2020中考数学试题及答案分类汇编:统计与概率
- 格式:doc
- 大小:644.70 KB
- 文档页数:22
2020年中考数学真题分项汇编(湖南专版)专题13 统计与概率1. (2020年湖南长沙中考)一个不透明袋子中装有1个红球,2个绿球,除颜色外无其他差别。
从中随机摸出一个球,然后放回摇匀,再随机摸出一个,下列说法中,错误的是 ( ) A. 第一次摸出的球是红球,第二次摸出的球一定是绿球; B. 第一次摸出的球是红球,第二次摸出的球不一定是红球;C. 第一次摸出的球是红球的概率是31; D. 两次摸出的球都是红球的概率是91。
【答案】A【解析】第一次和第二次摸出球的颜色相互独立,注意题干中说明了第一次摸完后会放回,A 选项中,第二次摸出的球可能是红球,也可能是绿球。
故A 错误,选A. 2.(2020年湖南常德中考)下列说法正确的是( )A .明天的降水概率为80%,则明天80%的时间下雨,20%的时间不下雨B .抛掷一枚质地均匀的硬币两次,必有一次正面朝上C .了解一批花炮的燃放质量,应采用抽样调查方式D .一组数据的众数一定只有一个【分析】根据必然事件的概念、众数的定义、随机事件的概率逐项分析即可得出答案. 解:A 、明天的降水概率为80%,则明天下雨可能性较大,故本选项错误; B 、抛掷一枚质地均匀的硬币两次,正面朝上的概率是21,故本选项错误; C 、了解一批花炮的燃放质量,应采用抽样调查方式,故本选项正确; D 、一组数据的众数不一定只有一个,故本选项错误; 故选:C .3.(2020年湖南怀化中考)小明到某公司应聘,他想了解自己入职后的工资情况,他需要关注该公司所有员工工资的( )A. 众数B. 中位数C. 方差D. 平均数【答案】B【解析】根据题意,结合该公司所有员工工资的情况,从统计量的角度分析可得答案.【详解】解:根据题意,小明到某公司应聘,了解这家公司的员工的工资情况,就要全面的了解中间员工的工资水平, 故最应该关注的数据是中位数, 故选:B .4.(2020年湖南湘潭中考)为庆祝建党99周年,某校八年级(3)班团支部为了让同学们进一步了解中国科技的发展,给班上同学布置了一项课外作业,从选出的以下五个内容中任选部分内容进行手抄报的制作:A、“北斗卫星”:B、“5G时代”;C、“智轨快运系统”;D、“东风快递”;E、“高铁”.统计同学们所选内容的频数,绘制如图所示的折线统计图,则选择“5G时代”的频率是( )A. 0.25B. 0.3C. 25D. 30【答案】B【分析】先计算出八年级(3)班的全体人数,然后用选择“5G时代”的人数除以八年级(3)班的全体人数即可.【详解】由图知,八年级(3)班的全体人数为:25+30+10+20+15=100(人)选择“5G时代”的人数为:30人∴选择“5G时代”的频率是:30=0.3 100故选:B.5.(2020年湖南湘西中考)从长度分别为1cm、3cm、5cm、6cm四条线段中随机取出三条,则能够组成三角形的概率为( )A. 14B.13C.12D.34【答案】A【解析】试验发生包含的基本事件可以列举出共4种,而满足条件的事件是可以构成三角形的事件,可以列举出共1种,根据概率公式得到结果.【详解】解:∵试验发生包含的基本事件为(1cm,3cm,5cm);(1cm,3cm,6cm);(1cm,5cm,6cm);(3cm,5cm,6cm),共4种;而满足条件的事件是可以构成三角形的事件为(3cm,5cm,6cm),共1种;∴以这三条线段为边可以构成三角形的概率是14,故选:A.6.(2020年湖南株洲中考)一个不透明的盒子中装有4个形状、大小质地完全相同的小球,这些小球上分别标有数字-1、0、2和3.从中随机地摸取一个小球,则这个小球所标数字是正数的概率为( )A. 14B.13C.12D.34【答案】C【分析】根据随机事件概率大小的求法,找准两点:①符合条件的情况数目,②全部情况的总数,二者的比值就是其发生的概率的大小.【详解】解:根据题意可得:4个小球中,其中标有2,3是正数,故从中随机地摸取一个小球,则这个小球所标数字是正数的概率为:2142 =.故选:C.7.(2020年湖南株洲中考)数据12、15、18、17、10、19的中位数为( )A. 14B. 15C. 16D. 17【答案】C【解析】首先将这组数据按大小顺序排列,再利用中位数定义,即可求出这组数据的中位数.【详解】解:把这组数据从小到大排列为:10,12,15,17,18,19,则这组数据的中位数是15172+=16.故选:C.8.(2020年湖南张家界市中考)下列采用的调查方式中,不合适的是( )A. 了解澧水河的水质,采用抽样调查.B. 了解一批灯泡的使用寿命,采用全面调查.C. 了解张家界市中学生睡眠时间,采用抽样调查.D. 了解某班同学的数学成绩,采用全面调查.【答案】B【解析】根据调查对象的特点,结合普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果接近准确数值,从而可得答案.【详解】解:了解澧水河的水质,采用普查不太可能做到,所以采用抽样调查,故A合适,了解一批灯泡的使用寿命,不宜采用全面调查,因为调查带有破坏性,故B不合适,了解张家界市中学生睡眠时间,工作量大,宜采用抽样调查,故C合适,了解某班同学的数学成绩,采用全面调查.合适,故D合适,故选B.9.(2020年湖南岳阳中考)今年端午小长假复课第一天,学校根据疫情防控要求,对所有进入校园的师生进行体温检测,其中7名学生的体温(单位:℃)如下:36.5,36.3,36.8,36.3,36.5,36.7,36.5,这组数据的众数和中位数分别是( )A. 36.3,36.5B. 36.5,36.5C. 36.5,36.3D. 36.3,36.7【答案】B【解析】根据众数、中位数的概念求出众数和中位数即可判断.【详解】解:将这7名学生的体温按从小到大的顺序排列如下:36.3,36.3,36.5,36.5,36.5,36.7,36.8则中位数就是第4个数:36.5;出现次数最多的数是36.5,则众数为:36.5;故选:B10.(2020年湖南长沙中考)长沙地铁3号线、5号线即将试运行,为了解市民每周乘坐地铁出行的次数,某校园小记者随机调查了100名市民,得到如下统计表:这次调查中的众数和中位数分别是、。
2020年中考数学试题分类汇编之六概率与统计一、选择题7.(2020北京)不透明的袋子中装有两个小球,上面分别写着“1”,“2”,除数字外两个小球无其他差别.从中随机摸出一个小球,记录其数字,放回并摇匀,再从中随机摸出一个小球,记录其数字,那么两次记录的数字之和为3的概率是( ) A.14 B.13 C.12 D.23【解析】由题意,共4种情况:1+1;1+2;2+1;2+2,其中满足题意的有两种,故选C 6.((2020安徽)4分)冉冉的妈妈在网上销售装饰品.最近一周,每天销售某种装饰品的个数为:11,10,11,13,11,13,15.关于这组数据,冉冉得出如下结果,其中错误的是( ) A .众数是11B .平均数是12C .方差是187D .中位数是13【解答】解:数据11,10,11,13,11,13,15中,11出现的次数最多是3次,因此众数是11,于是A 选项不符合题意;将这7个数据从小到大排列后,处在中间位置的一个数是11,因此中位数是11,于是D 符合题意;(11101113111315)712x =++++++÷=,即平均数是12,于是选项B 不符合题意; 22222118[(1012)(1112)3(1312)2(1512)]77S =-+-⨯+-⨯+-=,因此方差为187,于是选项C 不符合题意; 故选:D .6.(2020成都)(3分)成都是国家历史文化名城,区域内的都江堰、武侯祠、杜甫草堂、金沙遗址、青羊宫都有深厚的文化底蕴.某班同学分小组到以上五个地方进行研学旅行,人数分别为:12,5,11,5,7(单位:人),这组数据的众数和中位数分别是( ) A .5人,7人B .5人,11人C .5人,12人D .7人,11人【解答】解:5出现了2次,出现的次数最多,则众数是5人;把这组数据从小到大排列:5,5,7,11,12,最中间的数是7,则中位数是7人. 故选:A .2.(2020广州)某校饭堂随机抽取了100名学生,对他们最喜欢的套餐种类进行 问卷调査后(每人选一种),绘制了如图1的条形统计图,根据图中的信息,学生最喜欢的套餐种类是(* ).(A)套餐一(B)套餐二(C)套餐三(D)套餐四【答案】A4.(2020陕西)如图,是A市某一天的气温随时间变化的情况,则这天的日温差(最高气温与最低气温的差)是()A.4℃B.8℃C.12℃D.16℃【分析】根据A市某一天内的气温变化图,分析变化趋势和具体数值,即可求出答案.【解答】解:从折线统计图中可以看出,这一天中最高气温8℃,最低气温是﹣4℃,这一天中最高气温与最低气温的差为12℃,故选:C.9.(2020哈尔滨)(3分)一个不透明的袋子中装有9个小球,其中6个红球、3个绿球,这些小球除颜色外无其他差别,从袋子中随机摸出一个小球.则摸出的小球是红球的概率是()A.23B.12C.13D.19解:袋子中一共有9个除颜色不同外其它均相同的小球,其中红球有6个,∴摸出的小球是红球的概率是62 93 =,故选:A.7.(2020杭州)(3分)在某次演讲比赛中,五位评委给选手圆圆打分,得到互不相等的五个分数.若去掉一个最高分,平均分为x;去掉一个最低分,平均分为y;同时去掉一个最高分和一个最低分,平均分为z,则()A.y>z>x B.x>z>y C.y>x>z D.z>y>x选:A.5.(2020河北)如图是小颖前三次购买苹果单价的统计图,第四次又买的苹果单价是a元/千克,发现这四个单价的中位数恰好也是众数,则a ()A. 9B. 8C. 7D. 6【答案】B【详解】解:由条形统计图可知,前三次的中位数是8∵第四次又买的苹果单价是a元/千克,这四个单价的中位数恰好也是众数∵a=8.故答案为B.3.(2020河南)要调查下列问题,适合采用全面调查(普查)的是()A. 中央电视台《开学第--课》的收视率B. 某城市居民6月份人均网上购物的次数C. 即将发射的气象卫星的零部件质量D. 某品牌新能源汽车的最大续航里程【答案】C【详解】A、中央电视台《开学第--课》的收视率适合采用抽样调查方式,故不符合题意;B、某城市居民6月份人均网上购物的次数适合采用抽样调查方式,故不符合题意;C、即将发射的气象卫星的零部件质量适合采用全面调查方式,故符合题意;D、某品牌新能源汽车的最大续航里程适合采用抽样调查方式,故不符合题意,故选:C.6.(2020苏州)某手表厂抽查了10只手表的日走时误差,数据如下表所示(单位:s):则这10只手表的平均日走时误差(单位:s)是()A. 0B. 0.6C. 0.8D. 1.1【答案】D【详解】由题意得:(0×3+1×4+2×2+3×1)÷10=1.1(s)故选D.2.(2020乐山)某校在全校学生中举办了一次“交通安全知识”测试,张老师从全校学生的答卷中随机地抽取了部分学生的答卷,将测试成绩按“差”、“中”、“良”、“优”划分为四个等级,并绘制成如图所示的条形统计图.若该校学生共有2000人,则其中成绩为“良”和“优”的总人数估计为()A. 1100B. 1000C. 900D. 110【答案】A4.(2020南京)(2分)党的十八大以来,党中央把脱贫攻坚摆到更加突出的位置.根据国家统计局发布的数据,2012~2019年年末全国农村贫困人口的情况如图所示.根据图中提供的信息,下列说法错误的是()A.2019年末,农村贫困人口比上年末减少551万人B.2012年末至2019年末,农村贫困人口累计减少超过9000万人C.2012年末至2019年末,连续7年每年农村贫困人口减少1000万人以上D.为在2020年末农村贫困人口全部脱贫,今年要确保完成减少551万农村贫困人口的任务选:A.8.(2020四川绵阳)将一个篮球和一个足球随机的放入3个不同的篮子中,则恰有一个篮子为空的概率是()A.23B.12C.13D.16【解析】本题考查概率知识。
台州市2020年中考数学试题分类解析专题07:统计与概率一、选择题1. (2020年浙江台州4分)抛掷一枚硬币,正面向上的概率为【】A.1 B.12C.13D.142. (2020年浙江台州4分)数据10,10,10,11,12,12,15,15的众数是【】A.10 B.11 C.12 D.15【答案】A。
【考点】众数。
【分析】众数是在一组数据中,出现次数最多的数据,这组数据中,出现次数最多的是10,故这组数据的众数为10。
故选A。
3. (2020年浙江台州4分)一组数据9.5,9,8.5,8,7.5的极差是【】A.0.5 B.8.5 C.2.5 D.2【答案】D。
【考点】极差。
【分析】根据一组数据中的最大数据与最小数据的差叫做这组数据的极差的定义,这组数据的极差是9.5-7.5=2。
故选D。
4. (2020年浙江台州4分)数据1,2,2,3,5的众数是【】A.1 B.2 C.3 D.5【答案】B。
【考点】众数。
【分析】众数是在一组数据中,出现次数最多的数据,这组数据中,出现次数最多的是2,故这组数据的众数为2。
故选B。
5. (2020年浙江台州4分)盒子里有3支红色笔芯,2支黑色笔芯,每支笔芯除颜色外均相同.从中任意拿出一支笔芯,则拿出黑色笔芯的概率是【】A.23B.15C.25D.35【答案】C。
【考点】概率。
【分析】根据概率的求法,找准两点:①全部等可能情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率。
因此,从5支笔芯中任意拿出一支笔芯,则拿出黑色笔芯的概率是22=325。
故选C。
6. (2020年浙江台州4分)下列说法中正确的是【】A.“打开电视,正在播放《新闻联播》”是必然事件;B.某次抽奖活动中奖的概率为1100,说明每买100张奖券,一定有一次中奖;C.数据1,1,2,2,3的众数是3;D.想了解台州市城镇居民人均年收入水平,宜采用抽样调查.发生,买100张奖券,也不一定中奖,选项错误;C.数据1,1,2,2,3的众数是1,2,选项错误;D.想了解台州市城镇居民人均年收入水平,宜采用抽样调查,选项正确。
2013--2020年安徽省中考数学--统计与概率一、选择题(本大题共8小题,共32.0分)1.如图,随机闭合开关K1、K2、K3中的两个,则能让两盏灯泡同时发光的概率为()A. 16B. 13C. 12D. 232.某棉纺厂为了解一批棉花的质量,从中随机抽取了20根棉花纤维进行测量,其长度x(单位:mm)的数据分布如下表所示,则棉花纤维长度的数据在8≤x<32这个范围的频率为()棉花纤维长度x频数0≤x<818≤x<16216≤x<24824≤x<32632≤x<403A. 0.8B. 0.7C. 0.4D. 0.23.某校九年级(1)班全体学生毕业体育考试的成绩统计如下表:成绩(分)35394244454850人数(人)2566876根据上表中的信息判断,下列结论中错误的是()A. 该班一共有40名同学B. 该班学生这次考试成绩的众数是45分C. 该班学生这次考试成绩的中位数是45分D. 该班学生这次考试成绩的平均数是45分4.自来水公司调查了若干用户的月用水量x(单位:吨),按月用水量将用户分成A、B、C、D、E五组进行统计,并制作了如图所示的扇形统计图.已知除B组以外,参与调查的用户共64户,则所有参与调查的用户中月用水量在6吨以下的共有()组别月用水量x(单位:吨)A0≤x<3B3≤x<6C6≤x<9D9≤x<12E x≥12A. 18户B. 20户C. 22户D. 24户5.为了解某校学生今年五一期间参加社团活动时间的情况,随机抽查了其中100名学生进行统计,并绘制成如图所示的频数直方图,已知该校共有1000名学生,据此估计,该校五一期间参加社团活动时间在8~10小时之间的学生数大约是()A. 280B. 240C. 300D. 2606.为考察两名实习工人的工作情况,质检部将他们工作第一周每天生产合格产品的个数整理成甲、乙两组数据,如下表:甲26778乙23488关于以上数据,说法正确的是()A. 甲、乙的众数相同B. 甲、乙的中位数相同C. 甲的平均数小于乙的平均数D. 甲的方差小于乙的方差7.在某时段由50辆车通过一个雷达测速点,工作人员将测得的车速绘制成如图所示的条形统计图,则这50辆车的车速的众数(单位:km/ℎ)为()A. 60B. 50C. 40D. 158.冉冉的妈妈在网上销售装饰品.最近一周,每天销售某种装饰品的个数为:11,10,11,13,11,13,15.关于这组数据,冉冉得出如下结果,其中错误的是()A. 众数是11B. 平均数是12C. 方差是18D. 中位数是137二、计算题(本大题共2小题,共24.0分)9.如图,管中放置着三根同样的绳子AA1、BB1、CC1;(1)小明从这三根绳子中随机选一根,恰好选中绳子AA1的概率是多少?(2)小明先从左端A、B、C三个绳头中随机选两个打一个结,再从右端A1、B1、C1三个绳头中随机选两个打一个结,求这三根绳子能连结成一根长绳的概率.10.“校园诗歌大赛”结束后,张老师和李老师将所有参赛选手的比赛成绩(得分均为整数)进行整理,并分别绘制成扇形统计图和频数直方图.部分信息如下:(1)本次比赛参赛选手共有______人,扇形统计图中“69.5~79.5”这一组人数占总参赛人数的百分比为______;(2)赛前规定,成绩由高到低前60%的参赛选手获奖.某参赛选手的比赛成绩为78分,试判断他能否获奖,并说明理由;(3)成绩前四名是2名男生和2名女生,若从他们中任选2人作为获奖代表发言,试求恰好选中1男1女的概率.三、解答题(本大题共6小题,共70.0分)11.某厂为了解工人在单位时间内加工同一种零件的技能水平,随机抽取了50名工人加工的零件进行检测,统计出他们各自加工的合格品数是1−8这8个整数,现提供统计图的部分信息如图,请解答下列问题:(1)根据统计图,求这50名工人加工出的合格品数的中位数;(2)写出这50名工人加工出的合格品数的众数的可能取值;(3)厂方认定,工人在单位时间内加工出的合格品数不低于3件为技能合格,否则,将接受技能再培训.已知该厂有同类工人400名,请估计该厂将接受技能再培训的人数.12.A、B、C三人玩篮球传球游戏,游戏规则是:第一次传球由A将球随机地传给B、C两人中的某一人,以后的每一次传球都是由上次的传球者随机地传给其他两人中的某一人.(1)求两次传球后,球恰在B手中的概率;(2)求三次传球后,球恰在A手中的概率.13.一袋中装有形状大小都相同的四个小球,每个小球上各标有一个数字,分别是1,4,7,8.现规定从袋中任取一个小球,对应的数字作为一个两位数的个位数;然后将小球放回袋中并搅拌均匀,再任取一个小球,对应的数字作为这个两位数的十位数.(1)写出按上述规定得到所有可能的两位数;(2)从这些两位数中任取一个,求其算术平方根大于4且小于7的概率.14.甲、乙、丙三位运动员在相同条件下各射靶10次,每次射靶的成绩如下:甲:9,10,8,5,7,8,10,8,8,7乙:5,7,8,7,8,9,7,9,10,10丙:7,6,8,5,4,7,6,3,9,5(1)根据以上数据完成下表:平均数中位数方差甲88______乙88 2.2丙6______3(2)根据表中数据分析,哪位运动员的成绩最稳定,并简要说明理由;(3)比赛时三人依次出场,顺序由抽签方式决定,求甲、乙相邻出场的概率.15.为监控某条生产线上产品的质量,检测员每个相同时间抽取一件产品,并测量其尺寸,在一天的抽检结束后,检测员将测得的数据按从小到大的顺序整理成如下表格:编号①②③④⑤⑥⑦⑧⑨⑩⑪⑫⑬⑭⑮尺寸(cm)8.728.888.928.938.948.968.978.98a9.039.049.069.079.08b 按照生产标准,产品等次规定如下:尺寸(单位:cm)产品等次8.97≤x≤9.03特等品8.95≤x≤9.05优等品8.90≤x≤9.10合格品x<8.90或x>9.10非合格品注:在统计优等品个数时,将特等品计算在内;在统计合格品个数时,将优等品(含特等品)计算在内.(1)已知此次抽检的合格率为80%,请判断编号为⑮的产品是否为合格品,并说明理由.(2)已知此次抽检出的优等品尺寸的中位数为9cm.(i)求a的值;(ii)将这些优等品分成两组,一组尺寸大于9cm,另一组尺寸不大于9cm,从这两组中各随机抽取1件进行复检,求抽到的2件产品都是特等品的概率.16.某单位食堂为全体960名职工提供了A,B,C,D四种套餐,为了解职工对这四种套餐的喜好情况,单位随机抽取240名职工进行“你最喜欢哪一种套餐(必选且只选一种)”问卷调查.根据调查结果绘制了条形统计图和扇形统计图,部分信息如下:(1)在抽取的240人中最喜欢A套餐的人数为______,扇形统计图中“C”对应扇形的圆心角的大小为______°;(2)依据本次调查的结果,估计全体960名职工中最喜欢B套餐的人数;(3)现从甲、乙、丙、丁四名职工中任选两人担任“食品安全监督员”,求甲被选到的概率.答案和解析1.【答案】B【解析】【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与能让两盏灯泡同时发光的情况,再利用概率公式求解即可求得答案.本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.【解答】解:画树状图得:∵共有6种等可能的结果,能让两盏灯泡同时发光的是闭合开关K1、K3与K3、K1,∴能让两盏灯泡同时发光的概率为:26=13.故选B.2.【答案】A【解析】【分析】本题考查了频数分布表,用到的知识点是:频率=频数÷总数.求得在8≤x<32这个范围的频数,根据频率的计算公式即可求解.【解答】解:在8≤x<32这个范围的频数是:2+8+6=16,则在8≤x<32这个范围的频率是:1620=0.8.故选A.3.【答案】D【解析】【分析】本题考查了众数、平均数、中位数的知识,掌握各知识点的概念是解答本题的关键.将表格中对应的人数相加可判定A选项,根据众数是在一组数据中,出现次数最多的数据判定B选项;根据中位数是按顺序排列的一组数据中居于中间位置的数求解并判定C 选项;根据平均数是指在一组数据中所有数据之和再除以这组数据的个数求解并判定D 选项即可.【解答】解:A.该班人数为:2+5+6+6+8+7+6=40(名),故A不符合题意;B.得45分的人数最多,众数为45分,故B不符合题意;=45(分),故C不符C.第20和21名同学的成绩的平均值为中位数,中位数为:45+452合题意;=44.425(分),故D符合题意.D.平均数为:35×2+39×5+42×6+44×6+45×8+48×7+50×640故选D.4.【答案】D=80(户),【解析】解:根据题意,参与调查的户数为:6410%+35%+30%+5%其中B组用户数占被调查户数的百分比为:1−10%−35%−30%−5%=20%,则所有参与调查的用户中月用水量在6吨以下的共有:80×(10%+20%)=24(户),故选:D.根据除B组以外参与调查的用户共64户及A、C、D、E四组的百分比可得参与调查的总户数及B组的百分比,将总户数乘以月用水量在6吨以下(A、B两组)的百分比可得答案.本题主要考查了扇形统计图,解题的关键是能识图,理解各部分百分比同总数之间的关系.5.【答案】A【解析】【分析】本题考查了频数分布直方图以及用样本估计总体.用被抽查的100名学生中参加社团活动时间在8~10小时之间的学生的占比乘以该校学生总人数,即可得解.【解答】解:由题可得,抽查的学生中参加社团活动时间在8~10小时之间的学生数为100−30−24−10−8=28(人),∴1000×28100=280(人),即该校五一期间参加社团活动时间在8~10小时之间的学生数大约是280人.故选:A.6.【答案】D【解析】解:A、甲的众数为7,乙的众数为8,故原题说法错误;B、甲的中位数为7,乙的中位数为4,故原题说法错误;C、甲的平均数为6,乙的平均数为5,故原题说法错误;D、甲的方差为4.4,乙的方差为6.4,甲的方差小于乙的方差,故原题说法正确;故选:D.根据一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数;对于n个数x1,x2,…,x n,则x=1n (x1+x2+⋯+x n)就叫做这n个数的算术平均数;s2=1n[(x1−x−)2+(x2−x−)2+⋯+(x n−x−)2]进行计算即可.此题主要考查了众数、中位数、方差和平均数,关键是掌握三种数的概念和方差公式.7.【答案】C【解析】【分析】本题主要考查众数,熟练掌握众数的定义是解题的关键.根据众数的定义求解可得.【解答】解:由条形图知,车速40km/ℎ的车辆有15辆,为最多,所以众数为40.故选C.8.【答案】D【解析】解:数据11,10,11,13,11,13,15中,11出现的次数最多是3次,因此众数是11,于是A选项不符合题意;将这7个数据从小到大排列后,处在中间位置的一个数是11,因此中位数是11,于是D符合题意;x−=(11+10+11+13+11+13+15)÷7=12,即平均数是12,于是选项B不符合题意;S2=17[(10−12)2+(11−12)2×3+(13−12)2×2+(15−12)2]=187,因此方差为187,于是选项C不符合题意;故选:D.根据平均数、众数、中位数、方差的计算方法分别计算这组数据的平均数、众数、中位数、方差,最后做出选择.本题考查平均数、中位数、众数、方差的意义和计算方法,掌握计算方法是得出正确答案的前提.9.【答案】解:(1)三种等可能的情况数,则恰好选中绳子AA1的概率是13;(2)列表如下:所有等可能的情况有9种,其中这三根绳子能连结成一根长绳的情况有6种,则P=69=23.【解析】(1)三根绳子选择一根,求出所求概率即可;(2)列表得出所有等可能的情况数,找出这三根绳子能连结成一根长绳的情况数,即可求出所求概率.此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.10.【答案】(1)50,30%;(2)他不能获奖.理由如下:他的成绩位于“69.5~79.5”之间,而“59.5~69.5”和“69.5~79.5”两分数段的百分比和为10%+30%=40%,因为成绩由高到低前60%的参赛选手获奖,他位于后40%,所以他不能获奖;(3)画树状图为:共有12种等可能的结果数,其中恰好选中1男1女的结果数为8,所以恰好选中1男1女的概率=812=23.【解析】解:(1)5÷10%=50,所以本次比赛参赛选手共有50人,“89.5~99.5”这一组人数占总参赛人数的百分比为8+450×100%=24%,所以“69.5~79.5”这一组人数占总参赛人数的百分比为1−10%−36%−24%= 30%;故答案为:50,30%;(2)见答案;(3)见答案.【分析】(1)用“59.5~69.5”这组的人数除以它所占的百分比可得到调查的总人数;再计算出“89.5~99.5”这一组人数占总参赛人数的百分比,然后用1分别减去其它三组的百分比得到“69.5~79.5”这一组人数占总参赛人数的百分比;(2)利用“59.5~69.5”和“69.5~79.5”两分数段的百分比为40%可判断他不能获奖;(3)画树状图展示所有等可能的结果数,再找出恰好选中1男1女的结果数,然后根据概率公式求解.本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了扇形统计图,频数分布直方图.11.【答案】解:(1)∵把合格品数从小到大排列,第25,26个数都为4,∴中位数为4;(2)众数要看剩余的18人可能落在哪里,有可能合格品是5的有10人,合格品是6的有8人,或合格品是5的有8人,合格品是6的有10人,所以推出4,5,6;4和5;4和6都可能为众数.故众数可能为4,5,6;4和5;4和6;(3)这50名工人中,合格品低于3件的人数为2+6=8(人),=64(人).故该厂将接受再培训的人数约有400×850【解析】(1)将合格品数从小到大排列,找出第25与26个数,求出平均数即可求出中位数;(2)众数的话要看剩余的18人可能落在哪里,有可能合格品是5的有10人,合格品是6的有8人,或合格品是5的有8人,合格品是6的有10人,所以推出4,5,6都可能为众数;(3)50名工人中,合格品低于3件的有2+6=8(人),除以50人求出百分比,再乘以400即可求出所求.此题考查了条形统计图,用样本估计总体,中位数,以及众数,弄清题意是解本题的关键.12.【答案】解:(1)画树状图得:∵共有4种等可能的结果,两次传球后,球恰在B手中的只有1种情况,∴两次传球后,球恰在B手中的概率为:1;4(2)画树状图得:∵共有8种等可能的结果,三次传球后,球恰在A手中的有2种情况,∴三次传球后,球恰在A手中的概率为:28=14.【解析】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次传球后,球恰在B手中的情况,再利用概率公式即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与三次传球后,球恰在A手中的情况,再利用概率公式即可求得答案.13.【答案】解:(1)画树状图:共有16种等可能的结果数,它们是:11,41,71,81,14,44,74,84,17,47,77,87,18,48,78,88;(2)算术平方根大于4且小于7,即这个两位数大于16且小于49,为41,44,17,47,18,48,共6种等可能的结果,所以算术平方根大于4且小于7的概率=616=38.【解析】【试题解析】本题考查了树状图法.利用树状图法展示所有等可能的结果数n,再从中选出符合事件A 或B的结果数目m,然后根据概率公式计算事件A或B的概率.(1)利用树状图展示所有16种等可能的结果数,然后把它们分别写出来; (2)利用算术平方根的定义找出大于16小于49的数,然后根据概率公式求解.14.【答案】解:(1)2,6;(2)∵甲的方差是2;∴S 甲2<S 乙2<S 丙2,∴甲运动员的成绩最稳定; (3)根据题意画图如下:∵共有6种情况数,甲、乙相邻出场的有4种情况, ∴甲、乙相邻出场的概率是46=23.【解析】 【分析】本题考查了方差、平均数、中位数和画树状图法求概率.一般地设n 个数据x 1,x 2,…x n 的平均数为x −,则方差S 2=1n [(x 1−x −)2+(x 2−x −)2+⋯+(x n −x −)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立;概率=所求情况数与总情况数之比.(1)根据方差公式和中位数的定义分别进行解答即可; (2)根据方差的意义,即方差越小越稳定即可得出答案;(3)根据题意先画出树状图,得出所有情况数和甲、乙相邻出场的情况数,再根据概率公式即可得出答案. 【解答】解:(1)∵甲的平均数是8,∴甲的方差是:110×[(9−8)2+2×(10−8)2+4×(8−8)2+2×(7−8)2+(5−8)2]=2;把丙运动员的射靶成绩从小到大排列为:3,4,5,5,6,6,7,7,8,9,则中位数是6+6=6;2故答案为:2,6;(2)见答案;(3)见答案.15.【答案】解:(1)不合格.因为15×80%=12,不合格的有15−12=3个,给出的数据只有①②两个不合格;(2)(i)优等品有⑥~⑪,中位数在⑧8.98,⑨a之间,∴8.98+a=9,2解得a=9.02(ii)大于9cm的有⑨⑩⑪,小于9cm的有⑥⑦⑧,其中特等品为⑦⑧⑨⑩画树状图为:共有九种等可能的情况,其中抽到两种产品都是特等品的情况有4种.∴抽到两种产品都是特等品的概率P=4.9【解析】本题考查的是利用树状图求概率.用到的知识点为:概率=所求情况数与总情况数之比.(1)由15×80%=12,不合格的有15−12=3个,给出的数据只有①②两个不合格可得答案;=9可得答案;(ii)由特等品为⑦⑧⑨⑩,画树状图列出所有等可能结果,(2)(i)由8.98+a2再根据概率公式求解可得.16.【答案】60 108【解析】解:(1)在抽取的240人中最喜欢A套餐的人数为240×25%=60(人),则最喜欢C套餐的人数为240−(60+84+24)=72(人),=108°,∴扇形统计图中“C”对应扇形的圆心角的大小为360°×72240故答案为:60、108;(2)估计全体960名职工中最喜欢B套餐的人数为960×84240=336(人);(3)画树状图为:共有12种等可能的结果数,其中甲被选到的结果数为6,∴甲被选到的概率为612=12.(1)用被调查的职工人数乘以最喜欢A套餐人数所占百分比即可得其人数;再由四种套餐人数之和等于被调查的人数求出C对应人数,继而用360°乘以最喜欢C套餐人数所占比例即可得;(2)用总人数乘以样本中最喜欢B套餐的人数所占比例即可得;(3)画树状图列出所有等可能结果,从中找到符合条件的结果数,利用概率公式求解可得答案.本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了统计图.。
2020年中考数学《统计与概率》总复习题
1.为创建大数据应用示范城市,某市一机构针对市民最关注的四类生活信息进行了民意调查(被调查人每人限选一项),下面是四类生活信息关注度统计图表:
请根据图中提供的信息解答下列问题:
(1)本次参与调查的人数有1000人;
(2)关注城市医疗信息的有150人,并补全条形统计图;
(3)扇形统计图中,D部分的圆心角是144度.
【分析】(1)从两个统计图中可得到,C教育资源信息的有200人,占调查人数的20%,可求出调查总人数,
(2)求出“B城市医疗信息”的人数,即可补全条形统计图,
(3)D部分所占圆心角度数占360°的,计算结果即可.
【解答】解:(1)200÷20%=1000(人)
故答案为:1000.
(2)1000﹣250﹣200﹣400=150(人)
故答案为:150,补全条形统计图如图所示:
(3)360°×=144°,
故答案为:144.
【点评】考查条形统计图、扇形统计图的意义和制作方法,从两个统计图中获取数量和数量关系是解决问题的关键,样本估计总体是统计中常用的方法.。
2020年中考数学二轮专题:统计与概率一、选择题(每小题5分,共40分)1.下列说法错误的是()A.在一定的条件下,可能发生也可能不发生的事件称为随机事件B.一组数据中出现次数最多的数据称为这组数据的众数C.方差可以刻画数据的波动程度,方差越大,波动越小;方差越小,波动越大D.全面调查和抽样调查是收集数据的两种方式2.一个布袋里装有2个红球、3个黄球和5个白球,除颜色外其他都相同.搅匀后任意摸出一个球,是白球的概率为()A.12B.310C.15D.7103.抛掷一枚质地均匀的硬币2000次,正面朝上的次数最有可能为()A.500B.800C.1000D.12004.一组数据:1,2,1,4的方差为()A.1B.1.5C.2D.2.55.现有一组数据:1,4,3,2,4,x,若该组数据的中位数是3,则x的值为()A.1B.2C.3D.46.某企业1~6月份利润的变化情况如图1所示,以下说法与图中反映的信息相符的是()图1A.1~6月份利润的众数是130万元B.1~6月份利润的中位数是130万元C.1~6月份利润的平均数是130万元D.1~6月份利润的最大值与最小值的差是40万元7.小李与小陈做猜拳游戏,规定每人每次至少要出一个手指,两人出的手指数之和为偶数时小李获胜,那么小李获胜的概率为()图2A.1325B.1225C.425D.128.正方形ABCD的边长为2,以各边为直径在正方形内画半圆,得到如图3所示阴影部分,若随机向正方形ABCD 内投一粒米,则米粒落在阴影部分的概率为()图3A.π-22B.π-24C.π-28D.π-216二、填空题(每小题5分,共30分)9.某中学为积极响应“全民阅读”活动,助力学生良好阅读习惯的养成,形成浓厚的阅读氛围,随机调查了部分学生平均每天的阅读时间,统计结果如下表所示,则在本次调查中,学生阅读时间的中位数是小时.时间(小时)0.511.522.5人数(人)1222105310.在一个不透明的口袋中,装有一些除颜色外完全相同的红、白、黑三种颜色的小球,已知袋中有红球5个,白球23个,且从袋中随机摸出一个红球的概率是110,则袋中黑球的个数为.11.已知一包糖果共有5种颜色(糖果只有颜色差别),如图4是这包糖果分布百分比的统计图,在这包糖果中任意取一粒,则取出糖果的颜色为绿色或棕色的概率是.图412.在一次有12人参加的数学测试中,得100分、95分、90分、85分、75分的人数分别是1,3,4,2,2,那么这组数据的众数是分.13.从2,3,4,6中随机选取两个数记作a和b(a<b),那么点(a,b)在直线y=2x上的概率是.14.下表是甲、乙两名同学近五次数学测试(满分为100分)成绩的统计表:第一次第二次第三次第四次第五次甲9088929491乙9091939492根据上表数据,成绩较好且比较稳定的同学是.三、解答题(共30分)15.(8分)某商场举办抽奖活动,规则如下:在不透明的袋子中有2个红球和2个黑球,这些球除颜色外都相同,顾客每次摸出一个球,若摸到红球,则获得1份奖品;若摸到黑球,则没有奖品.(1)如果小芳只有一次摸球机会,那么小芳获得奖品的概率为;(2)如果小芳有两次摸球机会(摸出后不放回),求小芳获得2份奖品的概率.(请用“画树状图”或“列表”等方法写出分析过程)16.(10分)某公司销售部有营业员15人,该公司为了调动营业员的积极性,决定实行目标管理,根据目标完成的情况对营业员进行适当的奖励,为了确定一个适当的月销售目标,公司有关部门统计了这15人某月的销售量,如下表所示:月销售量/件数177048022018012090人数113334(1)直接写出这15名营业员该月销售量数据的平均数、中位数、众数;(2)如果想让一半左右的营业员都能达到月销售目标,你认为(1)中的平均数、中位数、众数中,哪个最适合作为月销售目标?请说明理由.图517.(12分)某中学举行钢笔书法大赛,对各年级同学的获奖情况进行了统计,并绘制了如下两幅不完整的统计图.请结合图中相关信息解答下列问题:(1)扇形统计图中,三等奖所在扇形的圆心角的度数是度;(2)请将条形统计图补全;(3)获得一等奖的同学中有14来自七年级,有14来自九年级,其他同学均来自八年级.现准备从获得一等奖的同学中任选2人参加市级钢笔书法大赛,请通过列表或画树状图的方法求所选出的2人中既有八年级同学,又有九年级同学的概率.图6参考答案1.C2.A3.C4.B [解析]这组数据的平均数为x =2,根据方差的计算公式得:s 2=[(1-2)2+(2-2)2+(1-2)2+(4-2)2]×14=1.5,故选B .5.C [解析]除x 外,把这组数据由小到大排列为:1,2,3,4,4,因为数据1,4,3,2,4,x 的中位数是3,所以12(3+x )=3,因此x=3,故选C .6.D [解析]A .1~6月份利润的众数是120万元,故A 错误; B .1~6月份利润的中位数是125万元,故B 错误; C .1~6月份利润的平均数约是128万元,故C 错误; D .1~6月份利润的极差是40万元,故D 正确.故选D .7.A [解析]画树状图如下:共有25种等可能的结果,两人出的手指数之和为偶数的结果有13种, ∴小李获胜的概率为1325,故选A .8.A [解析]因为正方形ABCD 的面积为4,阴影部分的面积为四个半圆的面积与正方形ABCD 的面积之差,即4×12π×222-4=2π-4,所以米粒落在阴影部分的概率为2π-44=π-22. 9.1 [解析]本题考查了中位数的定义,∵学生有52人,把52人的阅读时间从小到大排列后,处于最中间的两个时间数是1和1,∴学生阅读时间的中位数是1小时.10.22 [解析]设袋中黑球的个数为x ,则摸出红球的概率为523+5+x =110,所以x=22. 11.12 [解析]棕色糖果所占的百分比为1-20%-15%-30%-15%=1-80%=20%, 所以P (糖果的颜色为绿色或棕色)=30%+20%=50%=12. 故答案为12.12.90 [解析]∵这组数据中出现次数最多的数是90,∴这组数据的众数是90分.13.13 [解析]本题考查了概率的计算.从2,3,4,6中任选两个数记作a 和b (a<b )共有6种可能:(2,3),(2,4),(2,6),(3,4),(3,6),(4,6), 点(a ,b )在直线y=2x 上的情况有2种:(2,4),(3,6), 因此概率为26=13.14.乙 [解析]x ̅甲=15×(90+88+92+94+91)=91,x ̅乙=15×(90+91+93+94+92)=92,s 甲2=15×[(90-91)2+(88-91)2+(92-91)2+(94-91)2+(91-91)2]=4,s 乙2=15×[(90-92)2+(91-92)2+(93-92)2+(94-92)2+(92-92)2]=2,所以乙的成绩较好且比较稳定. 15.解:(1)12(2)根据题意,画出树状图如下:∴共有12种等可能的结果,两次均摸出红球的结果有2种, ∴获得2份奖品的概率P=16.16.解:(1)这15名销售人员该月销售量数据的平均数为278,中位数为180,众数为90. (2)中位数最适合作为月销售目标.理由如下:在这15人中,月销售量不低于278(平均数)的有2人,月销售量不低于180(中位数)的有8人,月销售量不低于90(众数)的有15人,所以,如果想让一半左右的营业员都能够达到月销售目标,(1)中的平均数、中位数、众数中,中位数最适合作为月销售目标. 17.解:(1)16÷40%=40, 360°×1240=108°. 故填108. (2)如图所示,(3)七年级一等奖人数:4×14=1,九年级一等奖人数:4×14=1, 八年级一等奖人数为2, 画树状图如下:或列表如下:七 八1 八2 九 七 八1,七 八2,七 九,七 八1 七,八1 八2,八1九,八1 八2 七,八2 八1,八2 九,八2 九七,九八1,九八2,九由上可知共有12种等可能的结果,其中选出的两名同学既有八年级同学又有九年级同学的结果共有4种, ∴P (既有八年级同学又有九年级同学)=412=13.。
2020年全国中考数学试题分类(16)——统计和概率一.频数(率)分布表(共1小题)1.(2020•赤峰)某校为了解七年级学生的身体素质情况,从七年级各班随机抽取了数量相同的男生和女生,组成一个容量为60的样本,进行各项体育项目的测试.下表是通过整理样本数据,得到的关于每个个体测试成绩的部分统计表:某校60名学生体育测试成绩频数分布表成绩划记频数百分比优秀a30%良好30 b合格9 15%不合格 3 5%合计60 60 100%如果该校七年级共有300名学生,根据以上数据,估计该校七年级学生身体素质良好及以上的人数为人.二.扇形统计图(共2小题)2.(2020•阜新)在“尚科学,爱运动”主题活动中,某校在七年级学生中随机抽取部分同学就“一分钟跳绳”进行测试,并将测试成绩x(单位:次)进行整理后分成六个等级,分别用A,B,C,D,E,F表示,并绘制成如图所示的两幅不完整的统计图表.请根据图表中所给出的信息解答下列问题:组别成绩x(单位:次)人数A70≤x<90 4B90≤x<110 15C110≤x<130 18D130≤x<150 12E150≤x<170 mF170≤x<190 5(1)本次测试随机抽取的人数是人,m=;(2)求C等级所在扇形的圆心角的度数;(3)若该校七年级学生共有300人,且规定不低于130次的成绩为优秀,请你估计该校七年级学生中有多少人能够达到优秀.3.(2020•盘锦)某校为了解学生课外阅读时间情况,随机抽取了m名学生,根据平均每天课外阅读时间的长短,将他们分为A,B,C,D四个组别,并绘制了如图不完整的频数分布表和扇形统计图.频数分布表组别时间/(小时)频数/人数A0≤t<0.5 2nB0.5≤t<1 20C1≤t<1.5 n+10D t≥1.5 5请根据图表中的信息解答下列问题:(1)求m与n的值,并补全扇形统计图;(2)直接写出所抽取的m名学生平均每天课外阅读时间的中位数落在的组别;(3)该校现有1500名学生,请你估计该校有多少名学生平均每天课外阅读时间不少于1小时.三.条形统计图(共5小题)4.(2020•广州)某校饭堂随机抽取了100名学生,对他们最喜欢的套餐种类进行问卷调查后(每人选一种),绘制了如图的条形统计图,根据图中的信息,学生最喜欢的套餐种类是()A.套餐一B.套餐二C.套餐三D.套餐四5.(2020•贵港)某校对九年级学生进行“综合素质”评价,评价的结果分为A(优秀)、B(良好)、C(合格)、D(不合格)四个等级,现从中随机抽查了若干名学生的“综合素质”等级作为样本进行数据处理,并绘制以下两幅不完整的统计图.请根据统计图提供的信息,解答下列问题:(1)B(良好)等级人数所占百分比是;(2)在扇形统计图中,C(合格)等级所在扇形的圆心角度数是;(3)请补充完整条形统计图;(4)若该校九年级学生共1000名,请根据以上调查结果估算:评价结果为A(优秀)等级或B(良好)等级的学生共有多少名?6.(2020•兰州)为培养学生正确的劳动价值观和良好劳动品质,加强新时代中学生劳动教育,某校八年级(1)班对本班35名学生进行了劳动能力量化评估和近一周家务劳动总时间调查,并对相关数据进行了收集、整理和分析,研究过程中的部分数据如下:信息一:劳动能力量化评估的成绩采用十分制,得分均为整数;信息二:信息三:近一周家务劳动时间分布表时间/小时t≤1 1<t≤2 2<t≤3 3<t≤4 t>4人数/人 5 8 12 7 3信息四:劳动能力量化成绩与近一周家务劳动总时间统计表6 7 8 9 10成绩/分人数时间/小时t≤1 4 1 0 0 01<t≤2 0 6 1 1 02<t≤3 0 0 9 3 03<t≤4 0 1 1 3 2t>4 0 0 0 1 2根据以上信息,解决下列问题:(1)直接从信息二的统计图中“读”出八年级(1)班劳动能力量化成绩的平均分为分;(2)请你判断下列说法合理吗?(请在横线上填写“合理”或“不合理”)①规定劳动能力量化成绩8分及以上为合格,八年级(1)班超过半数的学生达到了合格要求:.②班主任对近一周家务劳动总时间在4小时以上,且劳动能力量化成绩取得10分的学生进行表彰奖励,恰有3人获奖:.③小颖推断劳动能力量化成绩为8分的同学近一周家务劳动总时间主要分布在2<t≤3的时间段:.(3)结合以上信息,你认为普遍情况下参加家务劳动的时间与劳动能力之间具有怎样的关系?7.(2020•朝阳)由于疫情的影响,学生不能返校上课,某校在直播授课的同时还为学生提供了四种辅助学习方式:A网上自测,B网上阅读,C网上答疑,D网上讨论.为了解学生对四种学习方式的喜欢情况,该校随机抽取部分学生进行问卷调查,规定被调查学生从四种方式中选择自己最喜欢的一种,根据调查结果绘制成如图两幅不完整的统计图:根据统计图提供的信息,解答下列问题:(1)本次共调查了名学生;(2)在扇形统计图中,m的值是,D对应的扇形圆心角的度数是;(3)请补全条形统计图;(4)若该校共有2000名学生,根据抽样调查的结果,请你估计该校最喜欢方式D的学生人数.8.(2020•锦州)某中学八年级在新学学期开设了四门校本选修课程:A.轮滑;B.书法;C.舞蹈;D.围棋,要求每名学生必须选择且只能选择其中一门课程,学校随机抽查了部分八年级学生,对他们的课程选择情况进行了统计,并绘制了如图两幅不完整的统计图.请根据统计图提供的信息,解答下列问题:(1)此次共抽查了名学生;(2)请通过计算补全条形统计图;(3)若该校八年级共有900名学生,请估计选择C课程的有多少名学生.四.折线统计图(共4小题)9.(2020•济南)某班级开展“好书伴成长”读书活动,统计了1至7月份该班同学每月阅读课外书的数量,绘制了折线统计图,下列说法正确的是()A.每月阅读课外书本数的众数是45B.每月阅读课外书本数的中位数是58C.从2到6月份阅读课外书的本数逐月下降D.从1到7月份每月阅读课外书本数的最大值比最小值多4510.(2020•广西)如图是A,B两市去年四季平均气温的折线统计图.观察图形,四季平均气温波动较小的城市是.(填“A”或“B”)11.(2020•德阳)小明在体考时选择了投掷实心球,如图是体育老师记录的小明在训练时投掷实心球的6次成绩的折线统计图.这6次成绩的中位数是.12.(2020•台州)甲、乙两位同学在10次定点投篮训练中(每次训练投8个),各次训练成绩(投中个数)的折线统计图如图所示,他们成绩的方差分别为S甲2与S乙2,则S甲2S乙2.(填“>”、“=”、“<”中的一个)五.加权平均数(共2小题)13.(2020•德阳)某商场销售A,B,C,D四种商品,它们的单价依次是50元,30元,20元,10元.某天这四种商品销售数量的百分比如图所示,则这天销售的四种商品的平均单价是()A.19.5元B.21.5元C.22.5元D.27.5元14.(2020•眉山)某校评选先进班集体,从“学习”、“卫生”、“纪律”、“活动参与”四个方面考核打分,各项满分均为100,所占比例如下表:项目学习卫生纪律活动参与所占比例40% 25% 25% 10%八年级2班这四项得分依次为80,90,84,70,则该班四项综合得分(满分100)为()A.81.5 B.82.5 C.84 D.86六.中位数(共2小题)15.(2020•雅安)在课外活动中,有10名同学进行了投篮比赛,限每人投10次,投中次数与人数如下表:投中次数 5 7 8 9 10人数 2 3 3 1 1则这10人投中次数的平均数和中位数分别是()A.3.9,7 B.6.4,7.5 C.7.4,8 D.7.4,7.516.(2020•乐山)某小组七位学生的中考体育测试成绩(满分40分)依次为37,40,39,37,40,38,40.则这组数据的中位数是.七.众数(共6小题)17.(2020•西藏)格桑同学一周的体温监测结果如下表:星期一二三四五六日体温(单位:℃)36.6 35.9 36.5 36.2 36.1 36.5 36.3分析上表中的数据,众数、中位数、平均数分别是()A.35.9,36.2,36.3 B.35.9,36.3,36.6C.36.5,36.3,36.3 D.36.5,36.2,36.618.(2020•朝阳)某书店与一山区小学建立帮扶关系,连续6个月向该小学赠送书籍的数量分别如下(单位:本):300,200,200,300,300,500这组数据的众数、中位数、平均数分别是()A.300,150,300 B.300,200,200C.600,300,200 D.300,300,30019.(2020•鞍山)我市某一周内每天的最高气温如下表所示:最高气温(℃)25 26 27 28天数 1 1 2 3则这组数据的中位数和众数分别是()A.26.5和28 B.27和28 C.1.5和3 D.2和320.(2020•河池)某学习小组7名同学的《数据的分析》一章的测验成绩如下(单位:分):85,90,89,85,98,88,80,则该组数据的众数、中位数分别是()A.85,85 B.85,88 C.88,85 D.88,8821.(2020•毕节市)某校男子篮球队10名队员进行定点投篮练习,每人投篮10次,将他们投中的次数进行统计,制成下表:投中次数 3 5 6 7 8 9人数 1 3 2 2 1 1则这10名队员投中次数组成的一组数据中,众数和中位数分别为()A.5,6 B.2,6 C.5,5 D.6,522.(2020•包头)两组数据:3,a,b,5与a,4,2b的平均数都是3.若将这两组数据合并为一组新数据,则这组新数据的众数为()A.2 B.3 C.4 D.5八.极差(共1小题)23.(2020•巴中)某地区一周内每天的平均气温如下:25℃,27.3℃,21℃,21.4℃,28℃,33.6℃,30℃.这组数据的极差为()A.8.6 B.9 C.12.2 D.12.6九.方差(共4小题)24.(2020•盘锦)在市运动会射击比赛选拔赛中,某校射击队甲、乙、丙、丁四名队员的10次射击成绩如图所示.他们的平均成绩均是9.0环,若选一名射击成绩稳定的队员参加比赛,最合适的人选是()A.甲B.乙C.丙D.丁25.(2020•赤峰)学校朗诵比赛,共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉一个最高分、一个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数据特征是()A.平均数B.中位数C.众数D.方差26.(2020•永州)已知一组数据1,2,8,6,8,对这组数据描述正确的是()A.众数是8 B.平均数是6 C.中位数是8 D.方差是927.(2020•玉林)在对一组样本数据进行分析时,小华列出了方差的计算公式:s2= (2−x)2+(3−x)2+(3−x)2+(4−x)2x,由公式提供的信息,则下列说法错误的是()A.样本的容量是4 B.样本的中位数是3C.样本的众数是3 D.样本的平均数是3.5一十.统计量的选择(共1小题)28.(2020•大庆)在一次青年歌手比赛中,七位评委为某位歌手打出的分数如下:9.5,9.4,9.6,9.9,9.3,9.7,9.0(单位:分).若去掉一个最高分和一个最低分.则去掉前与去掉后没有改变的一个统计量是()A.平均分B.方差C.中位数D.极差一十一.随机事件(共1小题)29.(2020•呼伦贝尔)下列事件是必然事件的是()A.任意一个五边形的外角和为540°B.抛掷一枚均匀的硬币100次,正面朝上的次数为50次C .13个人参加一个集会,他们中至少有两个人的出生月份是相同的D .太阳从西方升起一十二.概率公式(共4小题) 30.(2020•阜新)掷一枚质地均匀的硬币5次,其中3次正面朝上,2次正面朝下,则再次掷出这枚硬币,正面朝下的概率是( ) A .1B .25C .35D .1231.(2020•大连)在一个不透明的袋子中有3个白球、4个红球,这些球除颜色不同外其他完全相同.从袋子中随机摸出一个球,它是红球的概率是( ) A .14B .13C .37D .4732.(2020•葫芦岛)一个不透明的口袋中有4个红球、2个白球,这些球除颜色外无其他差别,从袋子中随机摸出1个球,则摸到红球的概率是( ) A .16B .13C .12D .2333.(2020•鄂尔多斯)下列说法正确的是( ) ①√5−12的值大于12; ②正六边形的内角和是720°,它的边长等于半径; ③从一副扑克牌中随机抽取一张,它是黑桃的概率是14;④甲、乙两人各进行了10次射击测试,他们的平均成绩相同,方差分别是s 2甲=1.3,s 2乙=1.1,则乙的射击成绩比甲稳定. A .①②③④ B .①②④ C .①④ D .②③ 一十三.列表法与树状图法(共13小题) 34.(2020•广西)九(1)班从小华、小琪、小明、小伟四人中随机抽出2人参加学校举行的乒乓球双打比赛,每人被抽到的可能性相等,则恰好抽到小华和小明的概率是( ) A .14B .15C .16D .11235.(2020•临沂)从马鸣、杨豪、陆畅、江宽四人中抽调两人参加“寸草心”志愿服务队,恰好抽到马鸣和杨豪的概率是( ) A .112B .18C .16D .1236.(2020•广西)一只蚂蚁在如图所示的树枝上寻觅食物,假定蚂蚁在每个岔路口都随机选择一条路径,则它获得食物的概率是( )A .16B .14C .13D .1237.(2020•杭州)一个仅装有球的不透明布袋里共有4个球(只有编号不同),编号分别为1,2,3,5.从中任意摸出一个球,记下编号后放回,搅匀,再任意摸出一个球,则两次摸出的球的编号之和为偶数的概率是 . 38.(2020•西宁)随着手机APP 技术的迅猛发展,人们的沟通方式更便捷、多样.某校数学兴趣小组为了解某社区20~60岁居民最喜欢的沟通方式,针对给出的四种APP (A 微信、BQQ 、C 钉钉、D 其他)的使用情况,对社区内该年龄段的部分居民展开了随机问卷调查(每人必选且只能选择其中一项).根据调查结果绘制了如图不完整的统计图,请你根据图中信息解答下列问题:(1)参与问卷调查的总人数是;(2)补全条形统计图;(3)若小强和他爸爸要在各自的手机里安装A,B,C三种APP中的一种,求他俩选择同一种APP的概率,并列出所有等可能的结果.39.(2020•广安)2020年6月26日是第33个国际禁毒日,为了解同学们对禁毒知识的掌握情况,从广安市某校800名学生中随机抽取部分学生进行调查,调查分为“不了解”“了解较少”“比较了解”“非常了解”四类,并根据调查结果绘制出如图所示的两幅不完整的统计图.请根据统计图回答下列问题:(1)本次抽取调查的学生共有人,估计该校800名学生中“比较了解”的学生有人.(2)请补全条形统计图.(3)“不了解”的4人中有3名男生A1,A2,A3,1名女生B,为了提高学生对禁毒知识的了解,对这4人进行了培训,然后随机抽取2人对禁毒知识的掌握情况进行检测,请用画树状图或列表的方法,求恰好抽到2名男生的概率.40.(2020•兰州)某学校组织了以“纪念革命先烈,激发爱国热情”为主题的爱国主义教育研学活动,参加活动的学生可从学校提供的四个研学地点中任选一个,地点如下:A:陇南市宕昌县哈达铺红军长征纪念馆;B:陇南市两当兵变纪念馆;C:甘南州迭部县腊子口战役纪念馆;D:张掖市高台县中国工农红军西路军纪念馆.小宁和小丽决定通过抽签的方式确定本次研学活动目的地,请你用树状图或列表的方法求出小宁和小丽抽到同一地点的概率.41.(2020•日照)为落实我市关于开展中小学课后服务工作的要求,某学校开设了四门校本课程供学生选择:A.趣味数学;B.博乐阅读;C.快乐英语;D.硬笔书法.某年级共有100名学生选择了A课程,为了解本年级选择A课程学生的学习情况,从这100名学生中随机抽取了30名学生进行测试,将他们的成绩(百分制)分成六组,绘制成频数分布直方图.(1)已知70≤x<80这组的数据为:72,73,74,75,76,76,79.则这组数据的中位数是;众数是;(2)根据题中信息,估计该年级选择A课程学生成绩在80≤x<90的总人数;(3)该年级学生小乔随机选取了一门课程,则小乔选中课程D的概率是;(4)该年级每名学生选两门不同的课程,小张和小王在选课程的过程中,若第一次都选了课程C,那么他俩第二次同时选择课程A或课程B的概率是多少?请用列表法或树状图的方法加以说明.42.(2020•锦州)A,B两个不透明的盒子里分别装有三张卡片,其中A盒里三张卡片上分别标有数字1,2,3,B盒里三张卡片上分别标有数字4,5,6,这些卡片除数字外其余都相同,将卡片充分摇匀.(1)从A盒里抽取一张卡、抽到的卡片上标有数字为奇数的概率是;(2)从A盒,B盒里各随机抽取一张卡片,请用列表或画树状图的方法,求抽到的两张卡片上标有的数字之和大于7的概率.43.(2020•朝阳)某校准备组建“校园安全宣传队”,每班有两个队员名额,七年2班有甲、乙、丙、丁四位同学报名,这四位同学综合素质都很好,王老师决定采取抽签的方式确定人选.具体做法是:将甲、乙、丙、丁四名同学分别编号为1、2、3、4号,将号码分别写在4个大小、质地、形状、颜色均无差别的小球上,然后把小球放入不透明的袋子中,充分搅拌均匀后,王老师从袋中随机摸出两个小球,根据小球上的编号确定本班“校园安全宣传员”人选.(1)用画树状图或列表法,写出“王老师从袋中随机摸出两个小球”可能出现的所有结果.(2)求甲同学被选中的概率.44.(2020•盘锦)有四张正面分别标有数字1,2,3,4的不透明卡片,它们除数字外无其他差别,现将它们背面朝上洗匀.(1)随机抽取一张卡片,卡片上的数字是奇数的概率为.(2)随机抽取一张卡片,然后放回洗匀,再随机抽取一张卡片,请用列表或画树状图的方法,求两次抽取的卡片上的数字和等于6的概率.45.(2020•葫芦岛)某校计划组建航模、摄影、乐器、舞蹈四个课外活动小组,要求每名同学必须参加,并且只能选择其中一个小组.为了解学生对四个课外活动小组的选择情况,学校从全体学生中随机抽取部分学生进行问卷调查,并把此次调查结果整理并绘制成如图两幅不完整的统计图.根据图中提供的信息,解答下列问题:(1)本次被调查的学生有人;(2)请补全条形统计图,并求出扇形统计图中“航模”所对应的圆心角的度数;(3)通过了解,喜爱“航模”的学生中有2名男生和2名女生曾在市航模比赛中获奖,现从这4个人中随机选取2人参加省青少年航模比赛,请用列表或画树状图的方法求出所选的2人恰好是1名男生和1名女生的概率.46.(2020•鞍山)甲、乙两人去超市选购奶制品,有两个品牌的奶制品可供选购,其中蒙牛品牌有两个种类的奶制品:A.纯牛奶,B.核桃奶;伊利品牌有三个种类的奶制品:C.纯牛奶,D.酸奶,E.核桃奶.(1)甲从这两个品牌的奶制品中随机选购一种,选购到纯牛奶的概率是;(2)若甲喜爱蒙牛品牌的奶制品,乙喜爱伊利品牌的奶制品,甲、乙两人从各自喜爱的品牌中随机选购一种奶制品,请利用画树状图或列表的方法求出两人选购到同一种类奶制品的概率.一十四.利用频率估计概率(共4小题)47.(2020•邵阳)如图①所示,平整的地面上有一个不规则图案(图中阴影部分),小明想了解该图案的面积是多少,他采取了以下办法:用一个长为5m,宽为4m的长方形,将不规则图案围起来,然后在适当位置随机地朝长方形区域扔小球,并记录小球落在不规则图案上的次数(球扔在界线上或长方形区域外不计试验结果),他将若干次有效试验的结果绘制成了②所示的折线统计图,由此他估计不规则图案的面积大约为()A.6m2B.7m2C.8m2D.9m248.(2020•盘锦)为了解某地区九年级男生的身高情况,随机抽取了该地区1000名九年级男生的身高数据,统计结果如下:身高x/cm x<160 160≤x<170 170≤x<180 x≥180人数60 260 550 130根据以上统计结果,随机抽取该地区一名九年级男生,估计他的身高不低于170cm的概率是()A.0.32 B.0.55 C.0.68 D.0.8749.(2020•鞍山)在一个不透明的袋子中装有6个红球和若干个白球,这些球除颜色外都相同,将球搅匀后随机摸出一个球,记下颜色后放回,不断重复这一过程,共摸球100次,发现有20次摸到红球,估计袋子中白球的个数约为.50.(2020•呼和浩特)公司以3元/kg的成本价购进10000kg柑橘,并希望出售这些柑橘能够获得12000元利润,在出售柑橘(去掉损坏的柑橘)时,需要先进行“柑橘损坏率”统计,再大约确定每千克柑橘的售价,如表是销售部通过随机取样,得到的“柑橘损坏率”统计表的一部分,由此可估计柑橘完好的概率为(精确到0.1);从而可大约估计每千克柑橘的实际售价为元时(精确到0.1),可获得12000元利润.柑橘总质量n/kg损坏柑橘质量m/kg柑橘损坏的频率xx(精确到0.001)………250 24.75 0.099 300 30.93 0.103 350 35.12 0.100 450 44.54 0.099 500 50.62 0.1012020年全国中考数学试题分类(16)——统计和概率参考答案与试题解析一.频数(率)分布表(共1小题) 1.【解答】解:根据频数分布表可知: 9÷15%=60,∴a =60×30%=18,b =1﹣30%﹣15%﹣5%=50%, ∴300×(30%+50%)=240(人).答:估计该校七年级学生身体素质良好及以上的人数为240人. 故答案为:240.二.扇形统计图(共2小题) 2.【解答】解:(1)15÷25%=60(人), m =60﹣4﹣15﹣18﹣12﹣5=6;答:本次测试随机抽取的人数是60人, 故答案为60,6; (2)C 等级所在扇形的圆心角的度数=360°×1860=108°,(3)该校七年级学生能够达到优秀的人数为 300×12+6+560=115(人). 故答案为:60,6. 3.【解答】解:(1)m =20÷40%=50, 2n +(n +10)=50﹣20﹣5, 解得,n =5,A 组所占的百分比为:2×5÷50×100%=20%, C 组所占的百分比为:(5+10)÷50×100%=30%, 补全的扇形统计图如右图所示; (2)∵A 组有2×5=10(人),B 组有20人,抽查的学生一共有50人, ∴所抽取的m 名学生平均每天课外阅读时间的中位数落在B 组; (3)1500×5+10+550=600(名), 答:该校有600名学生平均每天课外阅读时间不少于1小时.三.条形统计图(共5小题) 4.【解答】解:根据条形统计图可知:学生最喜欢的套餐种类是套餐一, 故选:A . 5.【解答】解:(1)∵被调查的人数为4÷10%=40(人), ∴B 等级人数为40﹣(18+8+4)=10(人), 则B (良好)等级人数所占百分比是1040×100%=25%,故答案为:25%;(2)在扇形统计图中,C (合格)等级所在扇形的圆心角度数是360°×840=72°,故答案为:72°;(3)补全条形统计图如下:(4)估计评价结果为A (优秀)等级或B (良好)等级的学生共有1000×18+1040=700(人). 6.【解答】解:(1)平均成绩=4×6+8×7+11×8+8×9+4×1035=8(分),故答案为8.(2)①规定劳动能力量化成绩8分及以上为合格,八年级(1)班超过半数的学生达到了合格要求:合理.②班主任对近一周家务劳动总时间在4小时以上,且劳动能力量化成绩取得10分的学生进行表彰奖励,恰有3人获奖:不合理.③小颖推断劳动能力量化成绩为8分的同学近一周家务劳动总时间主要分布在2<t ≤3的时间段:合理. 故答案为合理,不合理,合理.(3)参加家务劳动的时间越长,劳动能力的成绩得分越大. 7.【解答】解:(1)20÷40%=50(名); 故答案为:50; (2)15÷50×100%=30%,即m =30;1050×360°=72°;故答案为:30,72°;(3)50﹣20﹣15﹣10=5(名);(4)2000×1050=400(名).答:该校最喜欢方式D 的学生约有400名.8.【解答】解:(1)这次学校抽查的学生人数是40÷80360=180(名), 故答案为:180名;(2)C 项目的人数为180﹣46﹣34﹣40=60(名) 条形统计图补充为:(3)估计全校选择C课程的学生有900×60180=300(名).四.折线统计图(共4小题)9.【解答】解:因为58出现了两次,其他数据都出现了一次,所以每月阅读课外书本数的众数是58,故选项A错误;每月阅读课外书本数从小到大的顺序为:28、33、45、58、58、72、78,最中间的数字为58,所以该组数据的中位数为58,故选项B正确;从折线图可以看出,从2月到4月阅读课外书的本数下降,4月到5月阅读课外书的本数上升,故选项C 错误;从1到7月份每月阅读课外书本数的最大值78比最小值多28多50,故选项D错误.故选:B.10.【解答】解:由折线图可知,A城市的年平均气温=14(15+26+23+12)=19℃,B城市的年平均气温=14(6+20+9+2)=9.25℃,所以A城市的方差为:S A2=14×[(15﹣19)2+(26﹣19)2+(23﹣19)2+(12﹣19)2]=32.5,B城市的方差为:S B2=14×[(6﹣9.25)2+(20﹣9.25)2+(9﹣9.25)2+(2﹣9.25)2]≈44.7,所以S A2<S B2,所以四季平均气温波动较小的城市是A.故答案为:A.11.【解答】解:由6次成绩的折线统计图可知:这6次成绩从小到大排列为:9.5,9.6,9.7,9.8,10,10.2,所以这6次成绩的中位数是:9.7+9.82=9.75.故答案为:9.75. 12.【解答】解:由折线统计图得乙同学的成绩波动较大, 所以S 甲2<S 乙2. 故答案为:<.五.加权平均数(共2小题) 13.【解答】解:这天销售的四种商品的平均单价是: 50×10%+30×15%+20×55%+10×20%=22.5(元), 故选:C . 14.【解答】解:80×40%+90×25%+84×25%+70×10%=82.5(分), 即八年级2班四项综合得分(满分100)为82.5分, 故选:B .六.中位数(共2小题)15.【解答】解:这10人投中次数的平均数为5×2+7×3+8×3+9+1010=7.4,中位数为7+82=7.5,故选:D . 16.【解答】解:把这组数据从小到大排序后为37,37,38,39,40,40,40, 其中第四个数据为39,所以这组数据的中位数为39. 故答案为39.七.众数(共6小题) 17.【解答】解:这组数据中36.5出现了2次,次数最多,所以众数是36.5;将数据按照从小到大(或从大到小)的顺序排列为35.9,36.1,36.2,36.3,36.5,36.5,36.6,处于中间的数据是36.3,所以中位数是36.3; 平均数是x =17×(36.6+35.9+36.5+36.2+36.1+36.5+36.3)=36.3.故选:C . 18.【解答】解:众数:一组数据中出现次数最多的数据为这组数据的众数,这组数据中300出现了3次,次数最多,所以众数是300;中位数:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数,6个数据按顺序排列之后,处于中间的数据是300,300,所以中位数是300+3002=300;平均数是x =16(200+200+300+300+300+500)=300,故选:D . 19.【解答】解:共7天,中位数应该是排序后的第4天, 则中位数为:27, 28℃的有3天,最多, 所以众数为:28. 故选:B . 20.【解答】解:将数据85,90,89,85,98,88,80按照从小到大排列是:80,85,85,88,89,90,98,故这组数据的众数是85,中位数是88, 故选:B . 21.【解答】解:由表可知,这10个数据中数据5出现次数最多,所以众数为5, ∵上从小到大排序后中位数为第5、6个数据的平均数,且第5、6个数据均为6, ∴这组数据的中位数为6+62=6,故选:A .。
2020年中考数学《统计与概率》总复习题
1.为了传承中华民族优秀传统文化,我市某中学举行“汉字听写”比赛,赛后整理参赛学生的成绩,将学生的成绩分为A,B,C,D四个等级,并将结果绘制成图1的条形统计图和图2扇形统计图,但均不完整.请你根据统计图解答下列问题:
(1)求参加比赛的学生共有多少名?并补全图1的条形统计图.
(2)在图2扇形统计图中,m的值为40,表示“D等级”的扇形的圆心角为72度;
(3)组委会决定从本次比赛获得A等级的学生中,选出2名去参加全市中学生“汉字听写”大赛.已知A等级学生中男生有1名,请用列表法或画树状图法求出所选2名学生恰好是一名男生和一名女生的概率.
【分析】(1)根据等级为A的人数除以所占的百分比求出总人数,由各等级人数之和等于总人数求出B等级人数可补全条形图;
(2)根据D级的人数求得D等级扇形圆心角的度数,由C等级人数及总人数可求得m 的值;
(3)列表得出所有等可能的情况数,找出一男一女的情况数,即可求出所求的概率.【解答】解:(1)根据题意得:3÷15%=20(人),
∴参赛学生共20人,
则B等级人数20﹣(3+8+4)=5人.
补全条形图如下:
(2)C等级的百分比为×100%=40%,即m=40,
表示“D等级”的扇形的圆心角为360°×=72°,
故答案为:40,72.
(3)列表如下:
所有等可能的结果有6种,其中恰好是一名男生和一名女生的情况有4种,
则P(恰好是一名男生和一名女生)==.
【点评】此题考查了条形统计图,扇形统计图以及列表法与树状图法,弄清题意,从条形图和扇形图得到解题所需数据是解本题的关键.。
复习测试范围:统计与概率 限时:45分钟 满分:100分一、选择题(每小题5分,共40分)1.下列说法正确的是 ( )A .了解某市市民知晓“礼让行人”交通新规的情况,适合全面调查B .甲、乙两人跳远成绩的方差分别为s 甲2=3,s 乙2=4,说明乙的跳远成绩比甲稳定C .一组数据2,2,3,4的众数是2,中位数是2.5D .可能性是1%的事件在一次试验中一定不会发生2.一个布袋里装有2个红球、3个黄球和5个白球,除颜色外其他都相同.搅匀后任意摸出一个球,是白球的概率为 ( ) A .12 B .310 C .15D .7103.若一组数据x ,3,1,6,3的中位数和平均数相等,则x 的值为 ( ) A .2 B .3 C .4D .54.某班40名同学一周参加体育锻炼时间统计如下表所示:人数(人) 3 17 13 7 时间(时)78910 那么该班40名同学一周参加体育锻炼时间的众数、中位数分别是 ( )A .17,8.5B .17,9C .8,9D .8,8.55.经过某十字路口的汽车,可能直行,也可能向左转或向右转,如果这三种可能性大小相同,则两辆汽车经过这个十字路口时,一辆向右转,一辆向左转的概率是 ( ) A .23 B .29 C .13D .196.随着“三农”问题的解决,某农民近两年的年收入发生了明显变化,已知前年和去年的年收入分别是60000元和80000元,下面是依据①②③三种农作物每种作物每年的收入占该年年收入的比例绘制的扇形统计图,依据统计图得出以下四个结论,其中正确的是()图D8-1A.①的收入去年和前年相同B.③的收入所占比例前年的比去年的大C.去年②的收入为2.8万元D.前年年收入不止①②③三种农作物的收入7.甲、乙两人连续5次射击成绩如图D8-2所示,下列说法中正确的是()图D8-2A.甲的成绩更稳定B.乙的成绩更稳定C.甲、乙的成绩一样稳定D.无法判断谁的成绩更稳定8.从1,2,3,4中任取两个不同的数,分别记为a和b,则a2+b2>19的概率是()A.12B.512C.712D.13二、填空题(每小题6分,共36分)9.数据-5,3,2,-3,3的平均数是,众数是,中位数是.10.如图D8-3,转盘中6个扇形的面积都相等,任意转动转盘1次,当转盘停止转动时,指针落在阴影部分的概率为 .图D8-311.睡眠是评价人类健康水平的一项重要指标,充足的睡眠是青少年健康成长的必要条件之一,小强同学通过问卷调查的方式了解到本班三位同学某天的睡眠时间分别为7.8小时,8.6小时,8.8小时,则这三位同学该天的平均睡眠时间是 小时.12.如图D8-4,这是一幅长为3 m,宽为2 m 的长方形世界杯宣传画,为测量宣传画上世界杯图案的面积,现将宣传画平铺在地面上,向长方形宣传画内随机投掷骰子(假设骰子落在长方形内的每一点都是等可能的),经过大量重复投掷试验,发现骰子落在世界杯图案中的频率稳定在常数0.4附近,由此可估计宣传画上世界杯图案的面积约为 m 2.图D8-413.下表是甲、乙两名同学近五次数学测试(满分为100分)的成绩统计表:同学第一次 第二次 第三次 第四次 第五次 甲 90 88 92 94 91 乙9091939492根据上表数据,成绩较好且比较稳定的同学是 .14.甲、乙是两个不透明的纸箱,甲中有三张分别标有数字14,12,1的卡片,乙中有三张分别标有数字1,2,3的卡片,卡片除所标数字外无其他差别,现制定一个游戏规则:从甲中任取一张卡片,将其数字记为a ,从乙中任取一张卡片,将其数字记为b.若a ,b 能使关于x 的一元二次方程ax 2+bx+1=0有两个不相等的实数根,则甲获胜;否则乙获胜.则乙获胜的概率为 .三、解答题(共24分)15.(12分)为落实视力保护工作,某校组织七年级学生开展了视力保健活动.活动前随机测查了30名学生的视力,活动后再次测查这部分学生的视力.两次相关数据记录如下:活动前被测查学生视力数据:4.04.14.14.24.24.34.34.44.44.44.54.54.64.64.64.74.74.74.74.84.84.84.84.84.94.94.95.05.05.1活动后被测查学生视力数据:4.04.24.34.44.44.54.54.64.64.64.74.74.74.74.84.84.84.84.84.84.84.94.94.94.94.95.05.05.15.1根据以上信息回答下列问题:(1)填空:a=,b=,活动前被测查学生视力样本数据的中位数是,活动后被测查学生视力样本数据的众数是.(2)若视力在4.8及以上为达标,估计七年级600名学生活动后视力达标的人数有多少?(3)分析活动前后相关数据,从一个方面评价学校开展视力保健活动的效果.图D8-5活动后被测查学生视力频数分布表分组频数4.0≤x<4.2 14.2≤x<4.4 24.4≤x<4.6 b4.6≤x<4.8 74.8≤x<5.0 125.0≤x<5.2 416.(12分)近年来,在习近平总书记“既要金山银山,又要绿水青山”思想的指导下,我国持续的大面积雾霾天气得到了较大改善.为了调查学生对雾霾天气知识的了解程度,某校在学生中做了一次抽样调查,调查结果共分为四个等级:A.非常了解;B.比较了解;C.基本了解;D.不了解.根据调查统计结果,绘制了如图D8-6所示的不完整的三种统计图表.对雾霾天气了解程度的统计表对雾霾的了解程度百分比A.非常了解5%B.比较了解15%C.基本了解45%D.不了解n图D8-6请结合统计图表,回答下列问题:(1)本次参与调查的学生共有人,n=;(2)扇形统计图中D部分扇形所对应的圆心角是度;(3)请补全条形统计图;(4)根据调查结果,学校准备开展关于雾霾的知识竞赛,某班要从“非常了解”程度的小明和小刚中选一人参加,现设计了如下游戏来确定,具体规则是:把四个完全相同的乒乓球分别标上数字1,2,3,4,然后放到一个不透明的袋中充分摇匀,一个人先从袋中随机摸出一个球,另一人再从剩下的三个球中随机摸出一个球.若摸出的两个球上的数字和为奇数,则小明去,否则小刚去.请用树状图或列表法说明这个游戏规则是否公平.【参考答案】1.C2.A3.A4.D5.B [解析]画“树状图”如图所示.∵这两辆汽车行驶方向共有9种可能的结果,其中一辆向右转,一辆向左转的情况有2种, ∴一辆向右转,一辆向左转的概率为29,故选B .6.C7.B [解析]本题考查了方差的意义,x 甲=5+10+9+6+105=8,x 乙=8+9+7+9+75=8,s 甲2=(5-8)2+(10-8)2+(9-8)2+(6-8)2+(10-8)25=4.4,s 乙2=(8-8)2+(9-8)2+(7-8)2+(9-8)2+(7-8)25=0.8,∵s 甲2>s 乙2,∴乙的成绩更稳定.也可以直接根据折线统计图的波动情况,乙的波动较小,故乙的成绩更稳定,因此本题选B . 8.D [解析]本题考查了随即事件发生的概率,列表如下:aa 2+b 2 b1 2 3 41 5 10 172 5 13 20 3 10 13 25 4172025从表格可以看出,12种等可能的结果中,有4种结果符合要求,所以概率为412=13. 故选D . 9.0 3 2 10.1211.8.4 12.2.413.乙 [解析]x 甲=15×(90+88+92+94+91)=91,x 乙=15×(90+91+93+94+92)=92,s 甲2=15×[(90-91)2+(88-91)2+(92-91)2+(94-91)2+(91-91)2]=4,s 乙2=15×[(90-92)2+(91-92)2+(93-92)2+(94-92)2+(92-92)2]=2,所以乙的成绩较好且比较稳定. 14.49 [解析]画树状图如下:由图可知,共有9种等可能的结果,若使乙获胜,则b 2-4a ≤0,即b 2≤4a ,∴能使乙获胜的有4种结果, ∴乙获胜的概率为49.15.解:(1)5 4 4.65 4.8[解析]a=30-(3+4+7+8+3)=5,b=30-(1+2+7+12+4)=4. 活动前的中位数是4.6+4.72=4.65.活动后出现次数最多的数为4.8, 所以其众数为4.8. 故答案为:5,4,4.65,4.8.(2)活动后样本中视力达标的人数有16人,所以估计七年级600名学生活动后视力达标的人数有600×1630=320(人).(3)活动前中位数为4.65,活动后中位数为4.8,说明学生在做完视力保健活动后整体视力情况变好. 16.解:(1)400 35% [解析] 180÷45%=400(人),n=1-5%-15%-45%=35%. 故答案为400;35%.(2)126 [解析] 扇形统计图中D 部分扇形所对应的圆心角=360°×35%=126°, 故答案为126.(3)D 等级的人数为400×35%=140(人), 补全条形统计图如图:(4)画树状图为:共有12种等可能的结果,其中和为奇数的结果有8种, ∴P (小明去)=812=23, P (小刚去)=1-23=13. ∵23≠13,∴这个游戏规则不公平.。
专题7:统计与概率一、选择题1. (2019广东省3分)数据8、8、6、5、6、1、6的众数是【】A. 1 B. 5 C.6 D.8【答案】C。
【考点】众数。
【分析】众数是在一组数据中,出现次数最多的数据,这组数据中,出现次数最多的是6,故这组数据的众数为6。
故选C。
2. (2019广东佛山3分)吸烟有害健康,被动吸烟也有害健康.如果要了解人们被动吸烟的情况,则最合适的调查方式是【】A.普查B.抽样调查C.在社会上随机调查D.在学校里随机调查【答案】B。
【考点】统计的调查方式选择。
【分析】调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查。
因此,要了解人们被动吸烟的情况,由于人数众多,意义不大,选普查不合适,在社会上和在学校里随机调查,选择的对象不全面,故选抽样调查。
故选B。
3. (2019广东梅州3分)某同学为了解梅州市火车站今年“五一”期间每天乘车人数,随机抽查了其中五天的乘车人数,所抽查的这五天中每天乘车人数是这个问题的【】A.总体B.个体C.样本D.以上都不对【答案】B。
【考点】总体、个体、样本、样本容量的概念。
【分析】根据总体、个体、样本、样本容量的定义进行解答:∵抽查的是“五一”期间每天乘车人数,∴“五一”期间每天乘车人数是个体。
故选B。
4. (2019广东汕头4分)数据8、8、6、5、6、1、6的众数是【】A. 1 B. 5 C.6 D.8【答案】C。
【考点】众数。
【分析】众数是在一组数据中,出现次数最多的数据,这组数据中,出现次数最多的是6,故这组数据的众数为6。
故选C。
5. (2019广东深圳3分)体育课上,某班两名同学分别进行5次短跑训练,要判断哪一名同学的成绩比较稳定,通常需要比较这两名学生成绩的【】A.平均数 B.频数分布 C.中位数 D.方差【答案】D。
2020年中考数学专题训练统计与概率(含答案)一、选择题(每小题5分,共40分)1.下列说法错误的是()A.在一定的条件下,可能发生也可能不发生的事件称为随机事件B.一组数据中出现次数最多的数据称为这组数据的众数C.方差可以刻画数据的波动程度,方差越大,波动越小;方差越小,波动越大D.全面调查和抽样调查是收集数据的两种方式2.一个布袋里装有2个红球、3个黄球和5个白球,除颜色外其他都相同.搅匀后任意摸出一个球,是白球的概率为()A.12B.310C.15D.7103.抛掷一枚质地均匀的硬币2000次,正面朝上的次数最有可能为()A.500B.800C.1000D.12004.一组数据:1,2,1,4的方差为()A.1B.1.5C.2D.2.55.现有一组数据:1,4,3,2,4,x,若该组数据的中位数是3,则x的值为()A.1B.2C.3D.46.某企业1~6月份利润的变化情况如图D8-1所示,以下说法与图中反映的信息相符的是()图D8-1A.1~6月份利润的众数是130万元B.1~6月份利润的中位数是130万元C.1~6月份利润的平均数是130万元D.1~6月份利润的最大值与最小值的差是40万元7.小李与小陈做猜拳游戏,规定每人每次至少要出一个手指,两人出的手指数之和为偶数时小李获胜,那么小李获胜的概率为()图D8-2A.1325B.1225C.425D.128.正方形ABCD的边长为2,以各边为直径在正方形内画半圆,得到如图D8-3所示阴影部分,若随机向正方形ABCD内投一粒米,则米粒落在阴影部分的概率为()图D8-3A.π-22B.π-24C.π-28D.π-216二、填空题(每小题5分,共30分)9.某中学为积极响应“全民阅读”活动,助力学生良好阅读习惯的养成,形成浓厚的阅读氛围,随机调查了部分学生平均每天的阅读时间,统计结果如下表所示,则在本次调查中,学生阅读时间的中位数是小时.时间(小时)0.511.522.5人数(人)1222105310.在一个不透明的口袋中,装有一些除颜色外完全相同的红、白、黑三种颜色的小球,已知袋中有红球5个,白球23个,且从袋中随机摸出一个红球的概率是110,则袋中黑球的个数为.11.已知一包糖果共有5种颜色(糖果只有颜色差别),如图D8-4是这包糖果分布百分比的统计图,在这包糖果中任意取一粒,则取出糖果的颜色为绿色或棕色的概率是.图D8-412.在一次有12人参加的数学测试中,得100分、95分、90分、85分、75分的人数分别是1,3,4,2,2,那么这组数据的众数是分.13.从2,3,4,6中随机选取两个数记作a和b(a<b),那么点(a,b)在直线y=2x上的概率是.14.下表是甲、乙两名同学近五次数学测试(满分为100分)成绩的统计表:第一次第二次第三次第四次第五次甲9088929491乙9091939492根据上表数据,成绩较好且比较稳定的同学是.三、解答题(共30分)15.(8分)某商场举办抽奖活动,规则如下:在不透明的袋子中有2个红球和2个黑球,这些球除颜色外都相同,顾客每次摸出一个球,若摸到红球,则获得1份奖品;若摸到黑球,则没有奖品.(1)如果小芳只有一次摸球机会,那么小芳获得奖品的概率为;(2)如果小芳有两次摸球机会(摸出后不放回),求小芳获得2份奖品的概率.(请用“画树状图”或“列表”等方法写出分析过程)16.(10分)某公司销售部有营业员15人,该公司为了调动营业员的积极性,决定实行目标管理,根据目标完成的情况对营业员进行适当的奖励,为了确定一个适当的月销售目标,公司有关部门统计了这15人某月的销售量,如下表所示:月销售量/件数177048022018012090人数113334(1)直接写出这15名营业员该月销售量数据的平均数、中位数、众数;(2)如果想让一半左右的营业员都能达到月销售目标,你认为(1)中的平均数、中位数、众数中,哪个最适合作为月销售目标?请说明理由.图D8-517.(12分)某中学举行钢笔书法大赛,对各年级同学的获奖情况进行了统计,并绘制了如下两幅不完整的统计图.请结合图中相关信息解答下列问题:(1)扇形统计图中,三等奖所在扇形的圆心角的度数是度;(2)请将条形统计图补全;(3)获得一等奖的同学中有14来自七年级,有14来自九年级,其他同学均来自八年级.现准备从获得一等奖的同学中任选2人参加市级钢笔书法大赛,请通过列表或画树状图的方法求所选出的2人中既有八年级同学,又有九年级同学的概率.图D8-6【参考答案】1.C2.A3.C4.B [解析]这组数据的平均数为x =2,根据方差的计算公式得:s 2=[(1-2)2+(2-2)2+(1-2)2+(4-2)2]×14=1.5,故选B .5.C [解析]除x 外,把这组数据由小到大排列为:1,2,3,4,4,因为数据1,4,3,2,4,x 的中位数是3,所以12(3+x )=3,因此x=3,故选C .6.D [解析]A .1~6月份利润的众数是120万元,故A 错误; B .1~6月份利润的中位数是125万元,故B 错误; C .1~6月份利润的平均数约是128万元,故C 错误; D .1~6月份利润的极差是40万元,故D 正确.故选D .7.A [解析]画树状图如下:共有25种等可能的结果,两人出的手指数之和为偶数的结果有13种, ∴小李获胜的概率为1325,故选A .8.A [解析]因为正方形ABCD 的面积为4,阴影部分的面积为四个半圆的面积与正方形ABCD 的面积之差,即4×12π×222-4=2π-4,所以米粒落在阴影部分的概率为2π-44=π-22. 9.1 [解析]本题考查了中位数的定义,∵学生有52人,把52人的阅读时间从小到大排列后,处于最中间的两个时间数是1和1,∴学生阅读时间的中位数是1小时.10.22 [解析]设袋中黑球的个数为x ,则摸出红球的概率为523+5+x =110,所以x=22. 11.12 [解析]棕色糖果所占的百分比为1-20%-15%-30%-15%=1-80%=20%, 所以P (糖果的颜色为绿色或棕色)=30%+20%=50%=12. 故答案为12.12.90 [解析]∵这组数据中出现次数最多的数是90,∴这组数据的众数是90分.13.13 [解析]本题考查了概率的计算.从2,3,4,6中任选两个数记作a 和b (a<b )共有6种可能:(2,3),(2,4),(2,6),(3,4),(3,6),(4,6), 点(a ,b )在直线y=2x 上的情况有2种:(2,4),(3,6), 因此概率为26=13.14.乙 [解析]x ̅甲=15×(90+88+92+94+91)=91,x ̅乙=15×(90+91+93+94+92)=92,s 甲2=15×[(90-91)2+(88-91)2+(92-91)2+(94-91)2+(91-91)2]=4,s 乙2=15×[(90-92)2+(91-92)2+(93-92)2+(94-92)2+(92-92)2]=2,所以乙的成绩较好且比较稳定. 15.解:(1)12(2)根据题意,画出树状图如下:∴共有12种等可能的结果,两次均摸出红球的结果有2种, ∴获得2份奖品的概率P=16.16.解:(1)这15名销售人员该月销售量数据的平均数为278,中位数为180,众数为90. (2)中位数最适合作为月销售目标.理由如下:在这15人中,月销售量不低于278(平均数)的有2人,月销售量不低于180(中位数)的有8人,月销售量不低于90(众数)的有15人,所以,如果想让一半左右的营业员都能够达到月销售目标,(1)中的平均数、中位数、众数中,中位数最适合作为月销售目标. 17.解:(1)16÷40%=40, 360°×1240=108°. 故填108. (2)如图所示,(3)七年级一等奖人数:4×14=1,九年级一等奖人数:4×14=1, 八年级一等奖人数为2, 画树状图如下:或列表如下:七 八1 八2 九 七 八1,七 八2,七 九,七 八1 七,八1 八2,八1九,八1 八2 七,八2 八1,八2 九,八2 九七,九八1,九八2,九由上可知共有12种等可能的结果,其中选出的两名同学既有八年级同学又有九年级同学的结果共有4种, ∴P (既有八年级同学又有九年级同学)=412=13.。
2020年全国中考数学试题精选分类(12)——概率与统计一.选择题(共17小题)1.(2020•济南)某班级开展“好书伴成长”读书活动,统计了1至7月份该班同学每月阅读课外书的数量,绘制了折线统计图,下列说法正确的是()A.每月阅读课外书本数的众数是45B.每月阅读课外书本数的中位数是58C.从2到6月份阅读课外书的本数逐月下降D.从1到7月份每月阅读课外书本数的最大值比最小值多452.(2020•阜新)如图,是小明绘制的他在一周内每天跑步圈数的折线统计图.下列结论正确的是()A.众数是9B.中位数是8.5C.平均数是9D.方差是73.(2020•西藏)格桑同学一周的体温监测结果如下表:星期一二三四五六日体温(单位:℃)36.635.936.536.236.136.536.3分析上表中的数据,众数、中位数、平均数分别是()A.35.9,36.2,36.3B.35.9,36.3,36.6C.36.5,36.3,36.3D.36.5,36.2,36.64.(2020•盘锦)在市运动会射击比赛选拔赛中,某校射击队甲、乙、丙、丁四名队员的10次射击成绩如图所示.他们的平均成绩均是9.0环,若选一名射击成绩稳定的队员参加比赛,最合适的人选是()A.甲B.乙C.丙D.丁5.(2020•盘锦)为了解某地区九年级男生的身高情况,随机抽取了该地区1000名九年级男生的身高数据,统计结果如下:身高x/cm x<160160≤x<170170≤x<180x≥180人数60260550130根据以上统计结果,随机抽取该地区一名九年级男生,估计他的身高不低于170cm的概率是()A.0.32B.0.55C.0.68D.0.87 6.(2020•德阳)某商场销售A,B,C,D四种商品,它们的单价依次是50元,30元,20元,10元.某天这四种商品销售数量的百分比如图所示,则这天销售的四种商品的平均单价是()A.19.5元B.21.5元C.22.5元D.27.5元7.(2020•大连)在一个不透明的袋子中有3个白球、4个红球,这些球除颜色不同外其他完全相同.从袋子中随机摸出一个球,它是红球的概率是()A.B.C.D.8.(2020•鞍山)我市某一周内每天的最高气温如下表所示:最高气温(℃)25262728天数1123则这组数据的中位数和众数分别是()A.26.5和28B.27和28C.1.5和3D.2和3 9.(2020•眉山)某校评选先进班集体,从“学习”、“卫生”、“纪律”、“活动参与”四个方面考核打分,各项满分均为100,所占比例如下表:项目学习卫生纪律活动参与所占比例40%25%25%10%八年级2班这四项得分依次为80,90,84,70,则该班四项综合得分(满分100)为()A.81.5B.82.5C.84D.8610.(2020•沈阳)下列事件中,是必然事件的是()A.从一个只有白球的盒子里摸出一个球是白球B.任意买一张电影票,座位号是3的倍数C.掷一枚质地均匀的硬币,正面向上D.汽车走过一个红绿灯路口时,前方正好是绿灯11.(2020•河池)某学习小组7名同学的《数据的分析》一章的测验成绩如下(单位:分):85,90,89,85,98,88,80,则该组数据的众数、中位数分别是()A.85,85B.85,88C.88,85D.88,88 12.(2020•绵阳)将一个篮球和一个足球随机放入三个不同的篮子中,则恰有一个篮子为空的概率为()A.B.C.D.13.(2020•宁夏)小明为了解本班同学一周的课外阅读量,随机抽取班上15名同学进行调查,并将调查结果绘制成折线统计图(如图),则下列说法正确的是()A.中位数是3,众数是2B.众数是1,平均数是2C.中位数是2,众数是2D.中位数是3,平均数是2.514.(2020•邵阳)如图①所示,平整的地面上有一个不规则图案(图中阴影部分),小明想了解该图案的面积是多少,他采取了以下办法:用一个长为5m,宽为4m的长方形,将不规则图案围起来,然后在适当位置随机地朝长方形区域扔小球,并记录小球落在不规则图案上的次数(球扔在界线上或长方形区域外不计试验结果),他将若干次有效试验的结果绘制成了②所示的折线统计图,由此他估计不规则图案的面积大约为()A.6m2B.7m2C.8m2D.9m2 15.(2020•鄂尔多斯)下列说法正确的是()①的值大于;②正六边形的内角和是720°,它的边长等于半径;③从一副扑克牌中随机抽取一张,它是黑桃的概率是;④甲、乙两人各进行了10次射击测试,他们的平均成绩相同,方差分别是s2甲=1.3,s2=1.1,则乙的射击成绩比甲稳定.乙A.①②③④B.①②④C.①④D.②③16.(2020•雅安)在课外活动中,有10名同学进行了投篮比赛,限每人投10次,投中次数与人数如下表:投中次数578910人数23311则这10人投中次数的平均数和中位数分别是()A.3.9,7B.6.4,7.5C.7.4,8D.7.4,7.5 17.(2020•鄂尔多斯)一次数学测试,某小组5名同学的成绩统计如表(有两个数据被遮盖):组员甲乙丙丁戊平均成绩众数得分7781■808280■则被遮盖的两个数据依次是()A.81,80B.80,2C.81,2D.80,80二.填空题(共11小题)18.(2020•德阳)小明在体考时选择了投掷实心球,如图是体育老师记录的小明在训练时投掷实心球的6次成绩的折线统计图.这6次成绩的中位数是.19.(2020•鞍山)在一个不透明的袋子中装有6个红球和若干个白球,这些球除颜色外都相同,将球搅匀后随机摸出一个球,记下颜色后放回,不断重复这一过程,共摸球100次,发现有20次摸到红球,估计袋子中白球的个数约为.20.(2020•大连)某公司有10名员工,他们所在部门及相应每人所创年利润如下表所示.部门人数每人所创年利润/万元A110B28C75这个公司平均每人所创年利润是万元.21.(2020•桂林)一个正方体的平面展开图如图所示,任选该正方体的一面出现“我”字的概率是.22.(2020•赤峰)某校为了解七年级学生的身体素质情况,从七年级各班随机抽取了数量相同的男生和女生,组成一个容量为60的样本,进行各项体育项目的测试.下表是通过整理样本数据,得到的关于每个个体测试成绩的部分统计表:某校60名学生体育测试成绩频数分布表成绩划记频数百分比优秀a30%良好30b合格915%不合格35%合计6060100%如果该校七年级共有300名学生,根据以上数据,估计该校七年级学生身体素质良好及以上的人数为人.23.(2020•沈阳)甲、乙两人在相同条件下进行射击练习,每人10次射击成绩的平均值都是7环,方差分别为S甲2=2.9,S乙2=1.2,则两人成绩比较稳定的是(填“甲”或“乙”).24.(2020•永州)永州市教育部门为了了解全市中小学安全教育情况,对某校进行了“防溺水”安全知识的测试.从七年级随机抽取了50名学生的测试成绩(百分制),整理样本数据,得到下表:80≤x<9070≤x<8060≤x<70x<60成绩90≤x≤100人数2515541根据抽样调查结果,估计该校七年级600名学生中,80分(含80分)以上的学生有人.25.(2020•雅安)从﹣,﹣1,1,2,5中任取一数作为a,使抛物线y=ax2+bx+c的开口向上的概率为.26.(2020•东营)东营市某学校女子游泳队队员的年龄分布如下表:年龄(岁)131415人数474则该校女子游泳队队员的平均年龄是岁.27.(2020•十堰)某校即将举行30周年校庆,拟定了A,B,C,D四种活动方案,为了解学生对方案的意见,学校随机抽取了部分学生进行问卷调查(每人只能赞成一种方案),将调查结果进行统计并绘制成如图两幅不完整的统计图.若该校有学生3000人,请根据以上统计结果估计该校学生赞成方案B的人数为.28.(2020•呼和浩特)公司以3元/kg的成本价购进10000kg柑橘,并希望出售这些柑橘能够获得12000元利润,在出售柑橘(去掉损坏的柑橘)时,需要先进行“柑橘损坏率”统计,再大约确定每千克柑橘的售价,如表是销售部通过随机取样,得到的“柑橘损坏率”统计表的一部分,由此可估计柑橘完好的概率为(精确到0.1);从而可大约估计每千克柑橘的实际售价为元时(精确到0.1),可获得12000元利润.柑橘总质量n/kg损坏柑橘质量m/kg柑橘损坏的频率(精确到0.001)………25024.750.09930030.930.10335035.120.10045044.540.09950050.620.101三.解答题(共22小题)29.(2020•日照)为落实我市关于开展中小学课后服务工作的要求,某学校开设了四门校本课程供学生选择:A.趣味数学;B.博乐阅读;C.快乐英语;D.硬笔书法.某年级共有100名学生选择了A课程,为了解本年级选择A课程学生的学习情况,从这100名学生中随机抽取了30名学生进行测试,将他们的成绩(百分制)分成六组,绘制成频数分布直方图.(1)已知70≤x<80这组的数据为:72,73,74,75,76,76,79.则这组数据的中位数是;众数是;(2)根据题中信息,估计该年级选择A课程学生成绩在80≤x<90的总人数;(3)该年级学生小乔随机选取了一门课程,则小乔选中课程D的概率是;(4)该年级每名学生选两门不同的课程,小张和小王在选课程的过程中,若第一次都选了课程C,那么他俩第二次同时选择课程A或课程B的概率是多少?请用列表法或树状图的方法加以说明.30.(2020•济南)促进青少年健康成长是实施“健康中国”战略的重要内容.为了引导学生积极参与体育运动,某校举办了一分钟跳绳比赛,随机抽取了40名学生一分钟跳绳的次数进行调查统计,并根据调查统计结果绘制了如下表格和统计图:等级次数频率不合格100≤x<120a合格120≤x<140b良好140≤x<160优秀160≤x<180请结合上述信息完成下列问题:(1)a=,b=;(2)请补全频数分布直方图;(3)在扇形统计图中,“良好”等级对应的圆心角的度数是;(4)若该校有2000名学生,根据抽样调查结果,请估计该校学生一分钟跳绳次数达到合格及以上的人数.31.(2020•黔南州)勤劳是中华民族的传统美德,学校要求学们在家帮助父母做一些力所能及的家务.在学期初,小丽同学随机调查了七年级部分同学寒假在家做家务的总时间,设被调查的每位同学寒假在家做家务的总时间为x小时,将做家务的总时间分为五个类别:A(0≤x<10),B(10≤x<20),C(20≤x<30),D(30≤x<40),E(x≥40).并将调查结果绘制了如图两幅不完整的统计图:根据统计图提供的作息,解答下列问题:(1)本次共调查了名学生;(2)根据以上信息直接在答题卡上补全条形统计图;(3)扇形統计图中m=,类别D所对应的扇形圆心角α的度数是度;(4)若该校七年级共有400名学生,根据抽样调查的结果,估计该校七年級有多少名学生寒假在家做家务的总时间不低于20小时?32.(2020•阜新)在“尚科学,爱运动”主题活动中,某校在七年级学生中随机抽取部分同学就“一分钟跳绳”进行测试,并将测试成绩x(单位:次)进行整理后分成六个等级,分别用A,B,C,D,E,F表示,并绘制成如图所示的两幅不完整的统计图表.请根据图表中所给出的信息解答下列问题:组别成绩x(单位:次)人数A70≤x<904B90≤x<11015C110≤x<13018D130≤x<15012E150≤x<170mF170≤x<1905(1)本次测试随机抽取的人数是人,m=;(2)求C等级所在扇形的圆心角的度数;(3)若该校七年级学生共有300人,且规定不低于130次的成绩为优秀,请你估计该校七年级学生中有多少人能够达到优秀.33.(2020•盘锦)某校为了解学生课外阅读时间情况,随机抽取了m名学生,根据平均每天课外阅读时间的长短,将他们分为A,B,C,D四个组别,并绘制了如图不完整的频数分布表和扇形统计图.频数分布表组别时间/(小时)频数/人数A0≤t<0.52nB0.5≤t<120C1≤t<1.5n+10D t≥1.55请根据图表中的信息解答下列问题:(1)求m与n的值,并补全扇形统计图;(2)直接写出所抽取的m名学生平均每天课外阅读时间的中位数落在的组别;(3)该校现有1500名学生,请你估计该校有多少名学生平均每天课外阅读时间不少于1小时.34.(2020•锦州)A,B两个不透明的盒子里分别装有三张卡片,其中A盒里三张卡片上分别标有数字1,2,3,B盒里三张卡片上分别标有数字4,5,6,这些卡片除数字外其余都相同,将卡片充分摇匀.(1)从A盒里抽取一张卡、抽到的卡片上标有数字为奇数的概率是;(2)从A盒,B盒里各随机抽取一张卡片,请用列表或画树状图的方法,求抽到的两张卡片上标有的数字之和大于7的概率.35.(2020•朝阳)由于疫情的影响,学生不能返校上课,某校在直播授课的同时还为学生提供了四种辅助学习方式:A网上自测,B网上阅读,C网上答疑,D网上讨论.为了解学生对四种学习方式的喜欢情况,该校随机抽取部分学生进行问卷调查,规定被调查学生从四种方式中选择自己最喜欢的一种,根据调查结果绘制成如图两幅不完整的统计图:根据统计图提供的信息,解答下列问题:(1)本次共调查了名学生;(2)在扇形统计图中,m的值是,D对应的扇形圆心角的度数是;(3)请补全条形统计图;(4)若该校共有2000名学生,根据抽样调查的结果,请你估计该校最喜欢方式D的学生人数.36.(2020•锦州)某中学八年级在新学学期开设了四门校本选修课程:A.轮滑;B.书法;C.舞蹈;D.围棋,要求每名学生必须选择且只能选择其中一门课程,学校随机抽查了部分八年级学生,对他们的课程选择情况进行了统计,并绘制了如图两幅不完整的统计图.请根据统计图提供的信息,解答下列问题:(1)此次共抽查了名学生;(2)请通过计算补全条形统计图;(3)若该校八年级共有900名学生,请估计选择C课程的有多少名学生.37.(2020•盘锦)有四张正面分别标有数字1,2,3,4的不透明卡片,它们除数字外无其他差别,现将它们背面朝上洗匀.(1)随机抽取一张卡片,卡片上的数字是奇数的概率为.(2)随机抽取一张卡片,然后放回洗匀,再随机抽取一张卡片,请用列表或画树状图的方法,求两次抽取的卡片上的数字和等于6的概率.38.(2020•鞍山)为了解某校学生的睡眠情况,该校数学小组随机调查了部分学生一周的平均每天睡眠时间,设每名学生的平均每天睡眠时间为x时,共分为四组:A.6≤x<7,B.7≤x<8,C.8≤x<9,D.9≤x≤10,将调查结果绘制成如图两幅不完整的统计图:注:学生的平均每天睡眠时间不低于6时且不高于10时.请回答下列问题:(1)本次共调查了名学生;(2)请补全频数分布直方图;(3)求扇形统计图中C组所对应的圆心角度数;(4)若该校有1500名学生,根据抽样调查结果,请估计该校有多少名学生平均每天睡眠时间低于7时.39.(2020•葫芦岛)某校计划组建航模、摄影、乐器、舞蹈四个课外活动小组,要求每名同学必须参加,并且只能选择其中一个小组.为了解学生对四个课外活动小组的选择情况,学校从全体学生中随机抽取部分学生进行问卷调查,并把此次调查结果整理并绘制成如图两幅不完整的统计图.根据图中提供的信息,解答下列问题:(1)本次被调查的学生有人;(2)请补全条形统计图,并求出扇形统计图中“航模”所对应的圆心角的度数;(3)通过了解,喜爱“航模”的学生中有2名男生和2名女生曾在市航模比赛中获奖,现从这4个人中随机选取2人参加省青少年航模比赛,请用列表或画树状图的方法求出所选的2人恰好是1名男生和1名女生的概率.40.(2020•德阳)为了加强学生的垃圾分类意识,某校对学生进行了一次系统全面的垃圾分类宣传.为了解这次宣传的效果,从全校学生中随机抽取部分学生进行了一次测试,测试结果共分为四个等级:A.优秀;B.良好;C.及格;D.不及格.根据调查统计结果,绘制了如图所示的不完整的统计表.垃圾分类知识测试成绩统计表测试等级百分比人数A.优秀5%20B.良好60C.及格45%mD.不及格n请结合统计表,回答下列问题:(1)求本次参与调查的学生人数及m,n的值;(2)如果测试结果为“良好”及以上即为对垃圾分类知识比较了解,已知该校学生总数为5600人,请根据本次抽样调查的数据估计全校比较了解垃圾分类知识的学生人数;(3)为了进一步在学生中普及垃圾分类知识,学校准备再开展一次关于垃圾分类的知识竞赛,要求每班派一人参加.某班要从在这次测试成绩为优秀的小明和小亮中选一人参加.班长设计了如下游戏来确定人选,具体规则是:把四个完全相同的乒乓球分别标上数字1,2,3,4.然后放到一个不透明的袋中充分摇匀,两人同时从袋中各摸出一个球.若摸出的两个球上的数字和为奇数,则小明参加,否则小亮参加.请用树状图或列表法说明这个游戏规则是否公平.41.(2020•大连)某校根据《教育部基础教育课程教材发展中心中小学生阅读指导目录(2020版)》公布的初中段阅读书目,开展了读书活动.六月末,学校对八年级学生在此次活动中的读书量进行了抽样调查,如图是根据调查结果绘制的统计图表的一部分.读书量频数(人)频率1本42本0.33本4本及以上10根据以上信息,解答下列问题:(1)被调查学生中,读书量为1本的学生数为人,读书量达到4本及以上的学生数占被调查学生总人数的百分比为%;(2)被调查学生的总人数为人,其中读书量为2本的学生数为人;(3)若该校八年级共有550名学生,根据调查结果,估计该校八年级学生读书量为3本的学生人数.42.(2020•桂林)阅读下列材料,完成解答:材料1:国家统计局2月28日发布了2019年国民经济和社会发展统计公报,该公报中的如图发布的是全国“2015﹣2019年快递业务量及其增长速度”统计图(如图1).材料2:6月28日,国家邮政局发布的数据显示:受新冠疫情影响,快递业务量快速增长,5月份快递业务量同比增长41%(如图2).某快递业务部门负责人据此估计,2020年全国快递业务量将比2019年增长50%.(1)2018年,全国快递业务量是亿件,比2017年增长了%;(2)2015﹣2019年,全国快递业务量增长速度的中位数是%;(3)统计公报发布后,有人认为,图1中表示2016﹣2019年增长速度的折线逐年下降,说明2016﹣2019年全国快递业务量增长速度逐年放缓,所以快递业务量也逐年减少.你赞同这种说法吗?为什么?(4)若2020年全国快递业务量比2019年增长50%,请列式计算2020年的快递业务量.43.(2020•呼伦贝尔)某校为了了解初中学生每天的睡眠时间(单位为小时),随机调查了该校的部分初中学生,根据调查结果,绘制出如图统计图.请根据相关信息,解答下列问题:(1)本次接受调查的初中学生人数为人,扇形统计图中的m=,条形统计图中的n=;(2)所调查的初中学生每天睡眠时间的众数是,方差是;(3)该校共有1600名初中学生,根据样本数据,估计该校初中学生每天睡眠时间不足8小时的人数.44.(2020•赤峰)如图1,一枚质地均匀的正四面体骰子,它有四个面,并分别标有1,2,3,4四个数字;如图2,等边三角形ABC的三个顶点处各有一个圆圈.丫丫和甲甲想玩跳圈游戏,游戏的规则为:游戏者从圈A起跳,每投掷一次骰子,骰子着地的一面点数是几,就沿着三角形的边逆时针方向连续跳跃几个边长.如:若第一次掷得点数为2,就逆时针连续跳2个边长,落到圈C;若第二次掷得点数为4,就从圈C继续逆时针连续跳4个边长,落到圈A.(1)丫丫随机掷一次骰子,她跳跃后落回到圈A的概率为;(2)丫丫和甲甲一起玩跳圈游戏:丫丫随机投掷一次骰子,甲甲随机投掷两次骰子,都以最终落回到圈A为胜者.这个游戏规则公平吗?请说明理由.45.(2020•沈阳)某市为了将生活垃圾合理分类,并更好地回收利用,将垃圾分为可回收物、厨余垃圾、有害垃圾和其他垃圾四类.现随机抽取该市m吨垃圾,将调查结果制成如下两幅不完整的统计图:根据统计图提供的信息,解答下列问题:(1)m=,n=;(2)根据以上信息直接补全条形统计图;(3)扇形统计图中,厨余垃圾所对应的扇形圆心角的度数为度;(4)根据抽样调查的结果,请你估计该市2000吨垃圾中约有多少吨可回收物.46.(2020•眉山)中华文化源远流长,文学方面,《西游记》、《三国演义》、《水浒传》、《红楼梦》是我国古代长篇小说中的典型代表,被称为“四大古典名著”.某中学为了了解学生对四大古典名著的阅读情况,就“四大古典名著你读完了几部”的问题在全校学生中进行了抽样调查,根据调查结果绘制成如图尚不完整的统计图.请根据以上信息,解决下列问题:(1)本次调查所得数据的众数是部,中位数是部;(2)扇形统计图中“4部”所在扇形的圆心角为度;(3)请将条形统计图补充完整;(4)没有读过四大古典名著的两名学生准备从中各自随机选择一部来阅读,请用列表或画树状图的方法求他们恰好选中同一名著的概率.47.(2020•大庆)为了了解某校某年级1000名学生一分钟的跳绳次数,从中随机抽取了40名学生的一分钟跳绳次数(次数为整数,且最高次数不超过150次),整理后绘制成如图的频数直方图,图中的a,b满足关系式2a=3b.后由于保存不当,部分原始数据模糊不清,但已知缺失数据都大于120.请结合所给条件,回答下列问题.(1)求问题中的总体和样本容量;(2)求a,b的值(请写出必要的计算过程);(3)如果一分钟跳绳次数在125次以上(不含125次)为跳绳成绩优秀,那么估计该校该年级学生跳绳成绩优秀的人数大约是多少人?(注:该年级共1000名学生)48.(2020•长春)空气质量按照空气质量指数大小分为六个级别,分别为:一级优、二级良、三级轻度污染、四级中度污染、五级重度污染、六级严重污染.级别越高,说明污染的情况越严重,对人体的健康危害也就越大.空气质量达到一级优或二级良的天气为达标天气,如图是长春市从2014年到2019年的空气质量级别天数的统计图表.2014﹣2019年长春市空气质量级别天数统计表优良轻度污染中度污染重度污染严重污染空气质量级别天数年份201430215732813620154319387191582016512375815502017652116216922018123202390102019126180381650根据上面的统计图表回答下列问题:(1)长春市从2014年到2019年空气质量为“达标”的天数最多的是年.(2)长春市从2014年到2019年空气质量为“重度污染”的天数的中位数为天,平均数为天.(3)长春市从2015年到2019年,和前一年相比,空气质量为“优”的天数增加最多的是年,这一年空气质量为“优”的天数的年增长率约为(精确到1%).(空气质量为“优”的天数的增长率=×100%)(4)你认为长春市从2014年到2019年哪一年的空气质量好?请说明理由.49.(2020•南通)为了解全校学生对“垃圾分类”知识的掌握情况,某初级中学的两个兴趣小组分别抽样调查了100名学生.为方便制作统计图表,对“垃圾分类”知识的掌握情况分成四个等级:A表示“优秀”,B表示“良好”,C表示“合格”,D表示“不合格”.第一小组认为,八年级学生对“垃圾分类”知识的掌握不如九年级学生,但好于七年级学生,所以他们随机调查了100名八年级学生.第二小组随机调查了全校三个年级中的100名学生,但只收集到90名学生的有效问卷调查表.两个小组的调查结果如图的图表所示:第二小组统计表等级人数百分比A1718.9%B3842.2%C2831.1%D77.8%合计90100%若该校共有1000名学生,试根据以上信息解答下列问题:(1)第小组的调查结果比较合理,用这个结果估计该校学生对“垃圾分类”知识掌握情况达到合格以上(含合格)的共约人;(2)对这两个小组的调查统计方法各提一条改进建议.50.(2020•云南)某公司员工的月工资如下:员工经理副经理职员A职员B职员C职员D职员E职员F杂工G 月工资/700044002400200019001800180018001200元经理、职员C、职员D从不同的角度描述了该公司员工的收入情况.设该公司员工的月工资数据(见上述表格)的平均数、中位数、众数分别为k、m、n,请根据上述信息完成下列问题:(1)k=,m=,n=;(2)上月一个员工辞职了,从本月开始,停发该员工工资,若本月该公司剩下的8名员工的月工资不变,但这8名员工的月工资数据(单位:元)的平均数比原9名员工的月工资数据(见上述表格)的平均数减小了.你认为辞职的那名员工可能是.。
2020年中考数学统计和概率专题卷(附答案)一、单选题(共12题;共24分)1.数据1、10、6、4、7、4的中位数是().A. 9B. 6C. 5D. 42.某次射击训练中,一个小组的成绩如下表所示:已知该小组的平均成绩为8.1环,那么成绩为8环的人数是( )A. 4B. 5C. 6D. 73.某市股票在七个月之内增长率的变化状况如图所示.从图上看出,下列结论正确的是()A. 2~6月份股票的月增长率逐渐减少B. 2~6月份股票持续下跌C. 这七个月中,6月的股票跌到最低D. 这七个月中,股票有涨有跌4.在一个不透明的口袋里有红、黄、蓝三种颜色的小球,这些球除颜色外完全相同,其中有5个黄球,4个蓝球.若随机摸出一个蓝球的概率为,则随机摸出一个红球的概率为()A. B. C. D.5.一个密闭不透明的盒子里有若干个白球,在不允许将球倒出来的情况下,为估计白球的个数,小刚向其中放入8个黑球,摇匀后从中随机摸出一个球记下颜色,再把它放回盒中,不断重复,共摸球400次,其中80次摸到黑球,估计盒中大约有白球( )A. 28个B. 32个C. 36个D. 40个6.某市公园的东、西、南、北方向上各有一个入口,周末佳佳和琪琪随机从一个入山进入该公园游玩,则佳佳和琪琪恰好从同一个入口进入该公园的概率是()A. B. C. D.7.下列命题中假命题是()A. 位似图形上的任意一对对应点到位似中心的距离的比等于位似比B. 正五边形的每一个内角等于108°C. 一组数据的平均数、中位数和众数都只有一个D. 方程x2-6x+9=0有两个实数根8.一组数据:1,3,3,5,若添加一个数据3,则下列统计量中发生变化的是()A. 平均数B. 中位数C. 众数D. 方差9.下表是某公司员工月收入的资料:能够反映该公司全体员工月收入水平的统计量是( )A. 平均数和众数B. 平均数和中位数C. 中位数和众数D. 平均数和方差10.九(1)班有2名升旗手,九(2)班、九(3)班各1名,若从4人中随机抽取2人担任下周的升旗手,则抽取的2人恰巧都来自九(1)班的概率是( )A. B. C. D.二、填空题(共7题;共14分)11.在一个不透明的盒子中装有n个球,它们除了颜色之外其他都没有区别,其中含有3个红球,每次摸球前,将盒中所有的球摇匀,然后随机摸出一个球,记下颜色后再放回盒中.通过大量重复试验,发现摸到红球的频率稳定在0.03,那么可以推算出n的值大约是________.12.一个口袋中有5颗球,除颜色以外完全相同,其中有3颗红球2颗白球,从口袋中随机抽取2颗球,那么所抽取的2颗球颜色相同的概率是________.13.小李与小陈做猜拳游戏,规定每人每次出一只手,且至少要出一个手指,两人出拳的手指数之和为偶数时小李获胜,那么________(填“小李”或“小陈”)获胜的可能性较大.14.掷一枚硬币三次,正面都朝上的概率是________.15.一个袋子中装有3个红球和2个黄球,这些球的形状、大小.质地完全相同,在看不到球的条件下,随机从袋子里同时摸出2个球,其中2个球的颜色相同的概率是________.16.一个不透明的盒子里有若干个除颜色外其他完全相同的小球,其中有9个黄球,每次摸球前先将盒子里的球摇匀任意摸出一个球记下颜色后再放回盒子,通过大量重复摸球实验后发现,摸到黄球的频率稳定在30%,那么估计盒子中小球的个数为________ 。
浙江省各市2020年中考数学分类解析专题7 统计与概率一、选择题1. (2020年浙江杭州3分)根据2020~2020年杭州市实现地区生产总值(简称GDP,单位:亿元)统计图所提供的信息,下列判断正确的是【】A.2020~2020年杭州市每年GDP增长率相同B.2020年杭州市的GDP比2020年翻一番C.2020年杭州市的GDP未达到5500亿元D.2020~2020年杭州市的GDP逐年增长故选D。
2. (2020年浙江舟山3分)在某次体育测试中,九(1)班6位同学的立定跳远成绩(单位:m)分别为:1.71,1.85,1.85,1.95,2.10,2.31,则这组数据的众数是【】A.1.71 B.1.85 C.1.90 D.2.313. (2020年浙江舟山3分)下列说法正确的是【】A .要了解一批灯泡的使用寿命,应采用普查的方式B .若一个游戏的中奖率是1%,则做100次这样的游戏一定会中奖C .甲、乙两组数据的样本容量与平均数分别相同,若方差22S 0.1S 0.2== 乙甲,,则甲组数据比乙组数据稳定D .“掷一枚硬币,正面朝上”是必然事件4. (2020年浙江金华、丽水3分)王老师对本班40名学生的血型作了统计,列出如下的统计表,则本班A 型血的人数是【 】A .16人B .14人C .4人D .6人5. (2020年浙江宁波3分)在一个不透明的布袋中装有3个白球和5个红球,它们除了颜色不同外,其余均相同.从中随机摸出一个球,摸到红球的概率是【 】A .15B .13C .38D .586. (2020年浙江湖州3分)在开展“爱心捐助雅安灾区”的活动中,某团支部8名团员捐款分别为(单位:元):6,5,3,5,6,10,5,5,这组数据的中位数是【】A.3元 B.5元 C.6元 D.10元7. (2020年浙江湖州3分)一个布袋里装有6个只有颜色可以不同的球,其中2个红球,4个白球.从布袋里任意摸出1个球,则摸出的球是红球的概率为【】A.12B.16C.23D.13是其发生的概率。
2020年江苏省中考数学试题分类(9)——统计和概率一.调查收集数据的过程与方法(共1小题)1.(2020•扬州)某班级组织活动,为了解同学们喜爱的体育运动项目,设计了如图尚不完整的调查问卷:准备在“①室外体育运动,①篮球,①足球,①游泳,①球类运动”中选取三个作为该调查问卷问题的备选项目,选取合理的是()A.①①①B.①①①C.①①①D.①①①二.频数(率)分布直方图(共1小题)2.(2020•泰州)今年6月6日是第25个全国爱眼日,某校从八年级随机抽取50名学生进行了视力调查,并根据视力值绘制成统计图(如图),这50名学生视力的中位数所在范围是.三.扇形统计图(共1小题)3.(2020•徐州)某市为了解市民每天的阅读时间,随机抽取部分市民进行调查.根据调查结果绘制了如图尚不完整的统计图表:市民每天的阅读时间统计表类别A B C D 阅读时间x(min)0≤x<3030≤x<6060≤x<90x≥90频数450400m50根据以上信息解答下列问题:(1)该调查的样本容量为,m=;(2)在扇形统计图中,“B”对应扇形的圆心角等于°;(3)将每天阅读时间不低于60min的市民称为“阅读爱好者”.若该市约有600万人,请估计该市能称为“阅读爱好者”的市民有多少万人.四.条形统计图(共8小题)4.(2020•南京)党的十八大以来,党中央把脱贫攻坚摆到更加突出的位置.根据国家统计局发布的数据,2012~2019年年末全国农村贫困人口的情况如图所示.根据图中提供的信息,下列说法错误的是()A.2019年末,农村贫困人口比上年末减少551万人B.2012年末至2019年末,农村贫困人口累计减少超过9000万人C.2012年末至2019年末,连续7年每年农村贫困人口减少1000万人以上D.为在2020年末农村贫困人口全部脱贫,今年要确保完成减少551万农村贫困人口的任务5.(2020•南通)为了解全校学生对“垃圾分类”知识的掌握情况,某初级中学的两个兴趣小组分别抽样调查了100名学生.为方便制作统计图表,对“垃圾分类”知识的掌握情况分成四个等级:A表示“优秀”,B表示“良好”,C表示“合格”,D表示“不合格”.第一小组认为,八年级学生对“垃圾分类”知识的掌握不如九年级学生,但好于七年级学生,所以他们随机调查了100名八年级学生.第二小组随机调查了全校三个年级中的100名学生,但只收集到90名学生的有效问卷调查表.两个小组的调查结果如图的图表所示:第二小组统计表等级人数百分比A1718.9%B3842.2%C2831.1%D77.8%合计90100%若该校共有1000名学生,试根据以上信息解答下列问题:(1)第小组的调查结果比较合理,用这个结果估计该校学生对“垃圾分类”知识掌握情况达到合格以上(含合格)的共约人;(2)对这两个小组的调查统计方法各提一条改进建议.6.(2020•宿迁)某校计划成立下列学生社团.社团名称文学社动漫创作社合唱团生物实验小组英语俱乐部社团代号A B C D E 为了解该校学生对上述社团的喜爱情况,学校从全体学生中随机抽取部分学生进行问卷调查(每名学生必须选一个且只能选一个学生社团).根据统计数据,绘制了如图条形统计图和扇形统计图(部分信息未给出).(1)该校此次共抽查了名学生;(2)请补全条形统计图(画图后标注相应的数据);(3)若该校共有1000名学生,请根据此次调查结果,试估计该校有多少名学生喜爱英语俱乐部?7.(2020•扬州)扬州教育推出的“智慧学堂”已成为同学们课外学习的得力助手.为了解同学们“智慧学堂”平台使用的熟练程度,某校随机抽取了部分同学进行调查,并将调查结果绘制成如图两幅尚不完整的统计图.根据以上信息,回答下列问题:(1)本次调查的样本容量是,扇形统计图中表示A等级的扇形圆心角为°;(2)补全条形统计图;(3)学校拟对“不太熟练或不熟练”的同学进行平台使用的培训,若该校有2000名学生,试估计该校需要培训的学生人数.8.(2020•常州)为了解某校学生对球类运动的喜爱情况,调查小组就打排球、打乒乓球、打篮球、踢足球四项球类运动对该校学生进行了“你最喜爱的球类运动”的抽样调查,并根据调查结果绘制成如图统计图.(1)本次抽样调查的样本容量是;(2)补全条形统计图;(3)该校共有2000名学生,请你估计该校最喜爱“打篮球”的学生人数.9.(2020•淮安)为了响应市政府创建文明城市的号召,某校调查学生对市“文明公约十二条”的内容了解情况,随机抽取部分学生进行问卷调查,问卷共设置“非常了解”、“比较了解”、“一般了解”、“不了解”四个选项,分别记为A、B、C、D,根据调查结果绘制了如图尚不完整的统计图.请解答下列问题:(1)本次问卷共随机调查了名学生,扇形统计图中C选项对应的圆心角为度;(2)请补全条形统计图;(3)若该校有1200名学生,试估计该校选择“不了解”的学生有多少人?10.(2020•连云港)在世界环境日(6月5日),学校组织了保护环境知识测试,现从中随机抽取部分学生的成绩作为样本,按“优秀”“良好”“合格”“不合格”四个等级进行统计,绘制了如下尚不完整的统计图表.测试成绩统计表等级频数(人数)频率优秀30a良好b0.45合格240.20不合格120.10合计c1根据统计图表提供的信息,解答下列问题:(1)表中a=,b=,c=;(2)补全条形统计图;(3)若该校有2400名学生参加了本次测试,估计测试成绩等级在良好以上(包括良好)的学生约有多少人?11.(2020•无锡)小李2014年参加工作,每年年底都把本年度收入减去支出后的余额存入银行(存款利息记入收入),2014年底到2019年底,小李的银行存款余额变化情况如下表所示:(单位:万元)年份2014年2015年2016年2017年2018年2019年收入389a1418支出1456c6存款余额261015b34(1)表格中a=;(2)请把下面的条形统计图补充完整;(画图后标注相应的数据)(3)请问小李在哪一年的支出最多?支出了多少万元?五.折线统计图(共2小题)12.(2020•盐城)在某次疫情发生后,根据疾控部门发布的统计数据,绘制出如图统计图:图①为A地区累计确诊人数的条形统计图,图①为B地区新增确诊人数的折线统计图.(1)根据图①中的数据,A地区星期三累计确诊人数为,新增确诊人数为;(2)已知A地区星期一新增确诊人数为14人,在图①中画出表示A地区新增确诊人数的折线统计图.(3)你对这两个地区的疫情做怎样的分析、推断.13.(2020•泰州)2020年6月1日起,公安部在全国开展“一盔一带”安全守护行动.某校小交警社团在交警带领下,从5月29日起连续6天,在同一时段对某地区一路口的摩托车和电动自行车骑乘人员佩戴头盔情况进行了调查,并将数据绘制成如下图表:2020年6月2日骑乘人员头盔佩戴情况统计表骑乘摩托车骑乘电动自行车戴头盔人数1872不戴头盔人数2m (1)根据以上信息,小明认为6月3日该地区全天摩托车骑乘人员头盔佩戴率约为95%.你是否同意他的观点?请说明理由;(2)相比较而言,你认为需要对哪类人员加大宣传引导力度?为什么?(3)求统计表中m的值.六.算术平均数(共1小题)14.(2020•淮安)已知一组数据1、3、a、10的平均数为5,则a=.七.加权平均数(共2小题)15.(2020•苏州)某手表厂抽查了10只手表的日走时误差,数据如下表所示(单位:s):日走时误差0123只数3421则这10只手表的平均日走时误差(单位:s)是()A.0B.0.6C.0.8D.1.116.(2020•镇江)教育部发布的义务教育质量监测结果报告显示,我国八年级学生平均每天的睡眠时间达9小时及以上的比例为19.4%.某校数学社团成员采用简单随机抽样的方法,抽取了本校八年级50名学生,对他们一周内平均每天的睡眠时间t(单位:小时)进行了调查,将数据整理后绘制成下表:5≤t<66≤t<77≤t<88≤t<99小时及以上平均每天的睡眠时间分组频数15m24n 该样本中学生平均每天的睡眠时间达9小时及以上的比例高于全国的这项数据,达到了22%.(1)求表格中n的值;(2)该校八年级共400名学生,估计其中平均每天的睡眠时间在7≤t<8这个范围内的人数是多少.八.中位数(共4小题)17.(2020•无锡)已知一组数据:21,23,25,25,26,这组数据的平均数和中位数分别是()A.24,25B.24,24C.25,24D.25,2518.(2020•镇江)在从小到大排列的五个数x,3,6,8,12中再加入一个数,若这六个数的中位数、平均数与原来五个数的中位数、平均数分别相等,则x的值为.19.(2020•南京)为了了解某地居民用电量的情况,随机抽取了该地200户居民六月份的用电量(单位:kW•h)进行调查,整理样本数据得到下面的频数分布表.组别用电量分组频数18≤x<9350293≤x<1781003178≤x<263344263≤x<348115348≤x<43316433≤x<51817518≤x<60328603≤x<6881根据抽样调查的结果,回答下列问题:(1)该地这200户居民六月份的用电量的中位数落在第组内;(2)估计该地1万户居民六月份的用电量低于178kW•h的大约有多少户.20.(2020•苏州)为增强学生垃圾分类意识,推动垃圾分类进校园.某初中学校组织全校1200名学生参加了“垃圾分类知识竞赛”,为了解学生的答题情况,学校考虑采用简单随机抽样的方法抽取部分学生的成绩进行调查分析.(1)学校设计了以下三种抽样调查方案:方案一:从初一、初二、初三年级中指定部分学生成绩作为样本进行调查分析;方案二:从初一、初二年级中随机抽取部分男生成绩及在初三年级中随机抽取部分女生成绩进行调查分析;方案三:从三个年级全体学生中随机抽取部分学生成绩进行调查分析.其中抽取的样本具有代表性的方案是.(填“方案一”、“方案二”或“方案三”)(2)学校根据样本数据,绘制成下表(90分及以上为“优秀”,60分及以上为“及格”):样本容量平均分及格率优秀率最高分最低分10093.5100%70%10080分数段统计(学生成绩记为x)分数段0≤x<8080≤x<8585≤x<9090≤x<9595≤x≤100频数05253040请结合表中信息解答下列问题:①估计该校1200名学生竞赛成绩的中位数落在哪个分数段内;①估计该校1200名学生中达到“优秀”的学生总人数.九.众数(共3小题)21.(2020•宿迁)已知一组数据5,4,4,6,则这组数据的众数是()A.4B.5C.6D.822.(2020•南通)一组数据2,4,6,x,3,9,5的众数是3,则这组数据的中位数是()A.3B.3.5C.4D.4.523.(2020•淮安)一组数据9、10、10、11、8的众数是()A.10B.9C.11D.8一十.极差(共1小题)24.(2020•徐州)小红连续5天的体温数据如下(单位:℃):36.6,36.2,36.5,36.2,36.3.关于这组数据,下列说法正确的是()A.中位数是36.5℃B.众数是36.2°CC.平均数是36.2℃D.极差是0.3℃一十一.方差(共1小题)25.(2020•连云港)“红色小讲解员”演讲比赛中,7位评委分别给出某位选手的原始评分.评定该选手成绩时,从7个原始评分中去掉一个最高分、一个最低分,得到5个有效评分.5个有效评分与7个原始评分相比,这两组数据一定不变的是()A.中位数B.众数C.平均数D.方差一十二.随机事件(共1小题)26.(2020•泰州)如图,电路图上有4个开关A、B、C、D和1个小灯泡,同时闭合开关A、B或同时闭合开关C、D都可以使小灯泡发光.下列操作中,“小灯泡发光”这个事件是随机事件的是()A.只闭合1个开关B.只闭合2个开关C.只闭合3个开关D.闭合4个开关一十三.概率公式(共2小题)27.(2020•镇江)一只不透明的袋子中装有5个红球和1个黄球,这些球除颜色外都相同,搅匀后从中任意摸出1个球,摸出红球的概率等于.28.(2020•盐城)一只不透明的袋中装有2个白球和3个黑球,这些球除颜色外都相同,搅匀后从中任意摸出1个球.摸到白球的概率为.一十四.几何概率(共1小题)29.(2020•苏州)一个小球在如图所示的方格地砖上任意滚动,并随机停留在某块地砖上.每块地砖的大小、质地完全相同,那么该小球停留在黑色区域的概率是.一十五.列表法与树状图法(共9小题)30.(2020•南通)某公司有甲、乙、丙三辆车去南京,它们出发的先后顺序随机.张先生和李先生乘坐该公司的车去南京出差,但有不同的需求.请用所学概率知识解决下列问题:(1)写出这三辆车按先后顺序出发的所有可能结果;(2)两人中,谁乘坐到甲车的可能性大?请说明理由.31.(2020•镇江)智慧的中国古代先民发明了抽象的符号来表达丰富的含义.例如,符号“☰”有刚毅的含义,符号“☱”有愉快的含义.符号中的“”表示“阴”,“”表示“阳”,类似这样自上而下排成的三行符号还有其他的含义.所有这些三行符号中,每一行只有一个阴或一个阳,且出现阴、阳的可能性相同.(1)所有这些三行符号共有种;(2)若随机画一个这样的三行符号,求“画出含有一个阴和两个阳的三行符号”的概率.32.(2020•宿迁)将4张印有“梅”“兰”“竹”“菊”字样的卡片(卡片的形状、大小、质地都相同)放在一个不透明的盒子中,将卡片搅匀.(1)从盒子中任意取出1张卡片,恰好取出印有“兰”字的卡片的概率为.(2)先从盒子中任意取出1张卡片,记录后放回并搅匀,再从中任意取出1张卡片,求取出的两张卡片中,至少有1张印有“兰”字的概率(请用画树状图或列表等方法求解).33.(2020•盐城)生活在数字时代的我们,很多场合用二维码(如图①)来表示不同的信息,类似地,可通过在矩形网格中,对每一个小方格涂色或不涂色所得的图形来表示不同的信息,例如:网格中只有一个小方格,如图①,通过涂色或不涂色可表示两个不同的信息.(1)用树状图或列表格的方法,求图①可表示不同信息的总个数;(图中标号1、2表示两个不同位置的小方格,下同)(2)图①为2×2的网格图,它可表示不同信息的总个数为;(3)某校需要给每位师生制作一张“校园出入证”,准备在证件的右下角采用n×n的网格图来表示个人身份信息,若该校师生共492人,则n的最小值为.34.(2020•常州)在3张相同的小纸条上分别标上1、2、3这3个号码,做成3支签,放在一个不透明的盒子中.(1)搅匀后从中随机抽出1支签,抽到1号签的概率是;(2)搅匀后先从中随机抽出1支签(不放回),再从余下的2支签中随机抽出1支签,求抽到的2支签上签号的和为奇数的概率.35.(2020•徐州)小红的爸爸积极参加社区抗疫志愿服务工作.根据社区的安排,志愿者被随机分到A组(体温检测)、B组(便民代购)、C组(环境消杀).(1)小红的爸爸被分到B组的概率是;(2)某中学王老师也参加了该社区的志愿者队伍,他和小红爸爸被分到同一组的概率是多少?(请用画树状图或列表的方法写出分析过程)36.(2020•淮安)一只不透明的袋子中,装有三个大小、质地都相同的乒乓球,球面上分别标有字母A、O、K.搅匀后先从袋中任意摸出一个球,将对应字母记入图中的左边方格内;然后将球放回袋中搅匀,再从袋中任意摸出一个球,将对应字母记入图中的右边方格内.(1)第一次摸到字母A的概率为;(2)用画树状图或列表等方法求两个方格中的字母从左往右恰好组成“OK”的概率.37.(2020•扬州)防疫期间,全市所有学校都严格落实测体温进校园的防控要求.某校开设了A、B、C三个测温通道,某天早晨,该校小明和小丽两位同学将随机通过测温通道进入校园.(1)小明从A测温通道通过的概率是;(2)利用画树状图或列表的方法,求小明和小丽从同一个测温通道通过的概率.38.(2020•南京)甲、乙两人分别从A、B、C这3个景点中随机选择2个景点游览.(1)求甲选择的2个景点是A、B的概率;(2)甲、乙两人选择的2个景点恰好相同的概率是.一十六.利用频率估计概率(共3小题)39.(2020•徐州)在一个不透明的袋子里装有红球、黄球共20个,这些球除颜色外都相同.小明通过多次试验发现,摸出红球的频率稳定在0.25左右,则袋子中红球的个数最有可能是()A.5B.10C.12D.1540.(2020•扬州)大数据分析技术为打赢疫情防控阻击战发挥了重要作用.如图是小明同学的健康码(绿码)示意图,用黑白打印机打印于边长为2cm的正方形区域内,为了估计图中黑色部分的总面积,在正方形区域内随机掷点,经过大量重复试验,发现点落入黑色部分的频率稳定在0.6左右,据此可以估计黑色部分的总面积约为cm2.41.(2020•泰州)一只不透明袋子中装有1个白球和若干个红球,这些球除颜色外都相同,某课外学习小组做摸球试验:将球搅匀后从中任意摸出1个球,记下颜色后放回、搅匀,不断重复这个过程,获得数据如下:摸球的次数200300400100016002000摸到白球的频数7293130334532667摸到白球的频率0.36000.31000.32500.33400.33250.3335(1)该学习小组发现,摸到白球的频率在一个常数附近摆动,这个常数是.(精确到0.01),由此估出红球有个.(2)现从该袋中摸出2个球,请用树状图或列表的方法列出所有等可能的结果,并求恰好摸到1个白球,1个红球的概率.2020年江苏省中考数学试题分类(9)——统计和概率参考答案与试题解析一.调查收集数据的过程与方法(共1小题)1.【解答】解:根据体育项目的隶属包含关系,选择“篮球”“足球”“游泳”比较合理,故选:C.二.频数(率)分布直方图(共1小题)2.【解答】解:∵一共调查了50名学生的视力情况,∴这50个数据的中位数是第25、26个数据的平均数,由频数分布直方图知第25、26个数据都落在4.65﹣4.95之间,∴这50名学生视力的中位数所在范围是4.65﹣4.95,故答案为:4.65﹣4.95.三.扇形统计图(共1小题)3.【解答】解:(1)450÷45%=1000,m=1000﹣(450+400+50)=100.故答案为:1000,100;(2)360°×4001000=144°.即在扇形统计图中,“B”对应扇形的圆心角等于144°.故答案为:144;(3)600×100+501000=90(万人).答:估计该市能称为“阅读爱好者”的市民有90万人.四.条形统计图(共8小题)4.【解答】解:A.2019年末,农村贫困人口比上年末减少1660﹣551=1109(万人),此选项符合题意;B.2012年末至2019年末,农村贫困人口累计减少超过9899﹣551=9348(万人),此选项不符合题意;C.2012年末至2019年末,连续7年每年农村贫困人口减少1000万人以上,此选项不符合题意;D.为在2020年末农村贫困人口全部脱贫,今年要确保完成减少551万农村贫困人口的任务,此选项不符合题意;故选:A.5.【解答】解:(1)根据抽样调查的样本要具有代表性,因此第二小组的调查结果比较合理;1000×(1﹣7.8%)=1000×0.922=922(人),故答案为:二,922;(2)第一小组,仅仅调查八年级学生情况,不能代表全校的学生对垃圾处理知识的掌握情况,应从全校范围内抽查学生进行调查.;对于第二小组要把问卷收集齐全,并尽量从多个角度进行抽样,确保抽样的代表性、普遍性和可操作性.6.【解答】解:(1)该校此次共抽查了12÷24%=50名学生,故答案为:50;(2)喜爱C的学生有:50﹣8﹣10﹣12﹣14=6(人),补全的条形统计图如右图所示;(3)1000×1450=280(名),答:该校有280名学生喜爱英语俱乐部.7.【解答】解:(1)本次调查的样本容量是150÷30%=500,扇形统计图中表示A等级的扇形圆心角为:360°×30%=108°,故答案为:500,108;(2)B等级的人数为:500×40%=200,补全的条形统计图如右图所示;(3)2000×50500=200(人),答:该校需要培训的学生有200人.8.【解答】解:(1)本次抽样调查的总人数是:25÷25%=100(人),则样本容量是100;故答案为:100;(2)打乒乓球的人数有:100×35%=35(人),踢足球的人数有:100﹣25﹣35﹣15=25(人),补全统计图如下:(3)根据题意得:2000×15100=300(人),答:估计该校最喜爱“打篮球”的学生人数有300人.9.【解答】解:(1)24÷40%=60(名),360°×1860=108°, 故答案为:60,108; (2)60×25%=15(人), 补全条形统计图如图所示:(3)1200×360=60(人),答:该校1200名学生中选择“不了解”的有60人. 10.【解答】解:(1)本次抽取的学生有:24÷0.20=120(人), a =30÷120=0.25,b =120×0.45=54,c =120, 故答案为:0.25,54,120; (2)由(1)知,b =54,补全的条形统计图如右图所示;(3)2400×(0.45+0.25)=1680(人),答:测试成绩等级在良好以上(包括良好)的学生约有1680人.11.【解答】解:(1)10+a ﹣6=15,解得,a =11, 故答案为:11;(2)根据题意得{15+14−c =c c +18−6=34,解得,{c =22c =7,即存款余额为22万元, 条形统计图补充为:(3)小李在2018年的支出最多,支出了7万元. 五.折线统计图(共2小题) 12.【解答】解:(1)41﹣28=13(人), 故答案为:41,13;(2)分别计算A 地区一周每一天的“新增确诊人数”为:14,13,16,17,14,10; 绘制的折线统计图如图所示:(3)A 地区的累计确诊人数可能还会增加,防控形势十分严峻,并且每一天的新增确诊人数均在10人以上,变化不明显,而B 地区的“新增确诊人数”不断减少,疫情防控向好的方向发展,说明防控措施落实的比较到位. 13.【解答】解:(1)不同意,虽然可用某地区一路口的摩托车骑乘人员佩戴头盔情况来估计该地区的摩托车骑乘人员佩戴头盔情况,但是,只用6月3日的来估计,具有片面性,不能代表该地区的真实情况,可用某地区一路口一段时间内的平均值进行估计,就比较客观、具有代表性.(2)通过折线统计图中,摩托车和电动自行车骑乘人员佩戴头盔的百分比的变化情况,可以得出:需要对电动自行车骑乘人员佩戴头盔情况进行宣传,毕竟这5天,其佩戴的百分比增长速度较慢. (3)由题意得,7272+c=45%,解得,m =88,经检验,m =88是分式方程的解,且符合题意. 答:统计表中的m 的值为88人. 六.算术平均数(共1小题) 14.【解答】解:依题意有(1+3+a +10)÷4=5, 解得a =6. 故答案为:6.七.加权平均数(共2小题) 15.【解答】解:c =1×4+2×2+3×13+4+2+1=1.1,故选:D . 16.【解答】解:(1)n =50×22%=11; (2)m =50﹣1﹣5﹣24﹣11=9,所以估计该校平均每天的睡眠时间在7≤t <8这个范围内的人数是400×950=72(人). 八.中位数(共4小题) 17.【解答】解:这组数据的平均数是:(21+23+25+25+26)÷5=24; 把这组数据从小到大排列为:21,23,25,25,26,最中间的数是25, 则中位数是25; 故选:A . 18.【解答】解:从小到大排列的五个数x ,3,6,8,12的中位数是6, ∵再加入一个数,这六个数的中位数与原来五个数的中位数相等, ∴加入的一个数是6,∵这六个数的平均数与原来五个数的平均数相等, ∴15(x +3+6+8+12)=16(x +3+6+6+8+12), 解得x =1. 故答案为:1.19.【解答】解:(1)∵有200个数据,∴六月份的用电量的中位数应该是第100个和第101个数的平均数, ∴该地这200户居民六月份的用电量的中位数落在第2组内; 故答案为:2; (2)50+100200×10000=7500(户),答:估计该地1万户居民六月份的用电量低于178kW •h 的大约有7500户.20.【解答】解:(1)根据抽样的代表性、普遍性和可操作性可得,方案三:从三个年级全体学生中随机抽取部分学生成绩进行调查分析,是最符合题意的. 故答案为:方案三;(2)①样本100人中,成绩从小到大排列后,处在中间位置的两个数都在90≤x <95,因此中位数在90≤x <95组中;①由题意得,1200×70%=840(人),答:该校1200名学生中达到“优秀”的有840人. 九.众数(共3小题) 21.【解答】解:∵一组数据5,4,4,6, ∴这组数据的众数是4, 故选:A . 22.【解答】解:∵这组数据2,4,6,x ,3,9,5的众数是3, ∴x =3,从小到大排列此数据为:2,3,3,4,5,6,9, 处于中间位置的数是4, ∴这组数据的中位数是4. 故选:C . 23.【解答】解:一组数据9、10、10、11、8的众数是10, 故选:A .一十.极差(共1小题) 24.【解答】解:把小红连续5天的体温从小到大排列得,36.2,36.2,36.3.36.5,36.6, 处在中间位置的一个数是36.3℃,因此中位数是36.3℃; 出现次数最多的是36.2℃,因此众数是36.2℃;平均数为:c =(36.2+36.2+36.3+36.5+36.6)÷5=36.36℃, 极差为:36.6﹣36.2=0.4℃, 故选:B .一十一.方差(共1小题) 25.【解答】解:根据题意,从7个原始评分中去掉1个最高分和1个最低分,得到5个有效评分.5个有效评分与7个原始评分相比,不变的是中位数. 故选:A .一十二.随机事件(共1小题) 26.【解答】解:A 、只闭合1个开关,小灯泡不会发光,属于不可能事件,不符合题意; B 、只闭合2个开关,小灯泡可能发光也可能不发光,是随机事件,符合题意; C 、只闭合3个开关,小灯泡一定会发光,是必然事件,不符合题意; D 、闭合4个开关,小灯泡一定会发光,是必然事件,不符合题意; 故选:B .一十三.概率公式(共2小题) 27.【解答】解:∵袋子中共有5+1=6个小球,其中红球有5个, ∴搅匀后从中任意摸出1个球,摸出红球的概率等于56, 故答案为:56.28.【解答】解:∵一只不透明的袋中装有2个白球和3个黑球, ∴搅匀后从中任意摸出1个球摸到白球的概率为:25.故答案为:25.一十四.几何概率(共1小题) 29.【解答】解:若将每个小正方形的面积记为1,则大正方形的面积为16,其中阴影部分的面积为6, 所以该小球停留在黑色区域的概率是616=38,故答案为:38.一十五.列表法与树状图法(共9小题) 30.【解答】解:(1)甲、乙、丙;甲、丙、乙;乙、甲、丙;乙、丙、甲;丙、甲、乙;丙、乙、甲;共6种;(2)由(1)可知张先生坐到甲车有两种可能,乙、丙、甲,丙、乙、甲, 则张先生坐到甲车的概率是26=13;由(1)可知李先生坐到甲车有两种可能,甲、乙、丙,甲、丙、乙, 则李先生坐到甲车的概率是26=13; 所以两人坐到甲车的可能性一样. 31.【解答】解:(1)根据题意画图如下:共有8种等可能的情况数, 故答案为:8;(2)根据第(1)问一个阴、两个阳的共有3种, 则有一个阴和两个阳的三行符号”的概率是38.32.【解答】解:(1)从盒子中任意取出1张卡片,恰好取出印有“兰”字的卡片的概率为14, 故答案为:14; (2)画树状图如下:由树状图知,共有16种等可能结果,其中至少有1张印有“兰”字的有7种结果, ∴至少有1张印有“兰”字的概率为716. 33.【解答】解:(1)画树状图如下:。
2020中考数学试题及答案分类汇编:统计与概率一、选择题1. (北京4分)北京今年6月某日部分区县的高气温如下表:区县大兴通州平谷顺义怀柔门头沟延庆昌平密云房山最高气温32 32 30 32 30 32 29 32 30 32 则这10个区县该日最高气温的众数和中位数分别是A、32,32B、32,30C、30,32D、32,31【答案】A。
【考点】众数,中位数。
【分析】一组数据中出现次数最多的一个数是众数,这一组数据中32是出现次数最多的,故众数是32;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),是这组数据的中位数,这组数据重新排列:29,30,30,30,32,32,32,32,32,32,位于这组数据中间位置的数是32、32,由中位数的定义可知,这组数据的中位数是32。
故选A。
2.(北京4分)一个不透明的盒子中装有2个白球,5个红球和8个黄球,这些球除颜色外,没有任何其他区别,现从这个盒子中随机摸出一个球,摸到红球的概率为A、518B、13C、215D、115【答案】B。
【考点】概率。
【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率。
根据题意可得:一个不透明的盒子中装有2个白球,5个红球和8个黄球,共15个,摸到红球的概率为51153。
故选B。
3.(天津3分)下图是甲、乙两人l0次射击成绩(环数)的条形统计图.则下列说法正确的是(A) 甲比乙的成绩稳定(B) 乙比甲的成绩稳定(C) 甲、乙两人的成绩一样稳定(D) 无法确定谁的成绩更稳定【答案】B。
【考点】条形统计图,平均数和方差。
【分析】甲的平均成绩为(8×4+9×2+10×4)÷10=9,乙的平均成绩为(8×3+9×4+10×3)÷10=9,甲的方差为[4(8-9)2+2(9-9)2+4(10-9)2]÷10=0.8,乙的方差为[3(8-9)2+4(9-9)2+3(10-9)2]÷10=0.6,∵甲的方差>乙的方差,∴乙比甲的成绩稳定。
故选B。
4.(河北省3分)甲、乙、丙三个旅行团的游客人数都相等,且毎团游客的平均年龄都是32岁,这三个团游客年龄的方差分别是S甲2=27,S乙2=19.6,S丙2=1.6,导游小王最喜欢带游客年龄相近的团队,若在三个团中选择一个,则他应选A、甲团B、乙团C、丙团D、甲或乙团【答案】C。
【考点】方差。
【分析】方差反映了一组数据在其平均数的左右的波动大小,方差越大,波动越大,越不稳定;方差越小,波动越小,越稳定。
:∵S甲2=27,S乙2=19.6,S丙2=1.6,∴S甲2>S乙2>S丙2,∴丙旅行团的游客年龄的波动最小,年龄最相近。
故选C。
5.(内蒙古巴彦淖尔、赤峰3分)在体育课上,初三年级某班10名男生“引体向上”的成绩(单位:次)分别是9,14,10,15,7,9,16,10,11,9,这组数据的众数、中位数、平均数依次是A、10,8,11B、10,8,9C、9,8,11D、9,10,11【答案】D。
【考点】众数,中位数,平均数。
【分析】众数是在一组数据中,出现次数最多的数据,数据9出现了三次最多为众数;中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),由此将这组数据重新排序为7,9,9,9,10,10,11,14,15,16,∴中位数为10;平均数是指在一组数据中所有数据之和再除以数据的个数,平均数为:(7+9+9+9+10+10+11+14+15+16)÷10=11。
故选D。
6.(内蒙古包头3分)一个袋子中装有3个红球和2个黄球,这些球的形状、大小.质地完全相同,在看不到球的条件下,随机从袋子里同时摸出2个球,其中2个球的颜色相同的概率是A.34B.15C.35D.25【答案】D。
【考点】列表法或树状图法,概率。
【分析】根据一个袋子中装有3个红球和2个黄球,随机从袋子里同时摸出2个球,可以用列表法或树状图法得出:共有2 种等可能情况,其中2个球的颜色相同的情况有8种。
∴其中2个球的颜色相同的概率是:82205。
故选D。
7.(内蒙古呼和浩特3分)经过某十字路口的汽车,它可能继续直行,也可能向左或向右转.若这三种可能性大小相同,则两辆汽车经过该十字路口全部继续直行的概率为A. 13B. 23C. 19D. 12【答案】C。
【考点】列表法或树状图法,概率。
【分析】列表得:汽车①直左右汽车②直(直,直)(左,直)(右,直)左(直,左)(左,左)(右,左)右(直,右)(左,右)(右,右)∴一共有9种等可能情况,两辆汽车经过这个十字路口全部继续直行的有一种,。
故选C。
∴两辆汽车经过这个十字路口全部继续直行的概率是198.(内蒙古呼伦贝尔3分)下列事件中,随机事件是A.在地球上,抛出去的篮球会下落;B.通常水加热到100°C时会沸腾;C.购买一张福利彩票中奖了;D.掷一枚骰子,向上一面的字数一定大于零。
【答案】C。
【考点】随机事件。
【分析】在随机试验中,可能出现也可能不出现,而在大量重复试验中具有某种规律性的事件叫做随机事件,据此直接得出结果:A、B、D都要是必然事件,C是随机事件。
故选C。
9.(内蒙古乌兰察布3分)从l , 2 , 3 , 4 , 5 , 6 , 7 , 8 ,9 , 10 这十个数中随机取出一个数;取出的数是是3 的倍数的概率是【答案】B。
【考点】概率。
【分析】根据概率的求法,找准两点:①全部等可能情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率。
∵全部等可能情况的总数为10,3 的倍数的数有3个,∴随机取出一个数;取出的数是是3 的倍数的概率是310。
故选B 。
10.(内蒙古乌兰察布3分)下列说法正确的是 A .一个游戏的中奖概率是101则做10次这样的游戏一定会中奖 B .为了解全国中学生的心理健康情况,应该采用普查的方式 C .一组数据 8 , 8 , 7 , 10 , 6 , 8 , 9 的众数和中位数都是 8D .若甲组数据的方差 S 2= 0.01 ,乙组数据的方差 s 2= 0 .1 ,则乙组数据比甲组数据稳定 【答案】C 。
【考点】概率的意义,调查方法的选择,众数,中位数,方差。
【分析】根据概率的意义,调查方法的选择,众数,中位数,方差和概念逐一分析判断:A .根据概率的意义,概率是反映事件发生机会的大小的概念,只是表示发生的机会的大小,机会大也不一定发生。
因此一个游戏的中奖概率是101则做10次这样的游戏不一定会中奖,选项错误。
B .全面调查就是对需要调查的对象进行逐个调查。
这种方法所得资料较为全面可靠,但调查花费的人力、物力、财力较多,且调查时间较长。
抽样调查是从需要调查对象的总体中,抽取若干个个体即样本进行调查,并根据调查的情况推断总体的特征的一种调查方法。
抽样调查可以把调查对象集中在少数样本上,并获得与全面调查相近的结果。
这是一种较经济的调查方法,因而被广泛采用。
根据全面调查和抽样调查的特点,为了解全国中学生的心理健康情况,适宜采用抽样调查的方式。
选项错误。
C.众数是在一组数据中,出现次数最多的数据,这组数据中,出现次数最多的数据是8,出现了3次,因此众数是8。
中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数)。
由此将这组数据重新排序为6 , 7 , 8 , 8 , 8 , 9,10 ,∴中位数为8。
选项正确。
D.方差就是和中心偏离的程度,用来衡量一批数据的波动大小(即这批数据偏离平均数的大小)在样本容量相同的情况下,方差越大,说明数据的波动越大,越不稳定。
因为甲组数据的方差小于乙组数据的方差,所以甲组数据比乙组数据稳定。
选项错误。
故选C。
二、填空题1. (天津3分)同时掷两个质地均匀的骰子.观察向上一面的点数,两个骰子的点数相同的概率为▲。
【答案】16。
【考点】概率。
【分析】根据概率的计算方法,找出两个骰子的点数构成的所有等可能情况和点数相同的情况(可用列表法或画树状图),列表如下:表中可见,两个骰子的点数构成的所有等可能情况为36,点数相同的情况为6,概率为:61=366。
2.(内蒙古巴彦淖尔、赤峰3分)对甲、乙、丙三名射击手进行20次测试,平均成绩都是8.5环,方差分别是0.4,3.2,1.6,在这三名射击手中成绩比较稳定的是▲.【答案】甲。
【考点】方差。
【分析】根据方差的意义,方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定。
因为S甲2=0.4,S乙2=3.2,S丙2=1.6,方差最小的为甲,所以成绩比较稳定的是甲。
3.(内蒙古包头3分)随机掷一枚质地均匀的硬币三次,至少有一次正面朝上的概率是▲.【答案】78。
【考点】列表法或树状图法,概率。
【分析】根据一随机掷一枚质地均匀的硬币三次,至少有一次正面朝上,可以用列表法或树状图法得出:∵共有8种等可能结果,至少有一次正面朝上的有7种可能,∴至少有一次正面朝上的概率是:78。
4.(内蒙古呼和浩特3分)一个样本为1、3、2、2、a,b,c.已知这个样本的众数为3,平均数为2,那么这个样本的方差为▲.【答案】87【考点】众数,平均数,方差。
【分析】因为众数为3,表示3的个数最多,因为2出现2次,所以3的个数最少为3个,则可设a ,b ,c 中有两个数值为3。
另一个未知利用平均数定义求得,从而根据方差公式求方差:a=3,b=3,则平均数=17(1+3+2+2+3+3+c )=2,解得c=0。
根据方差公式S 2=()()()()222218122223320277⎡⎤-+⨯-+⨯-+-=⎣⎦。
5.(内蒙古呼和浩特3分)在半径为2的圆中有一个内接正方形,现随机地往圆内投一粒米,落在正方形内的概率为 ▲ .(注:π取3)【答案】23。
【考点】几何概率,圆内接正方形的性质,勾股定理。
【分析】根据已知首先求出圆的面积以及正方形的边长,从而得出正方形的面积,即可根据概率公式得出落在正方形内的概率:如图,由勾股定理,得AB 2+BO 2=AO 2,即2AB 2=4,∴AB=2,正方形边长22。
∴正方形面积为8。
又∵圆的面积为:π×22=4π≈12。
∴随机地往圆内投一粒米,落在正方形内的概率为82123=。
6.(内蒙古呼伦贝尔3分)一组数据:2,41,3,0,2--,的极差为 ▲ 。
【答案】7。
【考点】极差。
【分析】根据一组数据中的最大数据与最小数据的差叫做这组数据的极差的定义,得这组数据的极差为3-(-4)=7。