆心、半径R=0.1 m的圆形区域内有垂直纸面向外的匀强磁场,质子从M进入、从N射出,A、M、O三点共线,通过磁场的强弱可以控制质子射出时的方向。
重难点突破:带电粒子在复合场中的运动知识点1 带电粒子在复合场中的运动1、复合场分类(1)叠加场:重力场、磁场、电场中三者或任意两者共存的场。
(2)组合场:电场与磁场各位于一定的区域内,并不重叠(相邻或相离),或电场、磁场交替出现。
2、受力分析(1)受力分析的顺序:先场力(包括重力、电场力、磁场力),后弹力,再摩擦力,最后其他力。
(2)是否考虑粒子重力①对于微观粒子,如电子、质子、离子等,因为一般情况下其重力与电场力或洛伦兹力相比太小,故可以忽略;而对于一些实际物体,如带电小球、液滴、尘埃等一般应当考虑其重力。
②在题目中有明确说明是否要考虑重力的,按题目要求处理。
③不能直接判断是否要考虑重力的,在进行受力分析与运动分析时,要结合运动状态确定是否要考虑重力。
(3)场力分析①重力场:G mg =,方向竖直向下。
重力做功:W mgh =,重力做功改变物体的重力势能。
=,正电荷受力方向与场强方向相同;负电荷受力方向与场强方向相反。
静电力做功:②静电场:F qE=,静电力做功改变带电粒子的电势能。
W qU=,方向:符合左手定则。
洛伦兹力不做功,带电粒子的动能不变。
③磁场:F qvB知识点2 带电粒子在组合场中运动的问题1、题型分析组合场是由电场和磁场或磁场和磁场组成的,互不重叠,分别位于某一边界的两侧,因而带电粒子在每个区域时仅受到一个场力的作用,且粒子在运动过程中从前一个场的区域出射时的速度即为进入下一个场的区域时的初速度,利用这一特点即可找到与两个场相关联的物理量。
解答带电粒子在电场中偏转的问题,一般是将带电粒子在电场中的运动沿垂直于电场方向和平行于电场方向分解。
2、带电粒子在电、磁组合场中运动知识点3 带电粒子在叠加场中运动的问题1、题型分析叠加场是指在同一空间区域有重力场、电场、磁场中的两种场或三种场互相并存叠加的情况。
常见的叠加场有:电场与重力场的叠加,磁场与电场的叠加,磁场、电场、重力场的叠加等。
《处理带电粒子在复合场中运动的思路方法》教学设计【自主学习目标】1.知道什么是复合场,以及复合场的特点。
2.学会处理带电粒子在复合场中的几种运动形式。
3.试着自己总结分析带电粒子在组合场、叠加场中运动的基本方法和思路。
【专题知识梳理】一、复合场:、和重力场并存或两种场并存,粒子在复合场中运动时,要考虑、的作用,有时也要考虑重力的作用.问题:什么情况下计重力,什么情况下不计重力?(1)微观粒子一般我们计质量不计重力,如电子、质子、离子等。
(2)一些实际物体一般我们考虑重力,如带电油滴、小球、金属块等。
(3)具体问题具体分析。
1、如图所示,匀强电场方向水平向右,匀强磁场方向垂直于纸面向里,一质量为m,带电量为q 的微粒以速度v 与磁场方向垂直,与电场成45°角射入复合场中,恰能做匀速直线运动,求电场强度E 的大小,磁感应强度B 的大小.vB ╮450 E 总结:二、分析当带电粒子在复合场的运动情况。
(1)粒子在复合场中做直线运动。
2、如图所示,在xoy 平面内,匀强电场的方向沿x 轴正方向,匀强磁场的方向垂直于xoy 平面向里,一电子在xoy平面内运动时,速度方向保持不变,则电子的运动方向沿()A x 轴正方向B x 轴负方向C y 轴正方向D y 轴负方向(2)粒子在复合场中做匀速圆周运动。
3、一个带电微粒在图示的正交匀强电场和匀强磁场中在竖直面内做匀速圆周运动。
则该带电微粒必然带,旋转方向为。
若已知圆半径为r,电场强度为E 磁感应强度为B,则线速度为。
E B课前学习(3)粒子在复合场中做一般的曲线运动。
4、设空间存在着竖直向下的匀强电场和垂直纸面向里的匀强磁场,如图所示,已知一离子在电场力和洛仑兹力的作用下,从静止开始自a 点沿曲线acb 运动,到达b 时速度恰为零,c 点是运动轨迹的最低点,不计重力,以下说法错误的是()A、离子必带正电荷B、a 点和b 点位于同一高度C、离子经c 点时速度最大D、离子到b 点后,将沿原路返回a 点你认为处理带电粒子在复合场中的不同运动形式,主要用到了哪些知识点?解决此类问题的关键点是什么?三、带电粒子在两类复合场中的运动(一)组合场:一般由电场和磁场、磁场和磁场组成,它们互不重叠,分别位于边界两侧。
压轴题06 带电粒子(带电体)在复合场中的运动问题目录一,考向分析 (1)二.题型及要领归纳 (1)热点题型一 带电粒子在有界匀强磁场中做匀速圆周运动 (1)热点题型二 借助分立场区考查磁偏转+电偏转问题 (4)热点题型三 利用粒子加速器考电加速磁偏转问题 (7)热点题型四 带电粒子(带电体)在叠加场作用下的运动 (9)三.压轴题速练 (10)一,考向分析1.本专题是磁场、力学、电场等知识的综合应用,高考往往以计算压轴题的形式出现。
2.学习本专题,可以培养同学们的审题能力、推理能力和规范表达能力。
针对性的专题训练,可以提高同学们解决难题、压轴题的信心。
3.复杂的物理问题一定是需要在定性的分析和思考后进行定量运算的,而最终能否解决问题,数理思维能力起着关键作用。
物理教学中有意识地培养学生的数理思维,对学生科学思维的形成具有重要作用。
带电粒子在磁场中的运动正是对学生数理思维的培养与考查的主要问题。
解决本专题的核心要点需要学生熟练掌握下列方法与技巧4.粒子运动的综合型试题大致有两类,一是粒子依次进入不同的有界场区,二是粒子进入复合场与组合场区。
其运动形式有匀变速直线运动、类抛体运动与匀速圆周运动。
涉及受力与运动分析、临界状态分析、运动的合成与分解以及相关的数学知识等。
问题的特征是有些隐含条件需要通过一些几何知识获得,对数学能力的要求较高。
二.题型及要领归纳热点题型一 带电粒子在有界匀强磁场中做匀速圆周运动一.带电粒子在匀强磁场中做匀速圆周运动的解题方法(1)带电粒子在匀强磁场中运动时,要抓住洛伦兹力提供向心力,即:qvB =mv 2R 得R =mv Bq,T =2πm qB ,运动时间公式t =θ2πT ,粒子在磁场中的运动半径和速度有关,运动周期和速度无关,画轨迹,定圆心,找半径,结合几何知识分析解题.(2)如果磁场是圆形有界磁场,在找几何关系时要尤其注意带电粒子在匀强磁场中的“四点、六线、三角”.①四点:入射点B、出射点C、轨迹圆心A、入射速度直线与出射速度直线的交点O.①六线:圆弧两端点所在的轨迹半径r、入射速度直线OB和出射速度直线OC、入射点与出射点的连线BC、圆心与两条速度垂线交点的连线AO.①三角:速度偏转角①COD、圆心角①BAC、弦切角①OBC,其中偏转角等于圆心角,也等于弦切角的两倍.二.带电粒子在匀强磁场中做匀速圆周运动的思维线索【例1】(2023春·江苏扬州·高三统考期中)如图所示,垂直于纸面向里的匀强磁场,磁感【例2】(2023春·江苏泰州·高三统考阶段练习)原子核衰变时放出肉眼看不见的射线。
带电粒子在复合场中的运动一、考纲要求1.理解组合场及复合场的特点,知道在什么情况下考虑物体重力,什么时候不考虑。
2.能够综合运用左手定则、安培定则及相关的力学规律解决带电粒子(物体)在复合场中的运动问题3.理解质谱仪、回旋加速器、磁流体发电机、电磁流量计等仪器的构造、原理,并能解决有关问题。
二、知识梳理1.复合场与组合场(1)复合场:电场、磁场、重力场共存,或其中某两场共存.(2)组合场:电场与磁场各位于一定的区域内,并不重叠或在同一区域,电场、磁场交替出现.2.带电粒子在复合场中的运动分类(1)静止或匀速直线运动当带电粒子在复合场中所受合外力为零时,将处于静止状态或做匀速直线运动.(2)匀速圆周运动当带电粒子所受的重力与电场力大小相等、方向相反时,带电粒子在洛伦兹力的作用下,在垂直于匀强磁场的平面内做匀速圆周运动.(3)非匀变速曲线运动当带电粒子所受的合外力的大小和方向均变化,且与初速度方向不在同一条直线上时,粒子做非匀变速曲线运动,这时粒子运动轨迹既不是圆弧,也不是拋物线.(4)分阶段运动带电粒子可能依次通过几个情况不同的复合场区域,其运动情况随区域发生变化,其运动过程由几种不同的运动阶段组成.复合场与组合场3.回旋加速器(1)构造:如图所示,D1、D2是半圆形金属盒,D形盒的缝隙处接_____电源.D形盒处于匀强磁场中.(2)原理:交变电流的周期和粒子做圆周运动的周期相等,粒子在圆周运动的过程中一次一次地经过D形盒缝隙,两盒间的电势差一次一次地反向,粒子就会被一次一次地加速.由qvB=,得E km=,可见粒子获得的最大动能由磁感应强度和D形盒半径R决定,与加速电压无关.4.质谱仪(1)构造:如图所示,由粒子源、加速电场、偏转磁场和照相底片等组成.(2)原理:粒子由静止在加速电场中被加速,根据动能定理qU=mv2可知进入磁场的速度v=.粒子在磁场中受洛伦兹力偏转,做匀速圆周运动,根据牛顿第二定律,qvB=mv2/r.由以上几式可得出需要研究的物理量如粒子轨道半径、粒子质量、比荷等.5.速度选择器(如图所示)(1)平行板间电场强度E和磁感应强度B互相垂直.这种装置能把具有一定速度的粒子选择出来,所以叫做速度选择器.(2)粒子能够通过选择器的条件:qE=qvB,即v=.6.磁流体发电机(如图所示)(1)磁流体发电是一项新兴技术,它可以把内能直接转化为电能.(2)根据左手定则,如图中的B板是发电机正极.(3)磁流体发电机两极板间的距离为d,等离子体速度为v,磁场磁感应强度为B,则两极板间能达到的最大电势差U=Bdv.7.电磁流量计(1)如图所示,一圆形导管直径为d,用非磁性材料制成,其中有可以导电的液体流过导管.(2)原理:导电液体中的自由电荷(正、负离子)在洛伦兹力作用下横向偏转,a、b间出现电势差,形成电场.当自由电荷所受电场力和洛伦兹力平衡时,a、b间的电势差就保持稳定.由Bqv=Eq=q,可得v=,液体流量Q=Sv=·=.8.霍尔效应在匀强磁场中放置一个矩形截面的载流导体,当磁场方向与电流方向垂直时,导体在与磁场、电流方向都垂直的方向上出现了电势差,这种现象称为霍尔效应,所产生的电势差称为霍尔电势差,其原理如图所示.三、要点精析1.求解带电粒子在组合场中运动问题的分析方法(1)正确受力分析,除重力、弹力、摩擦力外要特别注意静电力和磁场力的分析.(2)确定带电粒子的运动状态,注意运动情况和受力情况的结合.(3)对于粒子连续通过几个不同区域、不同种类的场时,要分阶段进行处理,并找出各阶段间的衔接点和相关联的物理量.(4)画出粒子运动轨迹,灵活选择不同的运动规律.2.带电粒子在叠加场中无约束情况下的运动情况分类(1)磁场力、重力并存①若重力和洛伦兹力平衡,则带电体做匀速直线运动.②若重力和洛伦兹力不平衡,则带电体将做复杂的曲线运动,因洛伦兹力不做功,故机械能守恒,由此可求解问题.(2)电场力、磁场力并存(不计重力的微观粒子)①若电场力和洛伦兹力平衡,则带电体做匀速直线运动.②若电场力和洛伦兹力不平衡,则带电体将做复杂的曲线运动,因洛伦兹力不做功,可用动能定理求解问题.3.带电粒子在叠加场中有约束情况下的运动带电体在复合场中受轻杆、轻绳、圆环、轨道等约束的情况下,常见的运动形式有直线运动和圆周运动,此时解题要通过受力分析明确变力、恒力做功情况,并注意洛伦兹力不做功的特点,运用动能定理、能量守恒定律结合牛顿运动定律求出结果.4.分析带电粒子在复合场中运动问题的一般步骤(1)看清粒子所在区域中场的组成,一般是电场、磁场、重力场中两个场或三个场的复合场.(2)正确的受力分析是解题的基础,除了重力、弹力、摩擦力以外,特别要注意电场力和洛伦兹力的分析,不可遗漏任一个力.(3)在受力分析的基础上进行运动分析,注意运动情况和受力情况的相互结合,特别要关注一些特殊的时刻所处的特殊状态(临界状态),对于临界问题,注意挖掘隐含条件.(4)如果粒子在运动过程中经过不同的区域受力发生改变,应根据需要对整个过程分阶段处理.(5)应用一些必要的数学知识,画出粒子的运动轨迹示意图,根据题目的条件和问题灵活选择不同的物理规律解题.①当带电粒子在复合场中做匀速直线运动时,根据受力平衡列方程求解;②当带电粒子在复合场中做匀速圆周运动时,应用牛顿定律结合圆周运动规律求解;③当带电粒子做复杂曲线运动时,一般要结合动能定理或能量守恒定律求解.5.带电粒子在交变电磁场中运动的处理方法[方法概述]这类问题首先要明确是电场做周期性变化还是磁场做周期性变化,亦还是电场、磁场都做周期性变化,另外分析是否计重力.在这类问题中,电场或磁场变化的周期一般会与粒子做圆周运动的周期存在某种关系.在某段时间内若受力平衡,则做匀速直线运动;在某段时间内若带电粒子只受电场力,则做类平抛运动,应用运动的合成与分解的方法分析;在某段时间内若带电粒子只受洛伦兹力,则做匀速圆周运动,洛伦兹力提供向心力.当然还会涉及平衡条件、牛顿运动定律、运动学公式、动能定理等.[题型简述]带电粒子在周期性变化场中的运动问题涉及的物理过程较复杂,一般都存在多值和对称的情况.渗透物理世界的对称与和谐.这类问题能很好地考查学生思维的多元性和空间的想象力,更能考查学生的综合分析能力,近几年内带电粒子在周期性变化场中的运动问题将成为压轴题的最大热点.。
1.(2021·江苏单科·15)一台质谱仪的工作原理如图1所示,电荷量均为+q 、质量不同的离子飘入电压为U 0的加速电场,其初速度几乎为零.这些离子经加速后通过狭缝O 沿着与磁场垂直的方向进入磁感应强度为B 的匀强磁场,最终打在底片上.已知放置底片的区域MN =L ,且OM =L .某次测量发觉MN 中左侧23区域MQ 损坏,检测不到离子,但右侧13区域QN 仍能正常检测到离子.在适当调整加速电压后,原本打在MQ 的离子即可在QN 检测到.图1(1)求原本打在MN 中点P 的离子质量m ;(2)为使原本打在P 的离子能打在QN 区域,求加速电压U 的调整范围;(3)为了在QN 区域将原本打在MQ 区域的全部离子检测完整,求需要调整U 的最少次数.(取lg2=0.301,lg3=0.477,lg5=0.699)2.(2022·全国大纲·25)如图2所示,在第一象限存在匀强磁场,磁感应强度方向垂直于纸面(xy 平面)向外;在第四象限存在匀强电场,方向沿x 轴负方向.在y 轴正半轴上某点以与x 轴正向平行、大小为v 0的速度放射出一带正电荷的粒子,该粒子在(d,0)点沿垂直于x 轴的方向进入电场.不计粒子重力.若该粒子离开电场时速度方向与y 轴负方向的夹角为θ,求:图2(1)电场强度大小与磁感应强度大小的比值; (2)该粒子在电场中运动的时间.1.题型特点(1)带电粒子在复合场中的运动是力电综合的重点和高考的热点,常见的考查形式有组合场(电场、磁场、重力场依次消灭)、叠加场(空间同一区域同时存在两种以上的场)、周期性变化的场等,近几年高考试题中,涉及本专题内容的频率极高,特殊是计算题,题目难度大,涉及面广.(2)试题多把电场和磁场的性质、运动学规律、牛顿运动定律、圆周运动规律、功能关系揉合在一起,主要考查考生的空间想象力、分析综合力量以及运用数学学问解决 物理问题的力量.以及考查考生综合分析和解决简单问题的力量. 2.解决带电粒子在组合场中运动的一般思路和方法: (1)明确组合场是由哪些场组合成的.(2)推断粒子经过组合场时的受力和运动状况,并画出相应的运动轨迹简图. (3)带电粒子经过电场时利用动能定理和类平抛运动学问分析. (4)带电粒子经过磁场区域时通常用圆周运动学问结合几何学问来处理.考题一带电粒子在组合场中的运动1.(2021·临沂二模)如图3所示,在直角坐标系xOy的其次象限存在沿y轴正方向的匀强电场,电场强度的大小为E1,在y轴的左侧存在垂直于纸面的匀强磁场.现有一质量为m,带电荷量为-q的带电粒子从其次象限的A点(-3L,L)以初速度v0沿x轴正方向射入后刚好做匀速直线运动,不计带电粒子的重力.图3(1)求匀强磁场的大小和方向;(2)撤去其次象限的匀强磁场,同时调整电场强度的大小为E2,使带电粒子刚好从B点(-L,0)进入第三象限,求电场强度E2的大小;(3)带电粒子从B点穿出后,从y轴上的C点进入第四象限,若E1=2E2,求C点离坐标原点O的距离.2.(2021·徐州模拟)如图4所示,在竖直平面内建立xOy直角坐标系,在x=-2d处有垂直于x轴足够大的弹性绝缘挡板,y轴左侧和挡板之间存在一匀强电场,电场与x轴负方向夹角θ=45°,y轴右侧有一个有界匀强磁场,磁场方向垂直于纸面对里,磁感应强度大小为B.在M(-22d、0)处有一个质量为m、电荷量为-q的粒子,以某一初速度沿场强方向运动.当它打到绝缘板上N点时,粒子沿y轴方向的速度不变,x轴方向速度大小不变,方向反向,一段时间后,以2v的速度垂直于y轴进入磁场,恰好不从磁场右边界飞出.粒子的重力不计.图4(1)求磁场的宽度L;(2)求匀强电场的场强大小E;(3)若另一个同样的粒子以速度v从M点沿场强方向运动,经时间t第一次从磁场边界上P点出来,求时间t.分析带电粒子在组合场中运动问题的方法(1)要清楚场的性质、方向、强弱、范围等.(2)带电粒子依次通过不同场区时,由受力状况确定粒子在不同区域的运动状况.(3)正确地画出粒子的运动轨迹图.(4)依据区域和运动规律的不同,将粒子运动的过程划分为几个不同的阶段,对不同的阶段选取不同的规律处理.(5)要明确带电粒子通过不同场区的交界处时速度大小和方向关系,上一个区域的末速度往往是下一个区域的初速度.考题二带电粒子在叠加场中的运动3.(多选)(2021·南充三诊)如图5所示,直角坐标系xOy位于竖直平面内.第Ⅲ、Ⅳ象限内有垂直于坐标面对外的匀强磁场,第Ⅳ象限同时存在方向平行于y轴的匀强电场(图中未画出),一带电小球从x轴上的A点由静止释放,恰好从P点垂直于y轴进入第Ⅳ象限,然后做圆周运动,从Q点垂直于x轴进入第Ⅰ象限,Q点距O 点的距离为d,重力加速度为g.依据以上信息,能求出的物理量有()图5A.圆周运动的速度大小B.电场强度的大小和方向C.小球在第Ⅳ象限运动的时间D.磁感应强度大小4.(2021·安徽模拟)如图6所示,在竖直平面内建立直角坐标系xOy,其第一象限存在着正交的匀强电场和匀强磁场,电场强度的方向水平向右,磁感应强度的方向垂直纸面对里.一带电荷量为+q,质量为m的微粒从原点动身沿与x轴正方向的夹角为45°的初速度进入复合场中,正好做直线运动,当微粒运动到A(l,l)时,电场方向突然变为竖直向上(不计电场变化的时间),粒子连续运动一段时间后,正好垂直于y轴穿出复合场.(不计一切阻力),求:图6(1)电场强度E大小;(2)磁感应强度B的大小;(3)粒子在复合场中的运动时间.带电粒子在叠加场中运动问题的处理方法(1)弄清叠加场的组成特点.(2)正确分析带电粒子的受力及运动特点.(3)画出粒子的运动轨迹,机敏选择不同的运动规律.①若只有两个场且正交.例如,电场与磁场中满足qE =q v B 或重力场与磁场中满足mg =q v B 或重力场与电场中满足mg =qE ,都表现为匀速直线运动或静止,依据受力平衡列方程求解.②三场共存时,合力为零,受力平衡,粒子做匀速直线运动.其中洛伦兹力F =q v B 的方向与速度v 垂直. ③三场共存时,粒子在复合场中做匀速圆周运动.mg 与qE 相平衡,有mg =qE ,由此可计算粒子比荷,判定粒子电性.粒子在洛伦兹力作用下做匀速圆周运动,应用受力平衡和牛顿运动定律结合圆周运动规律求解,有q v B =mrω2=m v 2r =mr 4π2T2=ma .④当带电粒子做简单的曲线运动或有约束的变速直线运动时,一般用动能定理或能量守恒定律求解.考题三 带电粒子在交变电磁场中运动的问题5.(2021·泰州二模)如图7甲所示,在xOy 竖直平面内存在竖直方向的匀强电场,在第一象限内有一与x 轴相切于点(2R,0)、半径为R 的圆形区域,该区域内存在垂直于xOy 面的匀强磁场,电场与磁场随时间变化如图乙、丙所示,设电场强度竖直向下为正方向,磁场垂直纸面对里为正方向,电场、磁场同步周期性变化(每个周期内正反向时间相同).一带正电的小球A 沿y 轴方向下落,t =0时刻A 落至点(0,3R ),此时,另一带负电的小球B 从圆形区域最高点(2R,2R )处开头在磁场内紧靠磁场边界做匀速圆周运动;当A 球再下落R 时,B 球旋转半圈到达点(2R,0);当A 球到达原点O 时,B 球又旋转半圈回到最高点;然后A 球开头匀速运动.两球的质量均为m ,电荷量大小均为q .(不计空气阻力及两小球之间的作用力,重力加速度为g )求:图7(1)匀强电场的场强E 的大小;(2)小球B 做匀速圆周运动的周期T 及匀强磁场的磁感应强度B 的大小; (3)电场、磁场变化第一个周期末A 、B 两球间的距离.6.(2021·绥化二模)如图8甲所示,两个平行正对的水平金属板X 、X ′极板长L =0.23m ,板间距离d =0.2m ,在金属板右端竖直边界MN 的右侧有一区域足够大的匀强磁场,磁感应强度B =5×10-3T ,方向垂直纸面对里.现将X ′极板接地,X 极板上电势φ随时间变化规律如图乙所示.现有带正电的粒子流以v 0=105m/s 的速度沿水平中线OO ′连续射入电场中,粒子的比荷qm =108C/kg ,重力可忽视不计,在每个粒子通过电场的极短时间内,电场可视为匀强电场(设两板外无电场).求:图8(1)带电粒子射出电场时的最大速率;(2)粒子在磁场中运动的最长时间和最短时间之比;(3)分别从O ′点和距O ′点下方d4=0.05m 处射入磁场的两个粒子,在MN 上射出磁场时两出射点之间的距离.解决带电粒子在交变电磁场中运动问题“三步走”考题四 磁与现代科技的应用7.(2021·长春三质检)如图9所示,宽度为d 、厚度为h 的导体放在垂直于它的磁感应强度为B 的匀强磁场中,当电流通过该导体时,在导体的上、下表面之间会产生电势差,这种现象称为霍尔效应.试验表明:当磁场不太强时,电势差U 、电流I 和磁感应强度B 的关系为:U =K IBd ,式中的比例系数K 称为霍尔系数.设载流子的电荷量为q ,下列说法正确的是( )图9A .载流子所受静电力的大小F =q UdB .导体上表面的电势肯定大于下表面的电势C .霍尔系数为K =1nq,其中n 为导体单位长度上的电荷数D .载流子所受洛伦兹力的大小F 洛=BInhd,其中n 为导体单位体积内的电荷数8.(多选)(2021·日照模拟)英国物理学家阿斯顿因首次制成质谱仪,并用此对同位素进行了争辩,因此荣获了1922年的诺贝尔化学奖.若速度相同的同一束粒子由左端射入质谱仪后的运动轨迹如图10所示,则下列说法中正确的是( )图10A .该束带电粒子带正电B .速度选择器的P 1极板带负电C .在B 2磁场中运动半径越大的粒子,质量越大D .在B 2磁场中运动半径越大的粒子,比荷qm越小9.(2021·浙江理综·25)使用回旋加速器的试验需要把离子束从加速器中引出,离子束引出的方法有磁屏蔽通道法和静电偏转法等.质量为m ,速度为v 的离子在回旋加速器内旋转,旋转轨道是半径为r 的圆,圆心在O 点,图11轨道在垂直纸面对外的匀强磁场中,磁感应强度为B .为引出离子束,使用磁屏蔽通道法设计引出器.引出器原理如图所示,一对圆弧形金属板组成弧形引出通道,通道的圆心位于O ′点(O ′点图中未画出).引出离子时,令引出通道内磁场的磁感应强度降低,从而使离子从P 点进入通道,沿通道中心线从Q 点射出.已知OQ 长度为L ,OQ 与OP 的夹角为θ.图11(1)求离子的电荷量q 并推断其正负;(2)离子从P 点进入,Q 点射出,通道内匀强磁场的磁感应强度应降为B ′,求B ′;(3)换用静电偏转法引出离子束,维持通道内的原有磁感应强度B 不变,在内外金属板间加直流电压,两板间产生径向电场,忽视边缘效应.为使离子仍从P 点进入,Q 点射出,求通道内引出轨迹处电场强度E 的方向和大小.几种常见的电磁场应用实例 (1)质谱仪:①用途:测量带电粒子的质量和分析同位素.②原理:由粒子源S 发出的速度几乎为零的粒子经过加速电场U 加速后,以速度v =2qUm进入偏转磁场中做匀速圆周运动,运动半径为r =1B2mUq,粒子经过半个圆周运动后打到照相底片D 上,通过测量D 与入口间的距离d ,进而求出粒子的比荷q m =8UB 2d 2或粒子的质量m =qB 2d 28U.(2)速度选择器:带电粒子束射入正交的匀强电场和匀强磁场组成的区域中,满足平衡条件qE =q v B 的带电粒子可以沿直线通过速度选择器.速度选择器只对粒子的速度大小和方向做出选择,而对粒子的电性、电荷量不能进行选择. (3)回旋加速器: ①用途:加速带电粒子.②原理:带电粒子在电场中加速,在磁场中偏转,交变电压的周期与带电粒子在磁场中做匀速圆周运动的周期相同.③粒子获得的最大动能E k =q 2B 2r 2n2m,其中r n 表示D 形盒的最大半径.专题综合练1.(2021·全国大联考二)如图12所示,平面直角坐标系第一象限存在竖直向上的匀强电场,距离原点O 为3a 处有一个竖直放置的荧光屏,荧光屏与x 轴相交于Q 点,且纵贯第四象限.一个顶角等于30°的直角三角形区域内存在垂直平面对里的匀强磁场,三角形区域的一条直角边ML 与y 轴重合,且被x 轴垂直平分.已知ML 的长度为6a ,磁感应强度为B ,电子束以相同的速度v 0从LO 区间垂直y 轴和磁场方向射入直角三角形区域.从y =-2a 射入磁场的电子运动轨迹恰好经过原点O ,假设第一象限的电场强度大小为E =B v 0,试求:图12(1)电子的比荷;(2)电子束从+y 轴上射入电场的纵坐标范围;(3)从磁场中垂直于y 轴射入电场的电子打到荧光屏上距Q 点的最远距离.2.(2021·绵阳4月模拟)如图13甲所示,有一磁感应强度大小为B、垂直纸面对外的匀强磁场,磁场边界OP 与水平方向夹角为θ=45°,紧靠磁场右上边界放置长为L、间距为d的平行金属板M、N,磁场边界上的O点与N板在同一水平面上,O1、O2为电场左右边界中点.在两板间存在如图乙所示的交变电场(取竖直向下为正方向).某时刻从O点竖直向上以不同初速度同时放射两个相同的质量为m、电荷量为+q的粒子a和b.结果粒子a恰好从O1点水平进入板间电场运动,由电场中的O2点射出;粒子b恰好从M板左端边缘水平进入电场.不计粒子重力和粒子间相互作用,电场周期T未知.求:图13(1)粒子a、b从磁场边界射出时的速度v a、v b;(2)粒子a从O点进入磁场到O2点射出电场运动的总时间t. 3.(2021·盐城二模)如图14所示的xOy坐标系中,y轴右侧空间存在范围足够大的匀强磁场,磁感应强度大小为B,方向垂直于xOy平面对里.P点的坐标为(-2L,0),Q1、Q2两点的坐标分别为(0,L),(0,-L).坐标为(-13L,0)处的C点固定一平行于y轴放置的长为23L的绝缘弹性挡板,C为挡板中点,带电粒子与弹性绝缘挡板碰撞前后,沿y方向分速度不变,沿x方向分速度反向,大小不变.带负电的粒子质量为m,电荷量为q,不计粒子所受重力.若粒子从P点射出沿PQ1方向进入磁场,经磁场运动后,求:图14(1)从Q1直接到达Q2处的粒子初速度大小;(2)从Q1直接到达O点,粒子第一次经过x轴的交点坐标;(3)只与挡板碰撞两次并能回到P点的粒子初速度大小.答案精析专题8 带电粒子在电场和磁场中的运动真题示例1.(1)9qB 2L 232U 0 (2)100U 081≤U ≤16U 09 (3)3次解析 (1)离子在电场中加速:qU 0=12m v 2在磁场中做匀速圆周运动:q v B =m v 2r解得r =1B2mU 0q打在MN 中点P 的离子运动半径为r 0=34L ,代入解得m =9qB 2L 232U 0(2)由(1)知,U =16U 0r 29L 2离子打在Q 点时r =56L ,U =100U 081离子打在N 点时r =L ,U =16U 09,则电压的范围 100U 081≤U ≤16U 09 (3)由(1)可知,r ∝U由题意知,第1次调整电压到U 1,使原本Q 点的离子打在N 点L 56L =U 1U 0此时,原本半径为r 1的打在Q 1的离子打在Q 上56L r 1=U 1U 0解得r 1=⎝⎛⎭⎫562L第2次调整电压到U 2,原本打在Q 1的离子打在N 点,原本半径为r 2的打在Q 2的离子打在Q 上,则:L r 1=U 2U 0,56L r 2=U 2U 0 解得r 2=⎝⎛⎭⎫563L同理,第n 次调整电压,有r n =⎝⎛⎭⎫56n +1L 检测完整,有r n ≤L 2解得n ≥lg2lg (65)-1≈2.8最少次数为3次 2.(1)12v 0tan 2θ (2)2d v 0tan θ解析 (1)如图,粒子进入磁场后做匀速圆周运动.设磁感应强度的大小为B ,粒子质量与所带电荷量分别为m 和q ,圆周运动的半径为R 0.由洛伦兹力公式及牛顿其次定律得q v 0B =m v 20R 0①由题给条件和几何关系可知 R 0=d ②设电场强度大小为E ,粒子进入电场后沿x 轴负方向的加速度大小为a x ,在电场中运动的时间为t ,离开电场时沿x 轴负方向的速度大小为v x .由牛顿其次定律及运动学公式得Eq =ma x ③ v x =a x t ④ v x2t =d ⑤ 由于粒子在电场中做类平抛运动(如图),有 tan θ=v xv 0⑥联立①②③④⑤⑥式得 E B =12v 0tan 2θ⑦ (2)联立⑤⑥式得 t =2dv 0tan θ.考题一 带电粒子在组合场中的运动1.(1)E 1v 0 磁场方向垂直纸面对外 (2)m v 202qL(3)(2-1)L解析 (1)带电粒子做匀速直线运动,其所受合力为零,由于粒子带负电荷,带电粒子受到的电场力方向沿y 轴负方向,所以带电粒子受到的洛伦兹力方向沿y 轴正方向,依据左手定则推断磁场方向垂直纸面对外 依据带电粒子受的洛伦兹力等于电场力,即:q v 0B =qE 1① 解得:B =E 1v 0②(2)撤去磁场后,带电粒子仅受电场力作用做类平抛运动. 依据牛顿其次定律:qE 2=ma ③ x 轴方向:2L =v 0t ④ y 轴方向:L =12at 2⑤联立③④⑤解得:E 2=m v 202qL⑥(3)带电粒子穿过B 点时竖直速度:v 1=at ⑦ 由④⑤⑦解得:v 1=v 0⑧则通过B 点时的速度v =v 20+v 21=2v 0⑨与x 轴正方向的夹角为θ,则sin θ=v 1v =22⑩即θ=45°⑪带电粒子在第三象限做匀速圆周运动,洛伦兹力供应向心力q v B =m v 2R ⑫由E 1=2E 2⑬ 由(1)知B =E 1v 0=2E 2v 0⑭由⑥⑨⑫⑭解得:R =2L ⑮CO =(2-1)L2.(1)2m v qB (2)3m v 24qd (3)(4+210)d 3v +πm2qB解析 (1)依据洛伦兹力供应向心力有:2q v B =m (2v )2R解得:R =2m vqB粒子刚好不从磁场右边界飞出的条件为:L =R ,即:L =2m vqB(2)如图,设粒子从A 点进入磁场,将其从N 点到A 点的运动分别沿着电场线和垂直电场线方向分解,粒子在这两个方向上通过的距离分别为h 和l ,在A 点沿这两个方向的速度大小均为v .沿电场线方向有:h =12·qE m ·t 2=v t2垂直于电场线方向有:l =v t由几何关系有:l +h =2d以上各式联立得:E =3m v 24qd(3)粒子从M 点沿电场线方向向前运动的距离为s 由v 2=2as ,得:s =v 22·qE m=23d <d说明粒子不能打到绝缘板上就要返回,运动过程如图 从F 点进入磁场时的速度为v ′,由v ′2-v 2=2ad 解得:v ′=102v 粒子在电场中来回运动的时间为: t 1=v +v ′a =(4+210)d 3v粒子在磁场中做圆周运动的半径: R ′=m v ′qB =10m v 2qB由于R ′(1-cos 45°)<L ,所以粒子不会从磁场右边界射出. 粒子在磁场中做圆周运动的周期:T =2πm qB在磁场中运动的时间为:t 2=T 4=πm2qB粒子从M 点到第一次从磁场中出来所经过的时间为 t =t 1+t 2=(4+210)d 3v +πm2qB考题二 带电粒子在叠加场中的运动3.AC [带电小球在第Ⅲ象限内运动时只有重力做功,机械能守恒,设带电小球到达P 点的速度为v .依据机械能守恒定律得:mgd =12m v 2,v =2gd ,即带电小球做圆周运动的速度大小为2gd ,所以可以求出带电小球做圆周运动的速度大小,故A 正确;带电小球在第Ⅳ象限内做圆周运动,重力与电场力平衡,则有mg =qE ,E =mgq ,由于带电小球的比荷未知,不能求出电场强度E 的大小.依据带电小球第Ⅲ象限内运动状况,由左手定则推断知该带电小球带负电,带电小球在第Ⅳ象限内受到的电场力向上,则电场强度方向向下,故B 错误;小球在第Ⅳ象限运动的时间t =14·2πd v =πd2v ,可知能求出小球在第Ⅳ象限运动的时间t ,故C 正确;小球在第Ⅳ象限内运动的半径为d ,由d =m vqB知,由于带电小球的比荷未知,不能求出磁感应强度大小,故D 错误.]4.(1)mg q (2)m qg l (3)(3π4+1)lg解析 (1)微粒到达A (l ,l )之前做匀速直线运动, 对微粒受力分析如图甲: 所以,Eq =mg ,得:E =mgq(2)由平衡条件得:q v B =2mg电场方向变化后,微粒所受重力与电场力平衡,微粒在洛伦兹力作用下做匀速圆周运动,轨迹如图乙: q v B =m v 2r由几何学问可得:r =2lv =2gl联立解得:B =mq g l(3)微粒做匀速运动时间: t 1=2l v =l g做圆周运动时间: t 2=34π2l v =3π4l g在复合场中运动时间:t =t 1+t 2=(3π4+1)l g考题三 带电粒子在交变电磁场中运动的问题5.(1)mg q (2)πm q2gR(3)25+(2π+2)2R 解析 (1)小球B 做匀速圆周运动,则Eq =mg 解得:E =mgq(2)设小球B 做圆周运动的周期为T 对A 小球:Eq +mg =ma 得a =2g R =a (T 2)2解得T =2R g对B 小球:Bq v =m v 2Rv =2πR T解得:B =πmq2g R(3)分析得:电(磁)场变化周期是B 球圆周运动周期的2倍 对小球A :在原点的速度为v A =3R T +a T2在原点下的位移为:y A =v A T y A =5R2T 末,小球A 的坐标为(0,-5R ) 对小球B :球B 的线速度v B =π2gR 水平位移为x b =v B T =2πR 竖直位移为y b =12aT 2=2R2T 末,小球B 的坐标为[(2π+2)R,0] 则2T 末,AB 两球的距离为AB =25+(2π+2)2R6.(1)233×105 m/s (2)2∶1 (3)0.05 m解析 (1)带电粒子在偏转电场中做类平抛运动: 水平:t =Lv 0=23×10-6 s竖直:y =12at 2=d 2,其中a =qU 1dm ,U 1=adm q =1003V当U >1003 V 时进入电场中的粒子将打到极板上,即在电压等于1003 V 时刻进入的粒子具有最大速度.所以由动能定理得:q U 12=12m v 2t -12m v 20, 解得v t =233×105 m/s(2)计算可得,粒子射入磁场时的速度与水平方向的夹角为30°,从下极板边缘射出的粒子轨迹如图甲中a 所示,磁场中轨迹所对应的圆心角为240°,时间最长;从上极板边缘射出的粒子轨迹如图中b 所示,磁场中轨迹所对应的圆心角为120°,时间最短,由于两粒子的周期T =2πm Bq相同,所以粒子在磁场中运动的最长时间和最短时间之比为2∶ 1.(3)如图乙,从O ′点射入磁场的粒子速度为v 0,它在磁场中的出射点与入射点间距为d 1=2R 1 由R 1=m v 1Bq ,得:d 1=2m v 0Bq从距O ′点下方d4=0.05 m 处射入磁场的粒子速度与水平方向夹角φ,则它的速度为v 2=v 0cos φ,它在磁场中的出射点与入射点间距为d 2=2R 2cos φ, 由R 2=m v 2Bq得d 2=2m v 0Bq即两个粒子向上偏移的距离相等所以:两粒子射出磁场的出射点间距仍为进入磁场时的间距, 即d4=0.05 m考题四 磁与现代科技的应用7.D [静电力大小应为F =q Uh ,A 项错误;载流子的电性是不确定的,因此B 项错误;n 为导体单位体积内的电荷数,C 项错误;载流子所受洛伦兹力的大小F 洛=q v B ,其中v =I nqdh ,可得F 洛=BIndh ,D 项正确.]8.AD [依据粒子在磁场中的运动轨迹,由左手定则可知,粒子带正电,选项A 正确;粒子在正交场中,受向上的洛伦兹力,故电场力向下,即速度选择器的P 1极板带正电,选项B 错误;依据R =m vqB 可知,在B 2磁场中运动半径越大的粒子,质量与电荷量的比值越大,或者比荷qm 越小,选项C 错误,D 正确.]9.(1)m v Br 正电荷 (2)m v (2r -2L cos θ)q (r 2+L 2-2rL cos θ)(3)沿径向向外 B v -m v 2(2r -2L cos θ)q (r 2+L 2-2rL cos θ)解析 (1)离子做圆周运动Bq v =m v 2r ①q =m vBr,依据左手定则可推断离子带正电荷②(2)离子进入通道前、后的轨迹如图所示 O ′Q =R ,OQ =L ,O ′O =R -r 引出轨迹为圆弧,B ′q v =m v 2R ③R =m v qB ′④由余弦定理得R 2=L 2+(R -r )2+2L (R -r )cos θ解得R =r 2+L 2-2rL cos θ2r -2L cos θ⑤故B ′=m vqR=m v (2r -2L cos θ)q (r 2+L 2-2rL cos θ)⑥(3)电场强度方向沿径向向外⑦ 引出轨迹为圆弧Bq v -Eq =m v 2R ⑧解得E =B v -m v 2(2r -2L cos θ)q (r 2+L 2-2rL cos θ)⑨专题综合练1.(1)v 0Ba (2)0≤y ≤2a (3)94a解析 (1)由题意可知电子在磁场中的轨迹半径为r =a ,由圆周运动规律得:e v 0B =m v 20r ,解得电子的比荷:e m =v 0Ba(2)电子能进入电场中,且离O 点上方最远,电子在磁场中运动圆轨迹恰好与边MN 相切,电子运动轨迹的圆心为O ′点,如图所示.O ′M =2aOO ′=OM -O ′M =a ,即粒子从D 点离开磁场进入电场时,离O 点上方最远距离为:OD =y m =2a ,所以电子束从+y 轴射入电场的范围为0≤y ≤2a ;(3)假设电子没有射出电场就打到荧光屏上,有3a =v 0t ,y =12eE mt 2解得:y =92a >2a ,所以电子应射出电场后打到荧光屏上.电子在电场中做类平抛运动,设电子在电场的运动时间t ,竖直方向位移为y ,水平位移为x , 水平:x =v 0t ,竖直:y =12eE mt 2,代入数据解得:x =2ay设电子最终打在光屏的最远点距Q 点为H ,电子射出电场时与x 轴的夹角为θ有: tan θ=v y v 0=eE m ×x v 0v 0=2ya,H =(3a -x )tan θ=(3a -2y )2y 当3a -2y =2y ,即y =98a 时,H 有最大值,由于98a <2a ,所以H max =94a2.(1)qBd 2m qBd m (2)πm 2qB +m (2L +d )qBd解析 (1)依据题意,粒子a 、b 在磁场中受洛伦兹力作用做匀速圆周运动,圆心分别为O a 、O b ,作出其运动轨迹如图所示,粒子a 从A 点射出磁场.由几何关系有:r a =d2,r b =d由牛顿其次定律有:q v B =m v 2r联立解得:v a =qBd 2m v b =qBdm(2)设粒子a 在磁场中运动时间为t 1,从A 点到O 2点的运动时间为t 2,则: t 1=T a 4,T a =2πmqB ,t 2=(r b -r a )+L v a ,t =t 1+t 2联解得:t =πm 2qB +m (2L +d )qBd3.(1)5qBL 2m (2)(12L,0) (3)25qBL 9m解析 (1)由题意画出粒子运动轨迹如图甲所示,设PQ 1与x 轴方向夹角为θ,粒子在磁场中做圆周运动的半径大小为R 1,由几何关系得:R 1cos θ=L ,其中:cos θ=255粒子在磁场中做匀速圆周运动,洛伦兹力供应向心力,有: q v 1B =m v 21R 1,解得:v 1=5qBL 2m.(2)由题意画出粒子运动轨迹如图乙所示,设其与x 轴交点为F ,由几何关系得:R 2=54L .设F 点横坐标为x F ,由几何关系得:x F =12L .则F 点坐标为:(12L,0).(3)由题意画出粒子运动轨迹如图丙所示,设PQ 1与x 轴正方向夹角为θ,粒子在磁场中做圆周运动的半径大小为R 3,偏转一次后在y 轴负方向偏移量为Δy 1,由几何关系得:Δy 1=2R 3cos θ,为保证粒子最终能回到P ,粒子与挡板碰撞后,速度方向应与PQ 1连线平行,每碰撞一次,粒子进出磁场在y 轴上这段距离Δy 2(如图中A 、E 间距)可由题给条件, 有Δy 22L 3=tan θ, 得Δy 2=L3.当粒子只碰二次,其几何条件是3Δy 1-2Δy 2=2L , 解得:R 3=259L粒子在磁场中做匀速圆周运动:q v B =m v 2R 3,解得:v =25qBL9m .。
专题九带电粒子在叠加场中的运动基本知识点1.带电粒子在叠加场中运动的基本性质(1)匀速直线运动:若带电粒子所受合外力为零,它将处于静止或匀速直线运动状态;(2)匀速圆周运动:若带电粒子所受合外力只充当向心力,它将做匀速圆周运动;(3)匀变速运动:若带电粒子所受合外力恒定,它将做匀变速运动;(4)非匀变速运动:若带电粒子所受合外力不恒定,它将做非匀变速运动。
2.带电体所受重力、静电力与洛伦兹力的性质各不相同,做功情况也不同,应予以区别。
大小方向做功特点做功大小重力mg 竖直向下与路径无关,只与始、末位置的高度差有关W=mgh静电力qE与电场方向相同或相反与路径无关,只与始、末位置间的电势差有关W=qU洛伦兹力v∥B,则f=0v⊥B,则f=q v B由左手定则判定永不做功0例题分析一、带电粒子在叠加场中的圆周运动例1如图所示,在竖直平面内建立直角坐标系xOy,其第一象限存在着正交的匀强电场和匀强磁场,电场强度的方向水平向右,磁感应强度的方向垂直纸面向里。
一带电荷量为+q、质量为m的微粒从坐标原点出发,沿与x轴正方向的夹角为45°的初速度方向进入复合场中,正好做直线运动,当微粒运动到A(l,l)时,电场方向突然变为竖直向上(不计电场变化的时间),微粒继续运动一段时间后,正好垂直于y轴穿出复合场。
不计一切阻力,求:(1)电场强度E的大小;(2)磁感应强度B的大小;(3)微粒在复合场中的运动时间t。
(对应训练)如图所示,在地面附近有一个范围足够大的相互正交的匀强电场和匀强磁场,匀强磁场的磁感应强度为B,方向水平并垂直纸面向外,一质量为m、带电荷量为-q 的带电微粒在此区域恰好做速度大小为v的匀速圆周运动(重力加速度为g)。
(1)求此区域内电场强度的大小和方向;(2)若某时刻微粒运动到场中距地面高度为H的P点,速度与水平方向成45°角,如图所示,则该微粒至少需要经过多长时间运动到距地面最高点?二、带电粒子在空间叠加场中的运动例2在如图所示的空间中存在场强为E的匀强电场和沿x轴负方向、磁感应强度为B 的匀强磁场。
带电粒子在叠加场中的运动问题带电粒子在叠加场中的运动问题是典型的力电综合问题.在同一区域内同时有电场和磁场、电场和重力场或同时存在电场、磁场和重力场等称为叠加场.带电粒子在叠加场中的运动问题有很明显的力学特征,一般要从受力、运动、功能的角度来分析.这类问题涉及的力的种类多,含重力、电场力、磁场力、弹力、摩擦力等;包含的运动种类多,含匀速直线运动、匀变速直线运动、类平抛运动、圆周运动以及其他曲线运动,综合性强,数学能力要求高.解题技巧(1)带电粒子在电场和磁场叠加场中做直线运动,电场力和洛伦兹力一定相互平衡,因此常用二力平衡方法解题。
(2)带电粒子在电场和磁场叠加场中偏转,是电场力和洛伦兹力不平衡造成的。
此过程中电场力做功,洛伦兹力不做功,需根据电场力做功的正、负判断动能的变化。
【典例1】如图所示,在竖直平面xOy内,y轴左侧有一水平向右的电场强度为E1的匀强电场和磁感应强度为B1的匀强磁场,y轴右侧有一竖直向上的电场强度为E2的匀强电场,第一象限内有一匀强磁场,一带电荷量为+q、质量为m的粒子从x轴上的A点以初速度v与水平方向成θ=30°沿直线运动到y轴上的P 点,OP=d.粒子进入y轴右侧后在竖直面内做匀速圆周运动,然后垂直x轴沿半径方向从M点进入第四象限内、半径为d的圆形磁场区域,粒子在圆形磁场中偏转60°后从N点射出磁场,求:(1)电场强度E1与E2大小之比.(2)第一象限内磁场的磁感应强度B的大小和方向.(3)粒子从A到N运动的时间.(2)粒子从P 到M 、从M 到N 的运动轨迹如图,在第一象限内有R 1=OP cos 30°=23d3由洛伦兹力提供向心力知 Bqv =m v 2R 1联立得B =3mv2qd,方向垂直纸面向外. (3)粒子从A 到P 有vt 1=d sin θ,即t 1=2d v从P 到M 粒子运动轨迹对应的圆心角为120°,所用时间为t 2=120°360°×2πR 1v =13×2πm Bq =43πd9v粒子从M 到N 做圆周运动,由图知其半径为R 2=3d ,对应圆心角为60°,所用时间为t 3=60°360°×2πR 2v =3πd 3v所以粒子从A 到N 运动的时间为t =t 1+t 2+t 3=18+73πd9v.【典例2】如图所示,在xOy 平面的第一、四象限内存在着方向垂直纸面向外、磁感应强度为B 的匀强磁场,第四象限内存在方向沿y 轴负方向、电场强度为E 的匀强电场。
带电粒子在叠加场中运动的处理方法
1.(2014·济南模拟)带电质点在匀强磁场中运动,某时刻速度方向如
图所示,所受的重力和洛伦兹力的合力恰好与速度方向相反,不计阻力,
则在此后的一小段时间内,带电质点将()
A.可能做直线运动
B.可能做匀减速运动
C.一定做曲线运动
D.可能做匀速圆周运动
解析:带电质点在运动过程中,重力做功,速度大小和方向发生变化,洛伦兹力的大小和方向也随之发生变化,故带电质点不可能做直线运动,也不可能做匀减速运动或匀速圆周运动,C正确.
答案:C
2.(2013·江西省宜春市五校高三联考)如图所示的虚线区域内,充满垂直于纸面向里的匀强磁场和竖直向下的匀强电场.一带电粒子a(不计重力)以一定的初速度由左边界的O点
射入磁场、电场区域,恰好沿直线由区域右边界的O′点(图中未标出)穿出.若
撤去该区域内的磁场而保留电场不变,另一个同样的粒子b(不计重力)仍以相
同初速度由O点射入,从区域右边界穿出,则粒子b()
A.穿出位置一定在O点下方
B.穿出位置一定在O′点上方
C.运动时,在电场中的电势能一定减小
D.在电场中运动时,动能一定减小
解析若粒子b带正电荷,其向下偏转做类平抛运动,穿出位置一定在O点下方,相反,若其带负电荷,其向上偏转做类平抛运动,穿出位置一定在O′点上方,选项A、B错误;在电场中运动时,电场力做正功,动能一定增大,电势能一定减小,选项C正确,D错误.
答案 C
3.(2013·四川凉山州二模)如图,空间中存在正交的匀强电场E和匀强
磁场B(匀强电场水平向右),在竖直平面内从a点沿ab、ac方向抛出两带
电小球(不考虑两带电球的相互作用,两球电荷量始终不变),关于小球的
运动,下列说法正确的是()
A.沿ab、ac方向抛出的带电小球都可能做直线运动
B.只有沿ab抛出的带电小球才可能做直线运动
C.沿ac做直线运动的小球带负电,且一定是匀速运动
D.两小球在运动过程中机械能均守恒
[答案]AC
[解析]沿ab方向抛出的带正电小球,或沿ac方向抛出的带负电的小球,在重力、电场力、洛伦兹力作用下,可能做匀速直线运动,A正确,B错误;在重力、电场力、洛伦兹力三力都存在时的直线运动一定是匀速直线运动,C正确;两小球在运动过程中除重力做功外还有电场力做功,故机械能不守恒,D
错误。
4.(2013·南昌模拟)如图所示为“滤速器”装置示意图。
a 、b 为水平放置的平行金属板,其电容为C ,板间距离为d ,平行板内存在垂直纸面向里的匀强磁场,磁感应强度为B 。
a 、b 板带上电荷量,可在平行板内产生匀强电场,且电场方向和磁场方向互相垂直。
一带电粒子以速度v 0经小孔O 进入正交电磁场可沿直线OO′运动,由O′射出,粒子所受重力不计,则a 板所带电荷量情况是 ( )
A .带正电,其电荷量为Cv 0B
d B .带负电,其电荷量为Bdv 0
C C .带正电,其电荷量为CBdv 0
D .带负电,其电荷量为Bv 0
Cd [答案] C
[解析] 对带电粒子受力分析,若a 极板带正电,带电粒子受力平衡,qv 0B =q U d ,U =Q
C ,可得电荷量为Q =CBdv 0,若a 极板带负电,同理Q =cBdv 。
所以答案选C 。
5.(2013年高考重庆理综)如图所示,一段长方体形导电材料,左右两端面的边长都为a 和b ,内有带电量为q 的某种自由运动电荷.导电材料置于方向垂直于其前表面向里的匀强磁场中,内部磁感应强度大小为B .当通以从左到右的稳恒电流I 时,测得导电材料上、下表面之间的电压为U ,且上表面的电势比下表面的低.由此可得该导电材料单位体积内自由运动电荷数及自由运动电荷的正负分别为( )
A. IB |q |aU ,负
B.IB |q |aU ,正
C.IB |q |bU
,负
D.IB |q |bU
,正 解析:准确理解电流的微观表达式,并知道稳定时电荷受到的静电力和洛伦兹力平衡,是解决本题的关键.由于上表面电势低,根据左手定则判断出自由运动电荷带负电,排除B 、D 两项.电荷稳定时,所受静电力和洛伦兹力平衡,|q |U
a =|q |v B ①,由电流的微观表达式知:I =|q |nS v =|q |na
b v ②,由①②联立,
得n =
IB
|q |bU
,故选项C 正确. 答案:C 6.(2013·北京市东城区联考)如图所示,一束质量、速度和电荷量不全相等的离子,经过由正交的匀强电场和匀强磁场组成的速度选择器后,进入另一个匀强磁场中并分裂为A 、B 束,下列说法中正确的是( )
A .组成A 、
B 束的离子都带负电 B .组成A 、B 束的离子质量一定不同
C .A 束离子的比荷q
m 大于B 束离子的比荷
D .速度选择器中的磁场方向垂直纸面向外
解析 由左手定则可知,组成A 、B 束的离子都带正电,选项A 错误.经过由正交的匀强电场和匀强磁场组成的速度选择器后,离子速度相等,在匀强磁场中做匀速圆周运动的轨道半径不同,由r =m v
qB 可知
组成A 、B 束的离子比荷q
m 一定不同,质量有可能相同,A 束离子的比荷大于B 束离子的比荷,选项B 错
误,C 正确.由于离子带正电,所受电场力向右,所受洛伦兹力一定向左,由左手定则,速度选择器中的磁场方向垂直纸面向里,选项D 错误.
答案 C
7.(2014年黄山高三质检)如图所示,已知一带电小球在光滑绝缘的水平面上从静止开始经电压U 加速后,水平进入互相垂直的匀强电场E 和匀强磁场B 的复合场中(E 和B 已知),小球在此空间的竖直面内做匀速圆周运动,则( )
A .小球可能带正电
B .小球做匀速圆周运动的半径为r =
1
B 2UE g
C .小球做匀速圆周运动的周期为T =πE
Bg
D .若电压U 增大,则小球做匀速圆周运动的周期增加
解析:小球在复合场中做匀速圆周运动,则小球受到的静电力和重力满足mg =Eq ,则小球带负电,A 错误;因为小球做圆周运动的向心力为洛伦兹力,由牛顿第二定律和动能定理可得:Bq v =m v 2r ,Uq =1
2m v 2,
联立两式可得:小球做匀速圆周运动的半径r =
1
B 2UE g ,由T =2πr v 可以得出T =2πE
Bg ,与电压U 无关,所以B 正确,C 、D 错误.
答案:B
8.如图所示,竖直放置的两块很大的平行金属板a 、b ,相距为d ,ab 间的电场强度为E ,今有一带正电的微粒从a 板下边缘以初速度v 0竖直向上射入电场,当它飞到b 板时,速度大小不变,而方向变为水平方向,且刚好从高度也为d 的狭缝穿过b 板而进入bc 区域,bc 区域的宽度也为d ,所加电场大小为E ,方向竖直向上,磁感应强度方向垂直纸面向里,磁场磁感应强度大小等于E/v 0,重力加速度为g ,则下列关于粒子运动的有关说法正确的是( )
A .粒子在ab 区域的运动时间为v0
g
B .粒子在bc 区域中做匀速圆周运动,圆周半径r =2d
C .粒子在bc 区域中做匀速圆周运动,运动时间为πd
6v0
D .粒子在ab 、bc 区域中运动的总时间为
π+6d
3v0
[解析]选ABD.粒子在ab 区域,竖直方向上做匀减速运动,由v0=gt 得:t =
v0
g
,故A 正确;水平方向上做匀加速度运动,a =v0
t =g ,则qE =mg ,进入bc 区域,电场力大小未变方向竖直向上,电场力与重
力平衡,粒子做匀速圆周运动,由qv0B =mv20r ,得r =mv0qB ,代入数据得r =v20
g ,又v20=2gd ,故r =2d ,B
正确;在bc 区域,粒子运动轨迹所对圆心角为α,sin α=12,α=π
6,运动时间:t =s v0=π
6·2d v0=πd 3v0,故C
错误;粒子在ab 区域的运动时间也可以表示为:t =d v0/2=2d v0,故总时间t 总=2d v0+πd 3v0=π+6d 3v0
,故D 正确.
9、如图所示,有位于竖直平面上的半径为R 的圆形光滑绝缘轨道,其上半部分处于竖直向下、场强为E 的匀强电场中,下半部分处于垂直水平面向里的匀强磁场中;质量为m ,带正电,电荷量为q 的小球,从轨道的水平直径的M 端由静止释放,若小球在某一次通过最低点时对轨道的压力为零,求:
(1) 磁感应强度B 的大小;
(2) 小球对轨道最低点的最大压力;
(3)若要小球在圆形轨道内做完整的圆周运动,求小球从轨道的水平直径的M 端下滑的最小速度.
解析:(1)设小球向右通过最低点时的速率为v ,由题意得:
mgR =12mv 2,qBv -mg =m v 2R ,B =3mg
q 2gR
.
(2)小球向左通过最低点时对轨道的压力最大.F N -mg -qBv =m v 2
R .F N =6mg . (3)要小球完成圆周运动的条件是在最高点满足:mg +qE =m v 21
R 从M 点到最高点由动能定理得:-mgR -qER =12mv 21-12mv 2
0 由以上可得v 0= 3R (mg +qE )
m
. 答案:(1)
3mg
q 2gR
(2)6mg (3) 3R (mg +qE )
m。