当前位置:文档之家› (完整版)弹性力学第十一章弹性力学的变分原理

(完整版)弹性力学第十一章弹性力学的变分原理

(完整版)弹性力学第十一章弹性力学的变分原理
(完整版)弹性力学第十一章弹性力学的变分原理

第十一章弹性力学的变分原理知识点

静力可能的应力

弹性体的功能关系

功的互等定理

弹性体的总势能

虚应力

应变余能函数

应力变分方程

最小余能原理的近似解法扭转问题最小余能近似解有限元原理与变分原理有限元原理的基本概念有限元整体分析几何可能的位移

虚位移

虚功原理

最小势能原理

瑞利-里茨(Rayleigh-Ritz)法

伽辽金(Гапёркин)法

最小余能原理

平面问题最小余能近似解

基于最小势能原理的近似计算方法基于最小余能原理的近似计算方法有限元单元分析

一、内容介绍

由于偏微分方程边值问题的求解在数学上的困难,因此对于弹性力学问题,只能采用半逆解方法得到个别问题解答。一般问题的求解是十分困难的,甚至是不可能的。因此,开发弹性力学的数值或者近似解法就具有极为重要的作用。

变分原理就是一种最有成效的近似解法,就其本质而言,是把弹性力学的基本方程的定解问题,转换为求解泛函的极值或者驻值问题,这样就将基本方程由偏微分方程的边值问题转换为线性代数方程组。变分原理不仅是弹性力学近似解法的基础,而且也是数值计算方法,例如有限元方法等的理论基础。

本章将系统地介绍最小势能原理和最小余能原理,并且应用变分原理求解弹

性力学问题。最后,将介绍有限元方法的基本概念。

本章内容要求学习变分法数学基础知识,如果你没有学过上述课程,请学习附录3或者查阅参考资料。

二、重点

1、几何可能的位移和静力可能的应力;

2、弹性体的虚功原理;

3、

最小势能原理及其应用;4、最小余能原理及其应用;5、有限元原理

的基本概念。

§11.1 弹性变形体的功能原理

学习思路:

本节讨论弹性体的功能原理。能量原理为弹性力学开拓了新的求解思路,使得基本方程由数学上求解困难的偏微分方程边值问题转化为代数方程组。而功能关系是能量原理的基础。

首先建立静力可能的应力和几何可能的位移概念;静力可能的应力

和几何可能的位移可以是同一弹性体中的两种不同的受力状态和变形状态,二者彼此独立而且无任何关系。

建立弹性体的功能关系。功能关系可以描述为:对于弹性体,外力在任意一组几何可能的位移上所做的功,等于任意一组静力可能的应力在与上述几何可能的位移对应的应变分量上所做的功。

学习要点:

1、静力可能的应力;

2、几何可能的位移;

3、弹性体的功能关系;

4、真实应力和位移分量表达的功能关系。

1、静力可能的应力

假设弹性变形体的体积为V,包围此体积的表面积为S。表面积为S可以分为两部分所组成:一部分是表面积的位移给定,称为S u;另外一部分是表面积的面力给定,称为Sσ 。如图所示

显然S=S u+Sσ

假设有一组应力分量σij在弹性体内部满足平衡微分方程

在面力已知的边界Sσ,满足面力边界条件

这一组应力分量称为静力可能的应力。静力可能的应力未必是真实的应力,因为真实的应力还必须满足应力表达的变形协调方程,但是真实的应力分量必然是静力可能的应力。

为了区别于真实的应力分量,我们用表示静力可能的应力分量。

2、几何可能的位移

假设有一组位移分量u i和与其对应的应变分量εij,它们在弹性体内部满足几何方程

在位移已知的边界S u上,满足位移边界条件

这一组位移称为几何可能的位移。几何可能的位移未必是真实的位移,因为真实的位移还必须在弹性体内部满足位移表示的平衡微分方程;在面力已知的边界Sσ上,必须满足以位移表示的面力边界条件。但是,真实的位移必然是几何可能的。

为了区别于真实的位移,用表示几何可能的位移。

几何可能的位移产生的应变分量记作。

3、弹性体的功能关系

对于上述的静力可能的应力、几何可能的位移以及其对应的应变分量,设F b i和F s i分别表示物体单位体积的体力和单位面积的面力(面力也包括在位移边界S u的约束反力)。则不难证明,有以下恒等式

证明:

由于和满足几何方程,而且应力是对称的,所以

将上式代入等式的右边,并且利用高斯积分公式,可得

由于满足面力边界条件,上式的第一个积分为

由于满足平衡微分方程,所以第二个积分为

将上述结果回代,可以证明公式为恒等式。

4、真实应力和位移分量表达的功能关系

公式揭示了弹性体的功能关系。

功能关系可以描述为:对于弹性体,外力在任意一组几何可能位移上所做的功,等于任意一组静力可能应力在上述几何可能位移对应的应变分量上所做的功。

这里需要强调指出的是:对于功能关系的证明,没有涉及材料的性质,因此

适用于任何材料。当然,证明时使用了小变形假设,因此必须是满足小变形条件。

其次,功能关系中,静力可能的应力、几何可能的位移以及其对应的应变分量,可以是同一弹性体中的两种不同的受力状态和变形状态,二者彼此独立而且无任何关系。

假如静力可能的应力和几何可能的应变分量满足材料本构方程时,则对应的静力可能的应力和几何可能的位移以及其对应的应变分量均成为真实的应力,位移和应变分量。对于真实的应力,位移和应变分量,功能关系为

显然这是应变能表达式。不过在应变能公式中,假设外力,即体力和面力是由零缓慢地增加到最后的数值的,因此应变能关系式中有1/2。而在功能关系公式的推导中,并没有这一加载限制。

功能关系是弹性力学中的一个普遍的能量关系,这一原理将用于推导其它的弹性力学变分原理。

§11.2 变形体的虚功原理

学习思路:

本节讨论的重点是弹性体的虚功原理。

首先定义虚位移概念,通过将几何可能的位移定义为真实位移与虚位移的和,可以确定虚位移是位移边界条件所容许的位移微小改变量。对于虚位移所产生的虚应变,记作δεij。

根据弹性体的功能关系,可以得到虚功方程表达式δW =δU。

虚功方程的意义为:如果弹性体是处于静力平衡状态的,外力在虚位移上所做的虚功,等于真实应力分量在对应的虚应变上所做的虚功,即虚应变能。这就是虚功原理。

虚功原理等价于平衡微分方程和面力边界条件,它满足了静力平衡的要求。

学习要点:

1、虚位移与虚应变;

2、虚功原理;

3、虚功原理的意义。

1、虚位移与虚应变

功是指力与力作用点处沿力方向位移的乘积。显然,功包括力和位移两个基本量。如果力或者应力在其自身引起的真实位移或者应变上作功,这种功称为实功;如果力或者应力在其他某种原因引起的微小位移或者应变上作功,这种功称为虚功。

设几何可能的位移为

这里u i为真实位移,δ u i称为虚位移。虚位移是位移边界条件所容许的位移的微小改变量。由于几何可能的位移在边界S u上,应该满足位移边界条件,因此,边界S u,有

δ u i=0

将几何可能位移公式代入几何方程

显然,上式右边的第一项是真实应变,而第二项是虚位移所产生的虚应变,记作δεij。因此,上式可以写作

几何可能的位移对应的应变可以用真实应变与虚位移所产生的虚应变之和表示。

2、虚功原理

如果用虚位移表达的几何可能位移、和真实应力作为静力可能应力代入功能关系表达式,注意到真实应力和位移是满足功能关系的,因此可以得到用虚位移δ u i和虚应变δεij表达的虚功方程

上式中应力分量为实际应力。注意到在位移边界S u上,虚位移是恒等于零的,所以在上述面积分中仅需要在面力边界Sσ上完成。

就力学意义而言,虚功原理表达式的等号的左边为外力在虚位移中所做的功,称为外力虚功δ W;右边为应力分量在虚位移对应的虚应变上产生的应变能,称为虚应变能δ U。即

δ W =δU

根据上述分析,可以得出结论:如果弹性体是处于静力平衡状态的,对于满足变形连续条件的虚位移及其虚应变而言,外力在虚位移上所做的虚功,等于真实应力分量在对应的虚应变上所做的虚功,即虚应变能。这就是虚功原理。

3、虚功原理的意义

对于虚功方程,其右边的积分可以写作

上式在推导中应用了在位移边界S u上,δ u i=0的边界条件。现在将上式回代到虚功方程,整理可得

因为虚位移δ u i是任意的,因此上式的成立,要求在弹性体内

在位移已知边界S u上,有

显然,虚功原理等价于平衡微分方程和面力边界条件,它满足了静力平衡的要求。应该指出:虚功原理的推导并没有涉及任何材料性质,因此适用于任何材料。当然,由于使用了小变形假设,即线性的几何方程,因此虚功原理必须是在小变形条件下适用于任何材料。除此以外应力和应变分量之间不需要满足任何关系。

§11.3 功的互等定理

学习思路:

本节讨论功的互等定理。定理的证明比较简单,将功能方程应用于同一弹性体的两种不同的受力和变形状态,则可以得到功的互等定理。它是弹性体功能原理的另一种应用形式。

功的互等定理可以描述为:作用在弹性体上的第一种状态的外力,包括体力和面力,在第二种状态外力对应的位移上所做的功为例,等于第二种状态的外力在第一种状态对应的位移上所做的功。

功的互等定理是一个十分重要的力学概念。它的应用可以帮助我们推导和理解有关的有关的力学公式和概念,同时也可以直接用于求解某些弹性力学问题。

学习要点:

1、功的互等定理

1、功的互等定理

如果将功能方程工科应用于同一弹性体

的两种不同的受力和变形状态,则可以得到功的互等定理。

假设第一种状态的体力为,在面力边界S 上的面力为,在位移已知的边界S u的位移为,弹性体内部的应力,应变和位移分别为;

第二种状态的体力,面力,应力,应变和位移分别为,,。由于两种状态的应力和应变分量都是真实解,所以它们当然也就是静力可能的和几何可能的。

现在把第一种状态的应力作为静力可能的应力,而把第二种状态的位移和应变作为几何可能的位移和应变。将上述两种状态的应力和位移分别代入功能方程,有

同理,把第二种状态的应力取为静力可能的应力,而把第一种状态的位移和应变作为几何可能的位移和应变分别代入功能方程,有

对于上述公式的右边,由于

所以

上式称为功的互等定理。功的互等定理可以叙述为:作用在弹性体上的第一种状态的外力,包括体力和面力,在第二种状态对应的位移上所做的功等于第二种状态的外力在第一种状态对应的位移上所做的功。

功的互等定理是一个十分重要的力学概念。主要用于推导有关的力学公式,也可以直接用于求解力学问题。

§11.4 位移变分方程--最小势能原理

学习要点:

本节讨论最小势能原理。首先根据虚功原理推导应变能的一阶变分表达式,然后根据任意几何可能位移场与真实位移场的总势能的关系,得到真实位移场的总势能取最小值的结论。

最小势能原理用数学方程描述:总势能的一阶变分为零,而且二阶变分大于零。

最小势能原理等价于以位移表示的平衡微分方程和以位移表示的面力边界条件,所以,对于一些按实际情况简化后的弹性力学问题,可以通过最小势能原理推导出其对应的平衡微分方程和面力边界条件。本节通过例题对此作了说明。

推导中设应变能密度函数是应变分量的函数,因此最小势能原理是位移解法在变分原理中的应用。

进入本节内容学习之前,应该首先学习有关泛函和变分的基础知识。

学习思路:

1、总势能;

2、总势能的变分;

3、最小势能原理;

4、最小势能

原理推导弯曲问题的平衡微分方程和面力边界条件;5、最小势

能原理推导扭转问题的平衡微分方程和面力边界条件。

1、总势能

下面根据虚功方程推导仅应用于弹性体的最小势能原理。

设应变能密度函数是应变分量的函数,则应变能密度函数的一阶变分为

上式推导中,应用了格林公式,将上式代入虚功方程,则

上式表示外力虚功等于弹性体应变能的一阶变分。定义外力势能为

注意到虚位移与真实的应力无关,因此在虚位移过程中外力保持不变,即变分与外力无关。而且积分和变分两种运算次序可以交换的,所以外力势能的一阶变分可以写作

回代可得

其中E t 称为总势能,它是应变分量的泛函。由于应变分量通过几何方程可以用位移分量表示,所以总势能又是位移分量的泛函。

公式表明,在所有几何可能的位移中,真实位移将使弹性体总势能的一阶变分为零,因此真实位移使总势能取驻值。

2、总势能的变分

以下证明:对于弹性体的稳定平衡状态,总势能将取最小值。

将几何可能位移对应的应变代入总势能表达式,可以得到几何可能位移对应的总势能

将上式减去真实应变分量的总势能,可得

将按泰勒级数展开,并略去二阶以上的小量,有

回代可得

由于总势能的一阶变分为零,因此

3、最小势能原理

总势能的二阶变分为

由于

由于应变能密度函数为正定函数,即只有在所有的应变分量全部为零时其才可能为零,否则总是大于零的,因此

所以

以上证明了在所有的可能位移场中,真实位移场的总势能取最小值。所以这一原理称为最小势能原理。数学描述即总势能的一阶变分为零,而且二阶变分是正定的(大于零)。

必须强调指出的是,真实位移与其他的可能位移之间的差别在于是否满足静力平衡条件,所以说最小势能原理是用变分形式表达的平衡条件。

通过总势能的一阶变分为零,可以推导出平衡微分方程和面力边界条件,这和虚功原理是相同的,即最小势能原理也等价于平衡微分方程和面力边界条件。

虚功原理和最小势能原理之间的差别在于:虚功原理不涉及本构关系,适用于任何材料,只要满足小变形条件;最小势能原理除了小变形条件之外,还需要满足应变能密度函数表达的本构关系,因此仅限于线性和非线性弹性体。

最后,将最小势能原理完整的叙述为:在所有几何可能位移中,真实位移使得总势能取最小值。该方法是以位移函数作为基本未知量求解弹性力学问题的。当然,选择的位移函数必须是在位移已知的边界上满足位移边界条件,对于面力边界是不需要考虑的,因为面力边界条件是会自动满足的。

4、最小势能原理推导弯曲问题的平衡微分方程和面力边界条件

例2:图示直梁,分布载荷q(x)作用在轴线所在的铅垂平面内。用最小势能原理推导问题的平衡微分方程和面力边界条件。

解: 该梁为超静定结构。在梁的端面,施加适当的约束使梁不能产生刚体位移,施加适当的剪力和弯矩,使梁保持平衡。

设w(x)表示梁的挠度, 表示梁轴线变形后的曲率半径,则梁的应变能为

由于,并且注意到对于小变形问题,所以上式可以写作

本问题的面力边界为梁的上下表面,作用分布载荷q(x),则外力功为

梁的总势能为

对上式作一阶变分并且令其为零,有

整理可得

因此

上述关系式的第1式即问题的平衡方程,第2,3和4式为梁边界条件。

以上根据最小势能原理推导出梁的弯曲问题对应的平衡微分方程和面力边界条件。

5、最小势能原理推导扭转问题的平衡微分方程和面力边界条件。

例3:应用最小势能原理推导柱体扭转问题的基本方程和边界条件。

解:对于柱体扭转的位移解法,位移分量用扭转翘曲函数表示为

与上述位移分量对应的应力分量为

由于其他的应力分量全部为零,所以柱体的应变能为

由于柱体的侧表面不受外力的作用,不存在外力功的问题。在端面上,作用有扭矩T,产生扭矩的是x和y方向的面力F s x和F s y,而z方向的面力F s z为零。根据柱体扭转的位移表达式,本问题的虚位移为

δ u=0, δ v=0, δw=?δΦ

因此,柱体所有表面的外力虚功均为零。根据最小势能原理

所以

利用高斯积分公式,上式简化为

由于 是任意的,所以上式成立的条件为

显然,这和第九章中导出的扭转函数所要满足的平衡微分方程和面力边界条件是相同的。

§11.5 最小势能原理的应用

学习要点:

最小势能原理是弹性力学问题近似解法的基础。这一原理要应用于实际问题,必须有对应的求解方法。

首先建立以级数形式表达的位移试函数,选择的位移试函数必须满足位移边界条件,它是几何可能的。根据位移试函数可以确定应变分量以及总势能E t的表达式。注意到总势能E t原为位移的泛函,写作成为待定系数A m,B m和C m的二次函数。这样就把求解泛函的驻值问题,转化成为求解函数的极值问题。

根据上述原则推导的近似解法称为瑞利-里茨法。

如果选择的位移试函数不仅满足位移边界条件,而且满足面力边界条件,则求解公式将进一步简化。称为伽辽金法

最后举例说明瑞利-里茨法和伽辽金法的应用。

学习思路:

1、位移试函数;

2、瑞利-里茨法;

3、伽辽金法;

4、简支梁弯曲问

题;5、矩形板;6、扭转问题。

1、位移试函数

最小势能原理的主要用途并非推导平衡微分方程和面力边界条件,它是弹性力学问题近似解法的基础。如果要使得某个原理要应用于实际问题,必须有对应

的求解方法。本节介绍基于最小势能原理的两种近似解法:瑞利-里茨(Rayleigh-Ritz)法和伽辽金(Гапёркин)法。

根据最小势能原理,如果能够列出所有的几何可能位移,那么使总势能П1取最小值的那一组位移就是真实位移。问题是列出所有几何可能的位移是非常困难的,甚至是不可能的。

因此,对于实际问题的计算,只能凭借经验和直觉缩小寻找范围,在这个范围内的一族几何可能的位移中,找到一组位移使得总势能E t 最小。

虽然这一组位移一般的说并不是真实的,但是可以肯定,它是在这个缩小的给定范围内部,与真实位移最为接近的一组位移,由此解答可以作为近似解。

从上述思想出发,在一般情况下,可以将位移分量选择为如下的形式

其中,A m,B m和C m均为任意的常数;u0,v0和w0以及u m,v m和w m都是坐标的已知函数,并且在位移边界S u上,有

这样构造的位移试函数,不论系数A m,B m和C m取何值,总是满足位移边界条件的。而且对于连续函数,必然满足几何方程。因此满足几何可能位移的条件。

2、瑞利-里茨法

现在的问题是将要如何选择待定系数A m,B m和C m,使得总势能П1在位移表达式表示的这一族位移中取最小值。

为此,将位移表达式代入几何方程求得应变分量,然后代入总势能П1的表达式,注意到应变能密度函数是应变分量的齐二次函数,因此总势能П1表达式的第一个积分成为待定系数A m,B m和C m的齐二次函数,而第二和第三个积分为A m,B m和C m的一次函数。于是,总势能E t 原本是自变函数的泛函,现在成为待定系数A m,B m和C m的二次函数。

这样就把求解泛函的极值问题,转化成为求解函数的极值问题。总势能E t 取极值的条件为

总势能E t 取极值的条件又可以写作

上述公式是一组以A m,B m和C m(m=1,2,3…)为未知数的线性非齐次代数方程组,求解方程可得待定系数,回代就可以得到近似位移解答。这一方法称为瑞利—里茨法。

3、伽辽金法

下面讨论伽辽金(Гапёркин)法。注意到应变能的一阶变分可以写作

将上式回代最小势能原理,整理可得

如果选择的位移试函数不仅在位移边界上满足位移边界条件,而且在面力边界上满足面力边界条件,即位移试函数满足全部的边界条件,则上式可以进一步简化为

上式展开可以写作

将位移函数表达式代入几何方程求得应变分量,再根据物理方程求出应力分量代入上式,并且注意到

将上述结果代入虚功方程,可得

由于δA m,δB m和δC m 彼此独立而且是完全任意的,所以上式成立的条件为

由于应力分量为A m,B m和C m的线性函数,所以上述公式为A m,B m和C m 的线性非齐次代数方程组。解出待定系数代入公式就得到位移函数的近似解答,这种方法称为伽辽金法。

4、简支梁弯曲问题

例4:两端简支的等截面梁,受均匀分布载荷q作用如图所示。试求解梁的挠度w(x)。

解:首先使用瑞利—里茨法求解。

为了满足梁的位移边界条件,即简支梁两端的约束条件: 在x=0和l 处,w=0,取位移试函数,即挠曲线方程为

问题的总势能为

根据,所以

所以

回代到位移公式,可得

挠曲线表达式是无穷级数,它给出了本问题的精确解答。这个级数收敛很快,只要取少数几项就可以得到足够的精度。最大挠度在梁的中点,即处,因此

如果取一项,有。这一结果与精确值十分接近。

由于上述位移试函数表示的挠曲线方程在求二阶导数后仍为正弦函数,所以二阶导数在x=0 和x=l处仍旧为零。

本问题的静力边界条件是梁的绞支处弯矩为0,所以该表达式也满足面力边界条件,因此这一试函数也可以应用于伽辽金法求解。注意到

将位移试函数公式代入上式并且积分,可以得到与瑞利—里茨法相同的结果。

5、矩形板

例5:图示矩形薄板,四边固定,受有平行于板面的体力作用。设坐标轴如图所示,试用瑞利—里茨法求解。

解:设位移试函数为

上式中m和n为正整数,在边界x=0,a,和y=0,b上,u=v=0,所以试函数满足位移边界条件。

由于问题属于平面应力问题,所以

因此

有限差分法、有限单元和有限体积法简介

有限差分法、有限单元法和有限体积法的简介 1.有限差分方法 有限差分方法(Finite Difference Method,FDM)是计算机数值模拟最早采用的方法,至今仍被广泛运用。该方法将求解域划分为差分网格,用有限个网格节点代替连续的求解域。有限差分法以Taylor级数展开等方法,把控制方程中的导数用网格节点上的函数值的差商代替进行离散,从而建立以网格节点上的值为未知数的代数方程组。该方法是一种直接将微分问题变为代数问题的近似数值解法,数学概念直观,表达简单,是发展较早且比较成熟的数值方法。 对于有限差分格式,从格式的精度来划分,有一阶格式、二阶格式和高阶格式。从差分的空间形式来考虑,可分为中心格式和逆风格式。考虑时间因子的影响,差分格式还可以分为显格式、隐格式、显隐交替格式等。目前常见的差分格式,主要是上述几种形式的组合,不同的组合构成不同的差分格式。差分方法主要适用于有结构网格,网格的步长一般根据实际地形的情况和柯朗稳定条件来决定。构造差分的方法有多种形式,目前主要采用的是泰勒级数展开方法。其基本的差分表达式主要有三种形式:一阶向前差分、一阶向后差分、一阶中心差分和二阶中心差分等,其中前两种格式为一阶计算精度,后两种格式为二阶计算精度。通过对时间和空间这几种不同差分格式的组合,可以组合成不同的差分计算格式。 2.有限元方法 有限元方法(Finite Element Method,FEM)的基础是变分原理和加权余量法,其基本求解思想是把计算域划分为有限个互不重叠的单元,在每个单元内,选择一些合适的节点作为求解函数的插值点,将微分方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式,借助于变分原理或加权余量法,将微分方程离散求解。采用不同的权函数和插值函数形式,便构成不同的有限元方法。 有限元方法最早应用于结构力学,后来随着计算机的发展慢慢用于流体力学的数值模拟。在有限元方法中,把计算域离散剖分为有限个互不重叠且相互连接的单元,在每个单元内选择基函数,用单元基函数的线形组合来逼近单元中的真解,整个计算域上总体的基函数可以看为由每个单元基函数组成的,则整个计算域内的解可以看作是由所有单元上的近似解构成。 在数值模拟中,常见的有限元计算方法是由变分法和加权余量法发展而来的

有限元法与有限差分法的主要区别

有限元法与有限差分法的主要区别 有限差分方法(FDM)是计算机数值模拟最早采用的方法,至今仍被广泛运用。该方法将求解域划分为差分网格,用有限个网格节点代替连续的求解域。有限差分法以Taylor级数展开等方法,把控制方程中的导数用网格节点上的函数值的差商代替进行离散,从而建立以网格节点上的值为未知数的代数方程组。该方法是一种直接将微分问题变为代数问题的近似数值解法,数学概念直观,表达简单,是发展较早且比较成熟的数值方法。对于有限差分格式,从格式的精度来划分,有一阶格式、二阶格式和高阶格式。从差分的空间形式来考虑,可分为中心格式和逆风格式.考虑时间因子的影响,差分格式还可以分为显格式、隐格式、显隐交替格式等.目前常见的差分格式,主要是上述几种形式的组合,不同的组合构成不同的差分格式。差分方法主要适用于有结构网格,网格的步长一般根据实际地形的情况和柯朗稳定条件来决定。构造差分的方法有多种形式,目前主要采用的是泰勒级数展开方法。其基本的差分表达式主要有三种形式:一阶向前差分、一阶向后差分、一阶中心差分和二阶中心差分等,其中前两种格式为一阶计算精度,后两种格式为二阶计算精度。通过对时间和空间这几种不同差分格式的组合,可以组合成不同的差分计算格式。有限元方法的基础是变分原理和加权余量法,其基本求解思想是把计算域划分为有限个互不重叠的单元,在每个单元内,选择一些合适的节点作为求解函数的插值点,将微分方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式,借助于变分原理或加权余量法,将微分方程离散求解。采用不同的权函数和插值函数形式,便构成不同的有限元方法。有限元方法最早应用于结构力学,后来随着计算机的发展慢慢用于流体力学的数值模拟。在有限元方法中,把计算域离散剖分为有限个互不重叠且相互连接的单元,在每个单元内选择基函数,用单元基函数的线形组合来逼近单元中的真解,整个计算域上总体的基函数可以看为由每个单元基函数组成的,则整个计算域内的解可以看作是由所有单元上的近似解构成.在河道数值模拟中,常见的有限元计算方法是由变分法和加权余量法发展而来的里兹法和伽辽金法、最小二乘法等.根据所采用的权函数和插值函数的不同,有限元方法也分为多种计算格式。从权函数的选择来说,有配置法、矩量法、最小二乘法和伽辽金法,从计算单元网格的形状来划分,有三角形网格、四边形网格和多边形网格,从插值函数的精度来划分,又分为线性插值函数和高次插值函数等。不同的组合同样构成不同的有限元计算格式。对于权函数,伽辽金(Galerkin)法是将权函数取为逼近函数中的基函数;最小二乘法是令权函数等于余量本身,而内积的极小值则为对代求系数的平方误差最小;在配置法中,先在计算域内选取N个配置点。令近似解在选定的N个配置点上严格满足微分方程,即在配置点上令方程余量为0.插值函数一般由不同次幂的多项式组成,但也有采用三角函数或指数函数组成的乘积表示,但最常用的多项式插值函数。有限元插值函数分为两大类,一类只要求插值多项式本身在插值点取已知值,称为拉格朗日(Lagrange)多项式插值;另一种不仅要求插值多项式本身,还要求它的导数值在插值点取已知值,称为哈密特(Hermite)多项式插值。单元坐标有笛卡尔直角坐标系和无因次自然坐标,有对称和不对称等。常采用的无因次坐标是一种局部坐标系,它的定义取决于单元的几何形状,一维看作长度比,二维看作面积比,三维看作体积比。在二维有限元中,三角形单元应用的最早,近来四边形等参元的应用也越来越广。对于二维三角形和四边形电源单元,常采用的插值函数为有La g range插值直角坐标系中的线性插值函数及二阶或更高阶插值函数、面积坐标系中的线性插值函数、二阶或更高阶插值函数等.对于有限元方法,其基本思路和解题步骤可归纳为(1)建立积分方程,根据变分原理或方程余量与权函数正交化原理,建立与微分方程初边值问题等价的积分表达式,这是有限元法的出发点。(2)区域单元剖分,根据求解区域的形状及实际问题的物理特点,将区域剖分为若干相互连接、不重叠的单元。区域单元划分是采用有限元方法的前期准备工作,这部分工作量比较大,除了给计算单元和节点进行编号和确定相互之间的关系之外,还要表示节点的位置坐标,同时还需要列出自然边界和本质边界的节点序号和相应的边界值。(3)确定单元基函数,根据单元中节点数目及对近似解精度的要求,选择满足一定插值条件的插值函

弹性力学教学大纲

课程编号:05z8514 弹性力学Theory of Elasticity 学分学时:3/48 先修课程: 高等数学;线性代数;理论力学;材料力学 一、课程教学目标 《弹性力学》是航空、航天结构强度和力学专业的重要专业基础课程,是固体力学的一个分支。主要研究弹性体受外力作用或温度改变等原因而产生的应力、位移和变形。弹性力学的任务是分析各种结构或其构件在弹性阶段的应力和位移,校核它们是否具有所需的强度、刚度和稳定性,并寻求或改进它们的计算方法。本课程的主要研究对象为非杆状结构,如板、壳以及其它实体结构。通过本课程的学习可为进一步学习力学类和相关工程类的后续课程打下坚实的力学基础。 二、教学内容及基本要求 1. 绪论(2学时) 弹性力学的发展史;研究内容;基本假设;矢量、张量基本知识。 2. 应力理论(4学时) 内力和应力;斜面应力公式;应力分量转换公式;主应力、应力不变量;最大剪应力;应力偏量;平衡微分方程。 3. 应变理论(4学时) 位移和变形;几何方程;转动张量;主应变和应变不变量;变形协调方程;位移场的单值条件;由应变求位移。 4. 本构关系(2学时) 热力学定律与应变能;本构关系;具有弹性对称面的弹性材料的本构关系;各向同性弹性材料的弹性常数;各向同性弹性材料的应变能密度 5. 弹性理论的建立与一般原理(4学时) 弹性力学基本方程和边界条件;位移解法和拉梅方程;应力解法与变形协调方程;叠加原理;解的唯一性原理;圣维南原理。 6.柱形杆问题(4学时) 圣维南问题;柱形扭转问题的基本解法;反逆法与半逆法,扭转问题解例;薄膜比拟;*柱形杆的一般弯曲。 7.平面问题(12学时) 平面问题及其分类;平面问题的基本解法;应力函数的性质;直角坐标解例(矩形梁的纯弯曲、简支梁受均布载荷和任意分布载荷);极坐标中的平面问题基本方程;轴对称问题(均匀圆筒或圆环、纯弯的曲梁、压力隧洞);非轴对称问题(小圆孔应力集中、楔体问题);关于解和解法的讨论。 8. 空间问题(2学时) 基本方程及求解方法;空间轴对称和球对称问题的基本方程;半空间体受重力及均布压力;半空间体在边界上受法向集中力;空心球受内压作用问题。 9.能量原理与变分法(6学时) 弹性体的变形比能与形变势能;变分法;位移变分方程;位移变分法;位移变分法应用于平面问题;应力变分方程与极小余能原理;应力变分法;应力变分法应用于平面问题;应力变分法应用于扭转问题。 10.复变函数解法或薄板弯曲(4学时)

分析力学基础 一

分析力学基础(一) 华中科技大学CAD中心 张云清 2009-12-18机械系统动力学计算机辅助分析

分析力学基础() 分析力学基础(一) 一.经典力学概论 概 二.分析力学的基本概念 三.虚位移原理、达朗伯原理 四.动力学方程的三种形式 四动力学方程的三种形式 五.分析力学的变分原理 2009-12-18机械系统动力学计算机辅助分析

经典力学概论 典力学研象于 ?经典力学的研究对象是速度远小于光速的宏观物体的机械运动; 牛力学 ?牛顿力学 ?拉格朗日力学 ?变分原理 变原 ?哈密尔顿力学 ?分析力学(拉格朗日力学和哈密尔顿力学)析力学(格力学和密尔力学)?运动稳定性 ?刚体动力学学 ?多体系统动力学是经典力学的在现代工程需求下的进一步发展 2009-12-18机械系统动力学计算机辅助分析

牛顿力学 ?1687年牛顿(Newton )《自然哲学的数学原理》出版-------〉牛力学; 牛顿力学; ?牛顿贡献--发现了制约物质宏观机械运动的普遍规律:–万有引力定律 –动力学基本规律 –研究这些规律的方法—微积分 速度加速度力力牛力学–力学的概念—速度、加速度、力、力矩-----矢量------〉牛顿力学----矢量力学; 牛顿力学天体运动的观测资料归纳产生的力学理论,研究对象是不受–---- 约束的自由质点; ?1743年,法国的达朗贝尔(D’Alembert)--D’ Alembert原理;?1755年、1765年,瑞士的欧拉(Euler)将牛顿定律推广到刚体和理想流体,矢量力学------Newton-Euler力学; 2009-12-18机械系统动力学计算机辅助分析

弹性力学学习心得

弹性力学学习心得 孙敬龙S4 大学时期就学过弹性力学,当时的课本是徐芝纶教授的简明版教程,书的内容很丰富但是只学了前四章,学的也是比较糊涂。研究生一年级又学了一次弹性力学(弹性理论),所有课本是秦飞教授编着的,可能是学过一次的原因吧,第二次学习感觉稍微轻松点了,但是能量原理那一章还是理解不深入。弹性力学是一门较为基础的力学学科,值得我们花大量的时间去深入解读。 弹性力学主要研究弹性体在外力作用或温度变化等外界因素下所产生的应力、应变和位移,从而解决结构或机械设计中所提出的强度和刚度问题。在研究对象上,弹性力学同材料力学和结构力学之间有一定的分工。材料力学基本上只研究杆状构件;结构力学主要是在材料力学的基础上研究杆状构件所组成的结构,即所谓杆件系统;而弹性力学研究包括杆状构件在内的各种形状的弹性体。弹性力学是固体力学的重要分支,它研究弹性物体在外力和其它外界因素作用下产生的变形和内力,也称为弹性理论。它是材料力学、结构力学、塑性力学和某些交叉学科的基础,广泛应用于建筑、机械、化工、航天等工程领域。弹性体是变形体的一种,它的特征为:在外力作用下物体变形,当外力不超过某一限度时,除去外力后物体即恢复原状。绝对弹性体是不存在的。物体在外力除去后的残余变形很小时,一般就把它当作弹性体处理。 弹性力学的发展大体分为四个时期。人类从很早时就已经知道利用物体的弹性性质了,比如古代弓箭就是利用物体弹性的例子。当时人们还是不自觉的运用弹性原理,而人们有系统、定量地研究弹性力学,是从17

世纪开始的。发展初期的工作是通过实践,探索弹性力学的基本规律。这个时期的主要成就是R.胡克于1678年发表的弹性体的变形与外力成正比的定律,后来被称为胡克定律。第二个时期是理论基础的建立时期。这个时期的主要成就是,从 1822~1828年间,在?柯西发表的一系列论文中明确地提出了应变、应变分量、应力和应力分量概念,建立了弹性力学的几何方程、平衡(运动)微分方程,各向同性和各向异性材料的广义胡克定律,从而为弹性力学奠定了理论基础。弹性力学的发展初期主要是通过实践,尤其是通过实验来探索弹性力学的基本规律。英国的胡克和法国的马略特于1680年分别独立地提出了弹性体的变形和所受外力成正比的定律,后被称为胡克定律。牛顿于1687年确立了力学三定律。同时,数学的发展,使得建立弹性力学数学理论的条件已大体具备,从而推动弹性力学进入第二个时期。在这个阶段除实验外,人们还用最粗糙的、不完备的理论来处理一些简单构件的力学问题。这些理论在后来都被指出有或多或少的缺点,有些甚至是完全错误的。在17世纪末第二个时期开始时,人们主要研究梁的理论。到19世纪20年代法国的纳维和柯西才基本上建立了弹性力学的数学理论。柯西在1822~1828年间发表的一系列论文中,明确地提出了应变、应变分量、应力和应力分量的概念,建立了弹性力学的几何方程、运动(平衡)方程、各向同性以及各向异性材料的广义胡克定律,从而奠定了弹性力学的理论基础,打开了弹性力学向纵深发展的突破口。第三个时期是线性各向同性弹性力学大发展的时期。这一时期的主要标志是弹性力学广泛应用于解决工程问题。同时在理论方面建立了许多重要的定理或原理,并提出了许多有效的计算方法。1855~1858年间法国的圣维南发表

分析力学

分析力学的基本内容和基本研究方法 分析力学的研究手段和研究内容 分析力学是经典力学的一部分。它应用纯粹数学分析方法研究质点组机械运动的普遍规律, 由法国数学家和力学家拉格朗日,英国数学家和天文学家哈密顿等人总结发而成。分析力学使牛顿力学得到更广泛的应用。在量子力学、统计物理、量子场论等部门中也都有重要应用。学好这门课程,不但为以后学习专业课打下基础,而主要的是训练我们如何运用力学原理把一个实际问题加以分析、简化,然后借助于数学分析来解决这个问题,最后,再对所得结果加以讨论,并和实际情况相比较。在“四化”建设中,经典力学仍然有它的重大作用,作为一个物理工作者,对这些知识和技能,应当熟练掌握才行。根据自己过去学习的经验,把研究分析力学的方法介绍出来供大家参考。由于笔者水平的限制,难免有错误之处, 欢迎读者批评指正。 研究分析力学的方法:(1)建立原理(虚功原理、达朗贝尔原理、哈密顿原理、最小作用量原理);(2)由原理推导方程(拉格朗日第二类方程、哈密顿正则方程);(3)解方程即方程式积分(正则变换、泊松定理、哈密顿定理)。 分析力学研究的主要内容是:导出各种力学系统的动力方程,如完整系统的拉格朗日方程、正则方程,非完整系统的阿佩尔方程等;探求力学的普适原理,如汉密尔顿原理、最小作用量原理等;探讨力学系统的特性;研究求解运动微分方程的方法,例如,研究正则变换以求解正则方程;研究相空间代表点的轨迹,以判别系统的稳定性等。 分析力学解题法和牛顿力学的经典解题法不同,牛顿法把物体系拆成分离体,按反作用定律附以约束反力,然后列出运动方程。 分析力学中也可用变分原理(如汉密尔顿原理)导出运动微分方程。它的优点是可以推广到新领域(如电动力学)和应用变分学中的近似法来解题。从20世纪60年代开始,为了设计复杂的航天器和机器人的需要,发展多刚体系统,并且跳出了使用动力学函数求导的传统方法来建立动力学方程,所建立的方程能方便地应用电子计算机进行计算。 一、虚位移原理(虚功原理) 虚位移原理:对于具有理想约束的质点系,其平衡条件是:作用于质点系的主动力在任何虚位移中所做的虚功和等于零。 虚位移原理是应用功的概念分析系统的平衡问题,是研究静力学平衡问题的一种途径。对于只有理想约束的物体系统,由于求知的约束反力不做功 二、动力力学普遍方程 虚功原理设某力学组处在平衡状态, 在组中任取一质点 p,并设作用在质点上的 i

分析力学

《分析力学》简介 The Brief Introduction of Analytical Mechanics 一.分析力学与经典力学 分析力学是理论力学的一个分支,是对经典力学的高度数学化的表达,它通过用广义坐标为描述质点系的变数,运用数学分析的方法,研究宏观现象中的力学问题。分析力学是独立于牛顿力学的描述力学世界的体系,其基本原理同牛顿运动三定律之间可以互相推出。 经典力学最初的表达形式由牛顿给出,大量运用几何方法和矢量作为研究工具,因此它又被称为矢量力学(也称为“牛顿力学”)。拉格朗日,哈密顿,雅可比等人使用广义坐标和变分法,建立了一套同矢量力学等效的力学表述方法。同矢量力学相比,分析力学的表述方法具有更大的普遍性。很多在矢量力学中极为复杂的问题,运用分析力学可以较为简便的解决。分析力学的方法可以推广到量子力学系统和复杂动力学系统中,在量子力学和非线性动力学中都有重要应用。 分析力学解题法和牛顿力学的经典解题法不同,牛顿法把物体系拆开成分离体,按反作用定律附以约束反力,然后列出运动方程。 分析力学是经典物理学的基础之一,也是整个力学的基础之一。它广泛用于结构分析、机器动力学与振动、航天力学、多刚体系统和机器人动力学以及各种工程技术领域,也可推广应用于连续介质力学和相对论力学。 二.发展历程 从十八世纪开始,在力学发展史上又出现了与矢量力学并驾齐驱的另一力学体系,即分析力学。 1788 年拉格朗日出版的《分析力学》是世界上最早的一本分析力学的著作。分析力学是建立在虚功原理和达朗贝尔原理的基础上。两者结合,可得到动力学普遍方程,从而导出分析力学各种系统的动力方程。1760~1761 年,拉格朗日用这两个原理和理想约束结合,得到了动力学的普遍方程,几乎所有的分析力学的动力学方程都是从这个方程直接或间接导出的。 分析力学的特点是对能量与功的分析代替对力与力矩的分析。为了避免未知理想约束力的出现,分析力学的一种方法是在理想约束力与约束方程间建立起一种直接的关系,导出了比矢量力学一般方法程式化更为明显的动力学方程-拉格朗日第一类方程。分析力学的另一种方法是从独立坐标出发,利用纯数学分析方法,将用独立坐标描述的动力学方程用统一的原理与公式进行表达,克服了在矢量动力学中建立这种方程依赖技巧的缺点。这种统一的方程即拉格朗日第二类方程。上述工作均由拉格朗日(https://www.doczj.com/doc/407894648.html,grange)于1788年奠定的。以拉格朗日方程为基础的分析力学,称为拉格朗日力学。 1834年哈密顿(Hamilton)将拉格朗日第二类方程变换成一种正则形式,将动力学基本原理归纳为变分形式的哈密顿原理,从而建立了哈密顿力学。对于一个动力学系统,尽管建立该系统的拉格朗日第二类方程或哈密顿正则方程不依赖于技巧,但它的数学推导过程相当繁琐,因此用来建立自由度比较多的系统动力学方程相当困难,并且容易出错。利用拉格朗日第一类方程解决系统的动力学问题,与矢量动力学的一般方法一样,尽管建立方程比较容易,但其求解规模很大。正是由于这个原因,在力学发展史上因拉格朗日第一类方程并不比矢量动力学一般方法优越,而被搁置一边。 随着近代计算技术的发展,解决具有程式化特征的数学问题,规模再大也能迎刃而解。

弹性力学的变分原理

第十一章弹性力学的变分原理 一.内容介绍 由于偏微分方程边值问题的求解在数学上的困难,因此对于弹性力学问题,只能采用半逆解方法得到个别问题解答。一般问题的求解是十分困难的,甚至是不可能的。因此,开发弹性力学的数值或者近似解法就具有极为重要的作用。 变分原理就是一种最有成效的近似解法,就其本质而言,是把弹性力学的基本方程的定解问题,转换为求解泛函的极值或者驻值问题,这样就将基本方程由偏微分方程的边值问题转换为线性代数方程组。变分原理不仅是弹性力学近似解法的基础,而且也是数值计算方法,例如有限元方法等的理论基础。 本章将系统地介绍最小势能原理和最小余能原理,并且应用变分原理求解弹性力学问题。最后,将介绍有限元方法的基本概念。 本章内容要求学习变分法数学基础知识,如果你没有学过上述课程,请学习附录3或者查阅参考资料。 二.重点 1. 几何可能的位移和静力可能的应力; 2. 弹性体的虚功原理; 3. 最小势能原理及其应用; 4. 最小余能原理及其应用; 5. 有限元原理的基本概念。 知识点 静力可能的应力 弹性体的功能关系 功的互等定理 弹性体的总势能 虚应力

应变余能函数 应力变分方程 最小余能原理的近似解法 扭转问题最小余能近似解 有限元原理与变分原理 有限元原理的基本概念 有限元整体分析 几何可能的位移 虚位移 虚功原理 最小势能原理 瑞利-里茨(Rayleigh-Ritz)法 伽辽金(Гапёркин)法 最小余能原理 平面问题最小余能近似解 基于最小势能原理的近似计算方法 基于最小余能原理的近似计算方法 有限元单元分析 附录3 变分原理 泛函是指某一个量,它的值依赖于其它一个或者几个函数。因此泛函也称为函数的函数。 变分法的基本问题是求解泛函的极值。

弹性力学学习心得

弹性力学学习心得 孙敬龙S201201024 大学时期就学过弹性力学,当时的课本是徐芝纶教授的简明版教程,书的内容很丰富但是只学了前四章,学的也是比较糊涂。研究生一年级又学了一次弹性力学(弹性理论),所有课本是秦飞教授编著的,可能是学过一次的原因吧,第二次学习感觉稍微轻松点了,但是能量原理那一章还是理解不深入。弹性力学是一门较为基础的力学学科,值得我们花大量的时间去深入解读。 弹性力学主要研究弹性体在外力作用或温度变化等外界因素下所产生的应力、应变和位移,从而解决结构或机械设计中所提出的强度和刚度问题。在研究对象上,弹性力学同材料力学和结构力学之间有一定的分工。材料力学基本上只研究杆状构件;结构力学主要是在材料力学的基础上研究杆状构件所组成的结构,即所谓杆件系统;而弹性力学研究包括杆状构件在内的各种形状的弹性体。弹性力学是固体力学的重要分支,它研究弹性物体在外力和其它外界因素作用下产生的变形和内力,也称为弹性理论。它是材料力学、结构力学、塑性力学和某些交叉学科的基础,广泛应用于建筑、机械、化工、航天等工程领域。弹性体是变形体的一种,它的特征为:在外力作用下物体变形,当外力不超过某一限度时,除去外力后物体即恢复原状。绝对弹性体是不存在的。物体在外力除去后的残余变形很小时,一般就把它当作弹性体处理。 弹性力学的发展大体分为四个时期。人类从很早时就已经知道利用物体的弹性性质了,比如古代弓箭就是利用物体弹性的例子。当时人们还是不自觉的运用弹性原理,而人们有系统、定量地研究弹性力学,是从17世纪开始的。发展初期的工作是通过实践,探索弹性力学的基本规律。这个时期的主要成就是R.胡克于1678年发表的弹性体的变形与外力成正比的定律,后来被称为胡克定律。第二个时期是理论基础的建立时期。这个时期的主要成就是,从1822~1828年间,在A.L?柯西发表的一系列论文中明确地提出了应变、应变分量、应力和应力分量概念,建立了弹性力学的几何方程、平衡(运动)微分方程,各向同性和各向异性材料的广义胡克定律,从而为弹性力学奠定了理论基础。弹性力学的发展初期主要是通过实践,尤其是通过实验来探索弹性力学的基本规律。英国的胡克和法国的马略特于1680年分别独立地提出了弹性体的变形和所受外力成正比的定律,后被称为胡克定律。牛顿于1687年确立了力学三定律。同时,数学的发展,使得建立弹性力学数学理论的条件已大体具备,从而推动弹性力学进入第二个时期。在这个阶段除实验外,人们还用最粗糙的、不完备的理论来处理一些简单构件的力学问题。这些理论在后来都被指出有或多或少的缺点,有些甚至是完全错误的。在17世纪末第二个时期开始时,人们主要研究梁的理论。到19世纪20年代法国的纳维和柯西才基本上建立了弹性力学的数学理论。柯西在1822~1828年间发表的一系列论文中,明确地提出了应变、应变分量、应力和应力分量的概念,建立了弹性力学的几何方程、运动(平衡)方程、各向同性以及各向异性材料的广义胡克定律,从而奠定了弹性力学的理论基础,打开了弹性力学向纵深发展的突破口。第三个时期是线性各向同性弹性力学大发展的时期。这一时期的主要标志是弹性力学广泛应用于解决工程问题。同时在理论方面建立了许多重要的定理或原理,并提出了许多有效的计算方法。1855~1858年间法国的圣维南发表了关于柱体扭转和弯曲的论文,可以说是第三个时期的开始。在他的论文中,理论结果和实验结果密切吻合,为弹性力学的正确性提供了有力的证据;1881年德国的赫兹解出了两弹性体局部接触时弹性体内的应力分布;1898年德国的基尔施在计算圆孔附近的应力分布时,发现了应力集中。这些成就解释了过去无法解释的实验现象,在提高机械、结构等零件的设计水平方面起了重要作用,使弹性力学得到工程界的重视。在这个时期,弹性力学的一般理论也有很大的发展。一方面建立了各种关于能量的定理(原理)。另一方面发展了许多有效的近似计算、数值计算和其他计算方法,如著名的瑞利——里兹法,为直接求

分析力学解题指导

第五章分析力学 解题指导 在前面各章都是按“牛顿方式”研究力学问题,即为矢量力学。它和分析力学在观点和方法上都有区别。矢量力学所牵涉到的量大都是矢量。力和动量是它的两个基本量;而分析力学是拉格朗日和哈密顿等人所建立的变分原理为基础的,牵涉到的量为标量,基本量是能量。搞清矢量理学与分析力学的主要区别,对解决分析力学有关问题大有好处。我们将其主要区别归纳如下: 1、处理有关约束问题时:在矢量力学中须用约束力代替约束条件,但往往由于约束力性质未知,所以事先既要讨论对它作出的某些假设,事后又常常要将它从方程中消去;分析力学在承认这些条件的前提下进行讨论,而不追问需要在何处用什么力来维持这些条件。这样,解题就会方便得多,这是分析力学的一个优点。 2、在建立运动微分方程时,在分析力学中可以根据统一的最小作用量原理求得。这样又极值原理所得方程与坐标系无关。当应用矢量力学寻找加速度时,尤其在空间问题中往往要用坐标系或柱坐标中的分量是去解题,这无疑给读者会带来一些困难,这也是在矢量力学中很少使用柱,球坐标系的原因(除非迫不得已);而在分析力学中这个困难就不复存在。 3、在处理质点组问题时,矢量力学是将个别质点孤立出来,分析每个质点所受的力,再用牛顿定律建立它们的运动微分方程;而分析力学是将质点组看成一个整体,只需求出一个仅与各质点位置(速度)有关的标函数。单凭微分便能获得有关各力的知识,并得到整个质点组的运动微分方程。 4、分析力学是以普通原理为基础(微分或积分的方法),采用分析手段导出系统整体的基本运动微分方程,并研究这些方程本身及积分的方法,与数学的关联更加紧密。因此,线性常微分方程组及非线性微分方程经常会碰到,数学上求泛函数的极值方法则是分析力学中哈密顿原理的基础了。所以,具有高等数学知识的读者不难解决较复杂的力学问题。为了能更具体理解分析力学的解体方法,

弹性力学

弹性力学 人类从很早时就已经知道利用物体的弹性性质了,比如古代弓箭就是利用物体弹性的例子。当时人们还是不自觉的运用弹性原理,而人们有系统、定量地研究弹性力学,是从17世纪开始的。 弹性力学的发展初期主要是通过实践,尤其是通过实验来探索弹性力学的基本规律。英国的胡克和法国的马略特于1680年分别独立地提出了弹性体的变形和所受外力成正比的定律,后被称为胡克定律。牛顿于1687年确立了力学三定律。 弹性力学的发展简史 同时,数学的发展,使得建立弹性力学数学理论的条件已大体具备,从而推动弹性力学进入第二个时期。在这个阶段除实验外,人们还用最粗糙的、不完备的理论来处理一些简单构件的力学问题。这些理论在后来都被指出有或多或少的缺点,有些甚至是完全错误的。 在17世纪末第二个时期开始时,人们主要研究粱的理论。到19世纪20年代法国的纳维和柯西才基本上建立了弹性力学的数学理论。柯西在1822~1828年间发表的一系列论文中,明确地提出了应变、应变分量、应力和应力分量的概念,建立了弹性力学的几何方程、运动(平衡)方程、各向同性以及各向异性材料的广义胡克定律,从而奠定了弹性力学的理论基础,打开了弹性力学向纵深发展的突破口。 第三个时期是线性各向同性弹性力学大发展的时期。这一时期的主要标志是弹性力学广泛应用于解决工程问题。同时在理论方面建立了许多重要的定理或原理,并提出了许多有效的计算方法。 1855~1858年间法国的圣维南发表了关于柱体扭转和弯曲的论文,可以说是第三个时期的开始。在他的论文中,理论结果和实验结果密切吻合,为弹性力

学的正确性提供了有力的证据;1881年德国的赫兹解出了两弹性体局部接触时弹性体内的应力分布;1898年德国的基尔施在计算圆孔附近的应力分布时,发现了应力集中。这些成就解释了过去无法解释的实验现象,在提高机械、结构等零件的设计水平方面起了重要作用,使弹性力学得到工程界的重视。 在这个时期,弹性力学的一般理论也有很大的发展。一方面建立了各种关于能量的定理(原理)。另一方面发展了许多有效的近似计算、数值计算和其他计算方法,如著名的瑞利──里兹法,为直接求解泛函极值问题开辟了道路,推动了力学、物理、工程中近似计算的蓬勃发展。 从20世纪20年代起,弹性力学在发展经典理论的同时,广泛地探讨了许多复杂的问题,出现了许多边缘分支:各向异性和非均匀体的理论,非线性板壳理论和非线性弹性力学,考虑温度影响的热弹性力学,研究固体同气体和液体相互作用的气动弹性力学和水弹性理论以及粘弹性理论等。磁弹性和微结构弹性理论也开始建立起来。此外,还建立了弹性力学广义变分原理。这些新领域的发展,丰富了弹性力学的内容,促进了有关工程技术的发展。 弹性力学的基本内容 弹性力学所依据的基本规律有三个:变形连续规律、应力-应变关系和运动(或平衡)规律,它们有时被称为弹性力学三大基本规律。弹性力学中许多定理、公式和结论等,都可以从三大基本规律推导出来。

弹性力学试题及答案

《弹性力学》试题参考答案(答题时间:100分钟) 一、填空题(每小题4分) 1.最小势能原理等价于弹性力学基本方程中: 平衡微分方程 , 应力边界条件 。 2.一组可能的应力分量应满足: 平衡微分方程 ,相容方程(变形协调条件) 。 3.等截面直杆扭转问题中, M dxdy D =?? 2?的物理意义是 杆端截面上剪应力对转轴的矩等于杆 截面内的扭矩M 。 4.平面问题的应力函数解法中,Airy 应力函数?在边界上值的物理意义为 边界上某一点(基准点)到任一点外力的矩 。 5.弹性力学平衡微分方程、几何方程的张量表示为: 0,=+i j ij X σ ,)(2 1,,i j j i ij u u +=ε。 二、简述题(每小题6分) 1.试简述力学中的圣维南原理,并说明它在弹性力学分析中的作用。 圣维南原理:如果物体的一小部分边界上的面力变换为分布不同但静力等效的面力(主矢与主矩相同),则近处的应力分布将有显著的改变,但远处的应力所受影响可以忽略不计。 作用:(1)将次要边界上复杂的面力(集中力、集中力偶等)作分布的面力代替。 (2)将次要的位移边界条件转化为应力边界条件处理。 2.图示两楔形体,试分别用直角坐标和极坐标写出其应力函数?的分离变量形式。 题二(2)图 (a )???=++= )(),(),(222θθ??f r r cy bxy ax y x (b )? ??=+++= )(),(),(3 3223θθ??f r r dy cxy y bx ax y x 3.图示矩形弹性薄板,沿对角线方向作用一对拉力P ,板的几何尺寸如图,材料的弹性模量E 、泊松比 μ 已知。试求薄板面积的改变量S ?。

(完整版)弹性力学第十一章弹性力学的变分原理

第十一章弹性力学的变分原理知识点 静力可能的应力 弹性体的功能关系 功的互等定理 弹性体的总势能 虚应力 应变余能函数 应力变分方程 最小余能原理的近似解法扭转问题最小余能近似解有限元原理与变分原理有限元原理的基本概念有限元整体分析几何可能的位移 虚位移 虚功原理 最小势能原理 瑞利-里茨(Rayleigh-Ritz)法 伽辽金(Гапёркин)法 最小余能原理 平面问题最小余能近似解 基于最小势能原理的近似计算方法基于最小余能原理的近似计算方法有限元单元分析 一、内容介绍 由于偏微分方程边值问题的求解在数学上的困难,因此对于弹性力学问题,只能采用半逆解方法得到个别问题解答。一般问题的求解是十分困难的,甚至是不可能的。因此,开发弹性力学的数值或者近似解法就具有极为重要的作用。 变分原理就是一种最有成效的近似解法,就其本质而言,是把弹性力学的基本方程的定解问题,转换为求解泛函的极值或者驻值问题,这样就将基本方程由偏微分方程的边值问题转换为线性代数方程组。变分原理不仅是弹性力学近似解法的基础,而且也是数值计算方法,例如有限元方法等的理论基础。 本章将系统地介绍最小势能原理和最小余能原理,并且应用变分原理求解弹

性力学问题。最后,将介绍有限元方法的基本概念。 本章内容要求学习变分法数学基础知识,如果你没有学过上述课程,请学习附录3或者查阅参考资料。 二、重点 1、几何可能的位移和静力可能的应力; 2、弹性体的虚功原理; 3、 最小势能原理及其应用;4、最小余能原理及其应用;5、有限元原理 的基本概念。 §11.1 弹性变形体的功能原理 学习思路: 本节讨论弹性体的功能原理。能量原理为弹性力学开拓了新的求解思路,使得基本方程由数学上求解困难的偏微分方程边值问题转化为代数方程组。而功能关系是能量原理的基础。 首先建立静力可能的应力和几何可能的位移概念;静力可能的应力 和几何可能的位移可以是同一弹性体中的两种不同的受力状态和变形状态,二者彼此独立而且无任何关系。 建立弹性体的功能关系。功能关系可以描述为:对于弹性体,外力在任意一组几何可能的位移上所做的功,等于任意一组静力可能的应力在与上述几何可能的位移对应的应变分量上所做的功。 学习要点: 1、静力可能的应力; 2、几何可能的位移; 3、弹性体的功能关系; 4、真实应力和位移分量表达的功能关系。 1、静力可能的应力 假设弹性变形体的体积为V,包围此体积的表面积为S。表面积为S可以分为两部分所组成:一部分是表面积的位移给定,称为S u;另外一部分是表面积的面力给定,称为Sσ 。如图所示

§1.1分析力学

第一章分析力学 到现在为止,我们所研究的力学问题,基本上是用牛顿运动定律来求解的。但用牛顿运动运动定律来求质点组的运动问题时,常常需要求解大量的微分方程组。如果质点组受到约束,则因约束反力都是未知的,所以并不能因此而减少,甚至是增加了问题的复杂性。十八、十九世纪,随着工业革命的迅速发展,在工程技术上迫切需要解决的又正好是这一类问题。因此迫切需要寻求另外的方法来处理这一问题。 1788年,拉格朗日写了一本大型著作《分析力学》,在这一本著作中,完全用数学分析的方法来解决所有的力学问题,而无需借助以往常用的几何方法,全书一张图也没有。在此基础上逐步发展成为一系列处理力学问题的新方法,称之为分析力学。 分析力学以拉格朗日和哈密顿等所建立的变分原理为基础,将力学的基本定律表示为分析数学的形式。通过分析的方法来解决任意力学体系的运动问题,它所涉及的量是标量。而牛顿力学涉及的量如力、速度、加速度等多为矢量。由此看来,分析力学和牛顿力学只是同一个力学领域应用不同的数学描述而已。对于自由质点和简单问题,两种方法无优劣(lie)之分,对复杂问题,分析力学的优越性就体现出来了。 分析力学是从能量的观点来研究力学问题,因而具有更广泛的应用价值。它广泛的应用于结构分析、机器动力学与振动、航天力学、多刚体系统、机器人动力学以及各种工程技术领域,也可推广应用于连续介质力学和相对论力学。许多新兴学科,如量子力学、相对论、电动力学、连续介质力学、天体力学、统计力学等等,都可以用到分析力学的理论和方法。但是,由于分析力学中的数学推理较多,在历史上也发生过一些不良倾向,容易使人忘记力学的物理实质,对此我们应当引以为戒。

分析力学的形成及其不同的表示

分析力学的形成及其不同的表示 摘要:分析了分析力学的历史背景及发展历程,介绍了分析力学的一些重要方程 和几种不同的表示方法. 关键词:约束力;虚功原理;非惯性系;拉格朗日方程;哈密顿原理;哈密顿正 则方程;积分形式;微分形式 引言:分析力学的基本内容是阐述力学的普遍原理,由这些原理出发导出质点系 的基本运动微分方程,并研究这些方程本身以及它们的积分方法.分析力 学作为一般力学的一个分支,以广义坐标为描述质点系的变量,以虚位移 原理和达朗贝尔原理为基础,运用数学分析方法研究宏观现象中的力学问 题,不必考虑理想约束,可以很方便地建立力学体系的运动微分方程,对一 些力学问题的解法进行优化,可以更加快速的求解.近20年来,又发展出 用近代微分几何的观点来研究分析力学的原理和方法.分析力学是经典物 理学的基础之一,也是整个力学的基础之一.它广泛用于结构分析、机器动 力学与振动、航天力学、多刚体系统和机器人动力学以及各种工程技术领 域,也可推广应用于连续介质力学和相对论力学. 一、分析力学的历史背景 分析力学是18世纪后叶随着工业革命的迅速发展而建立起来的. 到现在为止,我们所研究的力学问题基本上是以牛顿运动定律来求解的,但是在求质点组的运动问题时,常常要解算大量的微分方程组,如果质点组受到约束,则因约束反力都是未知的,所以并不能因此减少甚至增加了问题的复杂性.18、19世纪,随着工业革命的迅速发展,在工程技术上迫切需要解决的又正好是这一类问题.因此,迫切需要寻求另外的方法来解决这些问题.许多科学家将分析的方法用于力学解决了许多当时没有解决的问题,分析力学正是在这种历史的大背景下产生的. 二、分析力学的发展历程 1788年拉格朗日出版的《分析力学》是世界上最早的一本分析力学的著作.分析力学是建立在虚功原理和达朗贝尔原理的基础上.两者结合,可得到动力学普遍方程,从而导出分析力学各种系统的动力方程.1760~1761年,拉格朗日用这两个原理和理想约束结合,得到了动力学的普遍方程,几乎所有的分析力学的动力学方程都是从这个方程直接或间接导出的.1834年,汉密尔顿推得用广义坐标和广义动量联合表示的动力学方程,称为正则方程.汉密尔顿体系在多维空间中,可用代表一个系统的点的路径积分的变分原理研究完整系统的力学问题.从1861年有人导出球在水平面上作无滑动的滚动方程开始,到1899年阿佩尔在《理性力学》中提出阿佩尔方程为止,基本上已完成了线性非完整约束的理论.20世纪分析力学对非线性、不定常、变质量等力学系统作了进一步研究,对于运动的稳定性问题作了广泛的研究. 三、分析力学的形成 (一)分析力学的基本方程及条件 对于完整保守系统,其基本方程及条件如下: 1、广义速度广义位移关系 q dt q d v ==/, (3.1.1) 式中广义速度向量()()()[] T n t v t v t v v ,,,21 =,广义位移向量

有限差分法解薛定谔方程与MATLAB实现

第30卷 第3期高师理科学刊Vol.30No.32010年5月Journal of Science of Teachers ′College and University May 2010 文章编号:1007-9831(2010)03-0068-03 有限差分法解薛定谔方程与 MATLAB 实现 刘晓军(齐齐哈尔大学理学院,黑龙江齐齐哈尔161006) 摘要:介绍了用有限差分法解薛定谔方程,以一维无限深势阱、含位势的一维无限深势阱为例求解,并应用M ATL AB 软件编程计算,模拟画出几率图形. 关键词:有限差分法;薛定谔方程;一维无限深势阱 中图分类号:O413.1文献标识码:A doi :10.3969/j.issn.1007-9831.2010.03.022 在量子力学中求解薛定谔方程是一个重要的问题,但在实际问题中往往很难确定解析解,这样利用数值方法求数值解就有一定的优势和实际意义[1].还可以利用计算机手段给出形象化分析,更有利于理解和应用.根据有限差分法中的二阶微分中心差分算符(其中忽略3x 及更高阶项) [2]222 )()(2)()(d d x x x f x f x x f x f x ++=(1) 可将一维定态薛定谔方程[3])()()()(d d 22 2 2x E x x V x x =+=(2)化为)(])([)(2)()(2)(22x E x V x x x x x x =++= (3)以点x n x n =(N n ....3,2,1=)将坐标分为N 个相等的间隔,当N 充分大时,x 就足够小.将第k 个分点的波函数简记为)(x k k =[4].同时满足条件 00==n ,则式(3)化简为k k k k k E x β2211)(2=++=(4) 式中)()(2222x k V x k + ==β(5)0...000 (000) ..................00...R -0 00...00 (01) 221 =E R R E E R E R R E N N ααααα(6)式(6)为对应的久期方程.式中)(2;)(222 x k V R x R k +==α=(7) 将相对复杂的方程就转化为解久期方程的问题,即使维数再高也是容易求解的. 收稿日期:35 作者简介:刘晓军(),男,黑龙江富裕人,副教授,硕士,从事理论物理与数值模拟研究.:xj @632010-0-01972-E-mail l https://www.doczj.com/doc/407894648.html,

最新弹性力学基础知识归纳

一.填空题 1.最小势能原理等价于平衡微分方程和应力边界条件 2.一组可能的应力分量应满足平衡微分方程和相容方程。二.简答题 1.简述圣维南原理并说明它在弹性力学中的作用。 如果把物体一小部分边界上的面力变换为分布不同但是静 力等效的面力(主矢和主矩相同),则近处的应力分布将有显著改变,远处所受的影响则忽略不计。 作用;(1)将次要边界上复杂的集中力或者力偶变换成为简单 的分布的面力。 (2)将次要的位移边界条件做应力边界条件处理。 2.写出弹性力学的平面问题的基本方程。应用这些方程时, 应注意什么问题? (1).平衡微分方程:决定应力分量的问题是超静定的。 (2).物理方程:平面应力问题和应变问题的物理方程是不一样的,注意转换。 (3).几何方程:注意物体的位移分量完全确定时,形变分量也完全确定。但是形变分量完全确定时,位移分量不完全确定。 3.按照边界条件的不同,弹性力学分为哪几类边界问题? 应力边界条件,位移边界条件和混合边界条件。 4.弹性体任意一点的应力状态由几个分量决定?如何确定他 们的正负号?

由六个分量决定。在确定方向的时候,正面上的应力沿正方向为正,负方向为负。负面上的应力沿负方向为正,正方向为负。 5.什么叫平面应力问题和平面应变问题?举出工程实例。平面应力问题是指很薄的等厚度薄板只在板边上受平行于板面并且不沿厚度变化的面力,同时体力也平行于板面并且不沿厚度变化。例如工程中的深梁和平板坝的平板支墩。平面应变问题是指很长的柱形体,它的横截面在柱面上受有平行于横截面并且不沿长度变化的面力,同时体力也不沿长度变化。例如 6.弹性力学中的基本假定有哪几个?什么是理想弹性体?举例说明。 (1)完全弹性假定。 (2)均匀性假定。 (3)连续性假定。 (4)各向同性假定。 (5)小变形假定。 满足完全弹性假定,均匀性假定,连续性假定和各向同性假定的是理想弹性体。一般混凝土构件和一般土质地基可以看做为理想弹性体。 7.什么是差分法?写出基本差分公式? 差分法是把基本方程和边界条件近似地看改用差分方程(代

相关主题
文本预览
相关文档 最新文档