工程力学范钦珊第二版7、8复习弯曲强度与弯曲变形
- 格式:ppt
- 大小:1.40 MB
- 文档页数:40
第一章静力学基本概念1.1 解F=F x+F y=F x i+F y jF1=1000N=-1000Cos30ºi-1000Sin30ºjF2=1500N=1500Cos90ºi- 1500Sin90ºjF3=3000N=3000 Cos45ºi+3000Sin45ºjF4=2000N=2000 Cos60ºi-2000Sin60ºj1.2因为前进方向与力F A,F B之间均为45º夹角,要保证二力的合力为前进方向,则必须F A=F B。
所以:F B=F A=400N1.3解:M O(F)=F l解:M O(F)=0解: M O(F)=F l sinβ解: M O(F)=F l sinθ解: M O(F)= -F a解:M O(F)= F(l+r)解:1.4解:1.5解:1位置:M A(G)=02位置:M A(G)=-G l sinθ3位置:M A(G)=-G l1.6解:M O(F n)=-F n cosθ·D/2=-75.2N·m 1.71.8第二章平面力系2.1 力系简化解:(1)主矢大小与方位:F/R x=∑F x=F1cos45º+F3+F4cos60º=100Ncos45º+200N+250cos60º=395.7N F/R y=∑F y=F1sin45º-F2-F4sin60º=100Nsin45º-150N-250sin60º=-295.8N(2)主矩大小和转向:M O=∑M O(F)=M O(F1)+M O(F2)+M O(F3)+M O(F4)+m=0-F2×0.3m+F3×0.2m+F4sin60×0.1m+F×0.1m=0-150N×0.3m+200N×0.2m+250Nsin60×0.1m+50N×0.1m =21.65N·m( )向O点的简化结果如图所示。
eBook工程力学(静力学与材料力学)习题详细解答(教师用书)(第7章)范钦珊唐静静2006-12-18第7章弯曲强度7-1 直径为d的圆截面梁,两端在对称面内承受力偶矩为M的力偶作用,如图所示。
若已知变形后中性层的曲率半径为ρ;材料的弹性模量为E。
根据d、ρ、E可以求得梁所承受的力偶矩M。
现在有4种答案,请判断哪一种是正确的。
习题7-1图(A) M=Eπd 64ρ64ρ (B) M=Eπd4Eπd3(C) M=32ρ32ρ (D) M=Eπd34 正确答案是。
7-2 关于平面弯曲正应力公式的应用条件,有以下4种答案,请判断哪一种是正确的。
(A) 细长梁、弹性范围内加载;(B) 弹性范围内加载、载荷加在对称面或主轴平面内;(C) 细长梁、弹性范围内加载、载荷加在对称面或主轴平面内;(D) 细长梁、载荷加在对称面或主轴平面内。
正确答案是 C _。
7-3 长度相同、承受同样的均布载荷q作用的梁,有图中所示的4种支承方式,如果从梁的强度考虑,请判断哪一种支承方式最合理。
l 5习题7-3图正确答案是7-4 悬臂梁受力及截面尺寸如图所示。
图中的尺寸单位为mm。
求:梁的1-1截面上A、 2B两点的正应力。
习题7-4图解:1. 计算梁的1-1截面上的弯矩:M=−⎜1×10N×1m+600N/m×1m×2. 确定梁的1-1截面上A、B两点的正应力:A点:⎛⎝31m⎞=−1300N⋅m 2⎟⎠⎛150×10−3m⎞−20×10−3m⎟1300N⋅m×⎜2My⎝⎠×106Pa=2.54MPa(拉应力)σA=z=3Iz100×10-3m×150×10-3m()12B点:⎛0.150m⎞1300N⋅m×⎜−0.04m⎟My⎝2⎠=1.62×106Pa=1.62MPa(压应力)σB=z=3Iz0.1m×0.15m127-5 简支梁如图所示。
习题7-4图 材料力学_高教第二版_范钦珊_第7章习题答案第7章 弹性平衡稳定性分析7-1 关于钢制细长压杆受力达到分叉载荷之后,还能不能继续承载,有如下四种答案,试判断哪一种是正确的。
(A )不能,因为载荷达到临界值时,屈曲位移将无限制地增加; (B )能,压杆一直到折断时为止都有承载能力;(C )能,只要横截面上的最大应力不超过一定限度; (D )不能,因为超过分叉载荷后变形不再是弹性的。
正确答案是 C 。
7-2 图示两端铰支圆截面细长压杆,在某一截面上开有一小孔。
关于这一小孔对压杆承载能力的影响,有以下四种论述,试判断哪一种是正确的。
(A )对强度和稳定承载能力都有较大削弱; (B )对强度和稳定承载能力都不会削弱;(C )对强度无削弱,对稳定承载能力有较大削弱;(D )对强度有较大削弱,对稳定承载能力削弱极微。
正确答案是 D 。
7-3 图示a 、b 、c 、d 四桁架的几何尺寸、杆的横截面直径、材料、加力点及加力方向均相同。
关于四桁架所能承受的最大外力F Pmax 有如下四种结论,试判断哪一种是正确的。
(A ))d ()b ()c ()a (max P max P max P max P F F F F =<=; (B ))d ()b ()c ()a (max P max P max P max P F F F F ===; (C ))c ()b ()d ()a (max P max P max P max P F F F F =<=;(D ))d ()c ()()a (max P max P max P max P F F b F F =<=。
正确答案是 A 。
正确答案是 D 。
7-5 一端固定、另一端弹簧侧向支承的压杆。
若可采用欧拉公式22Pcr )/(πl EI F μ=,试确定其中长度系数的取值范围为(A )0.2>μ;(B )0.27.0<<μ;(C )5.0<μ;(D )7.05.0<<μ。
习题7-3图习题7-4图材料力学_高教第二版_范钦珊_第7章习题答案第7章 弹性平衡稳定性分析7-1 关于钢制细长压杆受力达到分叉载荷之后,还能不能继续承载,有如下四种答案,试判断哪一种是正确的。
(A )不能,因为载荷达到临界值时,屈曲位移将无限制地增加; (B )能,压杆一直到折断时为止都有承载能力;(C )能,只要横截面上的最大应力不超过一定限度; (D )不能,因为超过分叉载荷后变形不再是弹性的。
正确答案是 C 。
7-2 图示两端铰支圆截面细长压杆,在某一截面上开有一小孔。
关于这一小孔对压杆承载能力的影响,有以下四种论述,试判断哪一种是正确的。
(A )对强度和稳定承载能力都有较大削弱; (B )对强度和稳定承载能力都不会削弱;(C )对强度无削弱,对稳定承载能力有较大削弱;(D )对强度有较大削弱,对稳定承载能力削弱极微。
正确答案是 D 。
7-3 图示a 、b 、c 、d 四桁架的几何尺寸、杆的横截面直径、材料、加力点及加力方向均相同。
关于四桁架所能承受的最大外力F Pmax 有如下四种结论,试判断哪一种是正确的。
(A ))d ()b ()c ()a (max P max P max P max P F F F F =<=; (B ))d ()b ()c ()a (max P max P max P max P F F F F ===; (C ))c ()b ()d ()a (max P max P max P max P F F F F =<=;(D ))d ()c ()()a (max P max P max P max P F F b F F =<=。
正确答案是 A 。
7-4 图示四压杆均为圆截面直杆,杆长相同,且均为轴向加载。
关于四者分叉载荷大小有四种解答,试判断哪一种是正确的(其中弹簧的刚度较大)。
(A ))d ()c ()b ()a (Pcr Pcr Pcr Pcr F F F F <<<;(B ))d ()c ()b ()a (Pcr Pcr Pcr Pcr F F F F >>>; (C ))a ()d ()c ()b (Pcr Pcr Pcr Pcr F F F F >>>; (D ))d ()c ()a ()b (Pcr Pcr Pcr Pcr F F F F >>>。
第7章 刚体的平面运动习题7-1 直杆AB 长为l ,两端分别沿着水平和铅直方向运动,已知点A 的速度A υ为常矢量,试求当 60=θ时,点B 的速度和杆AB 的角速度。
(a ) (b )解法一(如图a )1.运动分析:杆AB 作平面运动。
2.速度分析:A B A B v v v +=,作速度矢量合成图 IA AB υυυ360tan == A A BA υυυ260cos /==A BAlAB υυω2==解法二(如图b )1.运动分析:杆AB 作平面运动。
2.速度分析:杆AB 的速度瞬心是点I 。
ωυ⨯=AP A A All υυω260cos ==A AB ll BP υυωυ3260sin =⨯⨯=⨯=s rad /6=ω,试求图示位置时,滑块B 的速度以及连杆AB 的角速度。
解:1.运动分析:杆AB 均作一般平面运动,滑块作直线运动,杆OA 作定轴转动。
2.速度分析:对杆AB ,s m OA A /12=⨯=ωυA B A B v v v +=或AB B AB A v v ][][=30cos B A υυ=s m B /38=υs m A BA /3430tan =⨯=υυ s rad ABBAAB /2==υω7-3 图示机构,滑块B 以s m /12的速度沿滑道斜向上运动,试求图示瞬时杆OA 与杆AB 的角速度。
解:AB 杆运动的瞬心为I 点。
AB B BP ωυ⨯= s r a d BAB /325.043=⨯=υωs m AP AB A /2.7323.043=⨯⨯=⨯=ωυ 4.0⨯=OA A ωυ s rad OA /184.02.7==ω 或利s /m .B A 2753==υυOA=2m ,,圆轮半径为2m ,s rad /60=ω,试求图示位置时,轮心的速度,圆轮的角速度及连杆AB 的角速度。
解:1.运动分析:圆轮和杆AB 均作一般平面运动。
杆OA 作定轴转动。