控制测量学_椭球面上的测量计算资料
- 格式:ppt
- 大小:1.33 MB
- 文档页数:32
(第7章)椭球面上的基本计算第七章椭球面上的基本计算§1 地球椭球的基本知识一、地球形状的概念地球的自然表面——不规则;不能在上面进行计算;大地水准面——平均海水面延伸得到的封闭曲面,最接近大地自然表面;∵大地水准面具有性质:大地水准面上任一点处的垂线(重力方向)与该点处切面正交;又:重力是离心力与地心引力的合力(离心力与地心引力之比约1:300),而大地水准面上各点处引力不等,造成各点处垂线方向各异。
∴各点处切面组成的曲面——大地水准面亦不规则,有微小起伏,是一个具有物理性质的曲面。
实践和理论均可证明:1)在各水准面(与大地水准面的不平行性不很明显)上测得的水平角,因归化到大地水准面上改正极微小,完全可以看成大地水准面上的角值;2)各高程面上测得之边长也可化算到大地水准面上;3)地面点的高程亦从大地水准面起算。
结论:大地水准面是测量外业的基准面;但它是物理曲面而非数学曲面,所以不能作为测量计算的基准面。
大地体——大地水准面包围的形体;地球椭球——代表地球形体的旋转椭球体;椭球面上处处法线与该点的切面正交,是一个具有数学性质的曲面;总地球椭球——与大地体最接近的地球椭球。
应满足:①其中心应与地球质心重合;②旋转轴应与地轴重合,赤道应与地球赤道重合;③体积应与大地体体积相等;④总椭球面与大地水准面之间的高差平方和最小。
参考椭球——与某一局部大地水准面密切配合的椭球。
二、椭球的几何元素与参数1.椭球的元素长半径:a 短半径:b 2.椭球的参数扁率:α=(a -b)/a 第一偏心率: a b a e /22-= 第二偏心率:b b a e /22-=' 式中:22b a -——椭圆的焦距,即椭圆的焦点到椭圆中心的距离3.关系式21e b a '-= 21e a b -= )1(2e e e -'= )1(2e e e '-='(1+e ′2) (1-e 2)=1e 2=2α -α 2 ≈2 α (α ≈1/300)我国解放前使用海福特椭球等。
第七章椭球面上的基本计算§1 地球椭球的基本知识一、地球形状的概念地球的自然表面——不规则;不能在上面进行计算;大地水准面——平均海水面延伸得到的封闭曲面,最接近大地自然表面;∵大地水准面具有性质:大地水准面上任一点处的垂线(重力方向)与该点处切面正交;又:重力是离心力与地心引力的合力(离心力与地心引力之比约1:300),而大地水准面上各点处引力不等,造成各点处垂线方向各异。
∴各点处切面组成的曲面——大地水准面亦不规则,有微小起伏,是一个具有物理性质的曲面。
实践和理论均可证明:1)在各水准面(与大地水准面的不平行性不很明显)上测得的水平角,因归化到大地水准面上改正极微小,完全可以看成大地水准面上的角值;2)各高程面上测得之边长也可化算到大地水准面上;3)地面点的高程亦从大地水准面起算。
结论:大地水准面是测量外业的基准面;但它是物理曲面而非数学曲面,所以不能作为测量计算的基准面。
大地体——大地水准面包围的形体;地球椭球——代表地球形体的旋转椭球体;椭球面上处处法线与该点的切面正交,是一个具有数学性质的曲面;总地球椭球——与大地体最接近的地球椭球。
应满足:①其中心应与地球质心重合;②旋转轴应与地轴重合,赤道应与地球赤道重合;③体积应与大地体体积相等;④总椭球面与大地水准面之间的高差平方和最小。
参考椭球——与某一局部大地水准面密切配合的椭球。
二、椭球的几何元素与参数1.椭球的元素长半径:a短半径:b2.椭球的参数扁率: α=(a -b)/a 第一偏心率: a b a e /22-= 第二偏心率: b b a e /22-=' 式中:22b a -——椭圆的焦距,即椭圆的焦点到椭圆中心的距离3.关系式(1+ e ′2) (1-e 2)=1e 2=2α -α 2 ≈2 α (α ≈1/300)我国解放前使用海福特椭球等。
解放后,我国的“1954年北京坐标系”采用克拉索夫斯基椭球,“1980国家大地坐标系”采用“IAG75”椭球,而全球定位系统(GPS )采用的是WGS-84椭球参数。