实验四 差动放大电路
- 格式:ppt
- 大小:1.35 MB
- 文档页数:9
2.6差动放大器2.6.1 实验目的1.加深对差动放大器性能及特点的理解。
2.学习差动放大器主要性能指标的测试方法2.6.2 实验原理1.实验电路图2-6-1 差动放大电路实验电路图实验电路如图2-6-1所示。
当开关K拨向左边时,构成典型的差动放大器。
调零电位器用来调节、管的静态工作点,使得输入信号时,双端输出电压。
为两管共用的发射极电阻,它对差模信号无负反馈作用,因而不影响差模电压放大倍数,但对共模信号有较强的负反馈作用,故可以有效地抑制零漂,稳定静态工作点。
当开关K拨向右边时,构成具有恒流源的差动放大器。
它用晶体管恒流源代替发射极电阻,可以进一步提高差动放大器抑制共模信号的能力。
2.差动放大器主要性能指标(1)静态工作点典型电路:(认为)恒流源电路:(2)差模电压放大倍数当差动放大器的射极电阻足够大,或采用恒流源电路时,差模电压放大倍数由输出端决定,而与输入方式无关。
双端输出时,若在中心位置单端输出时式中和分别为输入差模信号时晶体管、集电极的差模输出电压。
(3)共模电压放大倍数双端输出时实际上由于元件不可能完全对称,因此不会绝对等于零。
单端输出时式中和为输入共模信号时晶体管、集电极的共模输出电压。
(4)共模抑制比为了表征差动放大器对有用信号(差模信号)的放大能力和对无用信号(共模信号)的抑制能力,通常用一个综合指标来衡量,即共模抑制比或(dB)2.6.3 实验内容和步骤1.典型差动放大器性能测试按图2-6-1连接实验电路,开关K拨向左边构成典型差动放大器。
(1)测量静态工作点①调零:将放大器输入端A、B与地短接,接通直流电源,用万用表测量输出电压,然后调节调零电位器,使。
②测量静态工作点:零点调好以后,用万用表测量、管各电极电位及射极电阻两端电压,记入表2-6-1中。
表2-6-1 测静态工作点记录表格(2)测量差模电压放大倍数①在放大器的输入端A、B之间加入,的差模信号。
②用毫伏表测量晶体管、集电极差模输出电压、,记入表2-6-2中。
实验一 晶体管共射极单管放大器一、实验目的1.学会放大器静态工作点的调式方法和测量方法。
2.掌握放大器电压放大倍数的测试方法及放大器参数对放大倍数的影响。
3.熟悉常用电子仪器及模拟电路实验设备的使用。
二、实验原理图2—1为电阻分压式工作点稳定单管放大器实验电路图。
偏置电阻R B1、R B2组成分压电路,并在发射极中接有电阻R E ,以稳定放大器的静态工作点。
当在放大器的输入端加入输入信号后,在放大器的输出端便可得到一个与输入信号相位相反、幅值被放大了的输出信号,从而实现了电压放大。
三、实验设备1、 信号发生器2、 双踪示波器3、 交流毫伏表4、 模拟电路实验箱5、 万用表四、实验内容1.测量静态工作点实验电路如图1所示,它的静态工作点估算方法为:U B ≈211B B CCB R R U R +⨯图1 共射极单管放大器实验电路图I E =EBEB R U U -≈Ic U CE = U CC -I C (R C +R E )实验中测量放大器的静态工作点,应在输入信号为零的情况下进行。
1)没通电前,将放大器输入端与地端短接,接好电源线(注意12V 电源位置)。
2)检查接线无误后,接通电源。
3)用万用表的直流10V 挡测量U E = 2V 左右,如果偏差太大可调节静态工作点(电位器RP )。
然后测量U B 、U C ,记入表1中。
表1测 量 值计 算 值U B (V ) U E (V ) U C (V ) R B2(K Ω) U BE (V ) U CE (V ) I C (mA ) 2.627.2600.65.22B2所有测量结果记入表2—1中。
5)根据实验结果可用:I C ≈I E =EER U 或I C =C C CC R U U -U BE =U B -U EU CE =U C -U E计算出放大器的静态工作点。
2.测量电压放大倍数各仪器与放大器之间的连接图关掉电源,各电子仪器可按上图连接,为防止干扰,各仪器的公共端必须连在一起后接在公共接地端上。
差动放大电路实验报告 Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】实验五差动放大电路(本实验数据与数据处理由果冻提供,仅供参考,请勿传阅.谢谢~)一、实验目的1、加深对差动放大器性能及特点的理解2、学习差动放大器主要性能指标的测试方法二、实验原理R P 用来调节T1、T2管的静态工作点, Vi=0时, VO=0。
RE为两管共用的发射极电阻,它对差模信号无负反馈作用,不影响差模电压放大倍数,但对共模信号有较强的负反馈作用,可以有效抑制零漂。
差分放大器实验电路图三、实验设备与器件1、±12V直流电源2、函数信号发生器3、双踪示波器4、交流毫伏表5、直流电压表6、晶体三极管3DG6×3, T1、T2管特性参数一致,或9011×3,电阻器、电容器若干。
四、实验内容1、典型差动放大器性能测试开关K拨向左边构成典型差动放大器。
1) 测量静态工作点①调节放大器零点信号源不接入。
将放大器输入端A、B与地短接,接通±12V直流电源,用直流电压表测量输出电压VO ,调节调零电位器RP,使VO=0。
②测量静态工作点再记下下表。
2) 测量差模电压放大倍数(须调节直流电压源Ui1= ,Ui2=理论计算:(r be =3K .β=100. Rp=330Ω) 静态工作点:E3BEEE CC 212E3C3R V )V (V R R R I I -++≈≈= I c Q =Ic 3/2=, Ib Q =Ic/β=100=uA U CEQ =Vcc-IcRc+U BEQ =*10+=双端输出:(注:一般放大倍数A 的下标d 表示差模,下标c 表示共模,注意分辨)Pbe B C iOd β)R (121r R βR △V △V A +++-===Ac 双 =0.单端输出:d i C1d1A 21△V △V A ===, d i C2d2A 21△V △V A -=== (参考答案中的Re=10K ,而Re 等效为恒流源电阻,理想状态下无穷大,因此上式结果应为0.读者自己改一下)实测计算:(注:本实验相对误差不做数据处理要求,下面给出的仅供参考比对数据) 静态工作点:Ic 1Q =(Vcc-Uc1)/Rc1=/10mA= Ic 2Q = Ib 1Q = Ic Q/β=100mA= Ib 2Q =U C1E1Q =U C1-U E1==U C2E2Q =差模放大倍数:(Ui=Ui1-Ui2=+ (注:放大倍数在实测计算时,正负值因数据而异~!)Ad1=(Uc1差模-Uc1)/(Ui-0)=Ad2=(Uc2差模-Uc2)/(Ui-0)=Ad双=Uo双/Ui==相对误差计算 (||Ad理|-|Ad实||)/|Ad理|r d1=| r d2=| r d双=%共模放大倍数:(Ui=+Ac1=(Uc1共模-Uc1)/Ui=共模-Uc2)/Ui=双=Uc双/Ui== (Ui=时同理)共模抑制比:CMRR=|Ad双/Ac双|=||=4.单端输入(注:上面实验中差模与共模接法均为双端输入,详见最后分析)=Uc2)Ui=+时Ac1=时Ac1=正弦信号时(注:部分同学的输入电压可能为500mV,处理时请注意)Ac1=分析部分:(注:只供理解,不做报告要求)Vi、Vo、Vc1和Vc2的相位关系其中Vi、Vc1同相,Vi、Vc2反相,Vc1、Vc2反相。
学生实验报告系别 电子工程系课程名称 电子技术实验 班级 实验名称 恒流源式差动放大电路姓名 实验时间 2011年4月6日学号指导教师报 告 内 容一、实验目的和任务1.加深对差动放大电路的工作原理、分析方法的理解与掌握;2.学习差动放大电路的测试方法;3.了解恒流源在差动放大电路中的作用。
二、实验原理介绍图5-1为恒流源式差动放大电路。
其中,三极管3T 及电阻e R R R 、、21成恒流源电路,给差动放大电路提供直流源偏置电路。
图5-1 恒流源式差动放大电路(1) 静态工作点)(211EE CC Rb U U R R R U ++=e E R U I Re 3= 32121b b b I I I ≈≈ (2)差模电压放大倍数2)1(11'1wbe S Lud Rr R R A ββ+++-=图5-2 21,c c v v 波形图四、实验结论与心得(1)结论:① 当输出端带负载L R 时,L R 越大,差模电压放大倍数d A 越小。
② 双端输出,它的差模电压放大倍数与单管基本的放大电路相同;单端输出,它的差模电压放大倍数是单管基本电压放大倍数的一半,输入电阻都相同。
③当021==i i U U 时,由于电路完全对称,VT1、VT2的静态参数也完全相同。
④由于电路的对称性,无论是温度的变化还是电源电压的波动,都会引起两个三极管集电极电流和电压的相同变化。
因此,其中相同的变化量互相抵消,使输出电压不变,从而抑制了零点漂移。
⑤双端输入,双端输出:d A 与单管放大电路的u A 基本相同;双端输入,单端输出:d A 约为双端输出一半;单端输入,双端输出:d A 与单管放大电路的u A 基本相同;单端输入,单端输出:d A 约为双端输出时的一半。
(2)心得:通过这次实验,了解到差动放大电路的电路特点。
在结构上,它由两个完全对称的共射电路组合而成;电路采用正负双电源供电。
利用恒流源的恒流特性给三极管提供了稳定的静态偏置电流。
差动放大电路实验报告严宇杰141242069 匡亚明学院1.实验目的(1)进一步熟悉差动放大器的工作原理;(2)掌握测量差动放大器的方法。
2.实验仪器双踪示波器、信号发生器、数字多用表、交流毫伏表。
3.预习内容(1)差动放大器的工作原理性能。
(2)根据图3.1画出单端输入、双端输出的差动放大器电路图。
4.实验内容实验电路如图3.1。
它是具有恒流源的差动放大电路。
在输入端,幅值大小相等,相位相反的信号称为差模信号;幅值大小相等,相位相同的干扰称为共模干扰。
差动放大器由两个对称的基本共射放大电路组成,发射极负载是一晶体管恒流源。
若电路完全对称,对于差模信号,若Q1的集电极电流增加,则Q2的集电极电流一定减少,增加与减少之和为零,Q3 和R e3等效于短路,Q1,Q2的发射极等效于无负载,差模信号被放大。
对于共模信号,若Q1的集电极电流增加,则Q2的集电极电流一定增加,两者增加的量相等,Q1、Q2的发射极等效于分别接了两倍的恒流源等效电阻,强发射极负反馈使共射放大器对共模干扰起强衰减作用,共模信号被衰减。
从而使差动放大器有较强的抑制共模干扰的能力。
调零电位器R p用来调节T1,T2管的静态工作点,希望输入信号V i=0时使双端输出电压V o=0.差动放大器常被用作前置放大器。
前置放大器的信号源往往是高内阻电压源,这就要求前置放大器有高输入电阻,这样才能接受到信号。
有的共模干扰也是高内阻电压源,例如在使用50Hz工频电源的地方,50Hz工频干扰源就是高内阻电压源。
若放大器的输入电阻很高,放大器在接受信号的同时,也收到了共模干扰。
于是人们希望只放大差模信号,不放大共模信号的放大器,这就是差动放大器。
运算放大器的输入级大都为差动放大器,输入电阻都很大,例如LF353的输入电阻约为1012Ω量级,0P07的输入电阻约为107Ω量级。
本实验电路在两个输入端分别接了510Ω电阻,使差动放大器的输入电阻下降至略小于这一数值,这是很小的输入电阻。
模电仿真实验报告实验一单级放大电路 (3)动态仿真一: (4)动态仿真二: (4)动态仿真三: (6)思考题: (7)实验二射极跟随器 (8)测量电压放大倍数: (10)测量输入电阻: (10)测量输出电阻: (11)思考题: (12)实验三负反馈放大电路 (13)思考题: (15)实验四差动放大电路1、调节放大器零点 (17)2、测量差模放大电路 (18)3、测量共模电压放大倍数 (19)思考题: (19)实验五 OTL功率放大器1、静态工作点的调整 (21)2、最大不失真输出功率 (21)3、效率η (21)4、输入灵敏度 (22)5、频率响应的测试 (22)思考题: (22)实验六集成运算放大器运用的测量 (23)1、按如下所示输入电路 (23)2、静态测试,记录集成电路的各管脚直流电压 (23)3、最大功率测试 (23)4、频率响应测试 (24)5、放大倍数测量 (24)实验七波形发生器应用的测量 (24)(A)正弦波发生器 (24)(B)方波发生器 (26)(C)三角波和方波发生器 (28)实验一 单级放大电路R25.1kΩ5%R61.5kΩ5%R41.8kΩ5%R320kΩ5%R151kΩ5%C110µFC210µFR5100kΩKey=A 10 %Q12N2222A V110mVrms 1kHz 0°V212 VC347µF1487XMM1R7100Ω5%69053仿真数据单位:V计算数据单位:V基极 集电极 发射极 Vbe Vce Rp 2.83387 6.126732.204360.629513.9223710K Ω动态仿真一:动态仿真二:R25.1kΩ5%R41.8kΩ5%R320kΩ5%R151kΩ5%C110µFC210µFR5100kΩKey=A 5 %Q12N2222AV110mVrms 1kHz 0°V212 VC347µFR7100Ω5%XSC1A BExt Trig++__+_473596108仿真数据计算 Vi 有效值 V0有效值 Av 157.915mV3.967mV0.025R25.1kΩ5%R65.1kΩ5%R41.8kΩ5%R320kΩ5%R151kΩ5%C110µFC210µFR5100kΩKey=A 10 %Q12N2222AV110mVrms 1kHz 0°V212 VC347µFR7100Ω5%47359XSC1A BExt Trig++__+_6810仿真数据计算 RL Vi V0 Av 5.1K Ω 274.612mV 14.135mV 0.051 330Ω34.728mV14.135mV0.407Vb Vc Ve Rp 增大 减小 减小 增大 Rp 减小 增大增大减小动态仿真三:R25.1kΩ5%R65.1kΩ5%R41.8kΩ5%R320kΩ5%R151kΩ5%C110µFC210µFR5100kΩKey=A 10 %Q12N2222AV110mVrms 1kHz 0°V212 VC347µFR7100Ω5%47359XSC1A BExt Trig++__+_68R85.1kΩ5%21仿真数据计算 信号发生器有效电压值万用表的有效数据 Ri 63.760mV 6.328mV 1.961μA1.9K ΩR25.1kΩ5%R65.1kΩ5%R41.8kΩ5%R320kΩ5%R151kΩ5%C110µFC210µFR5100kΩKey=A 10 %Q12N2222A V110mVrms 1kHz 0°V212 VC347µF47XMM1R7100Ω5%95368R85.1kΩ5%12R25.1kΩ5%R41.8kΩ5%R320kΩ5%R151kΩ5%C110µFC210µFR5100kΩKey=A 10 %Q12N2222A V110mVrms 1kHz 0°V212 VC347µF47XMM1R7100Ω5%9536R85.1kΩ5%128仿真数据计算 VL V0 R0 185.706mV358.344mV5.1K Ω思考题:1、画出如下电路:R175ΩR2100ΩQ12N3904Q22N3906V115 VV215 VU1DC 10MOhm0.000V+-U2DC 10MOhm0.000V+-XSC1A BExt Trig++__+_XFG12、如何把元件水平翻转和垂直翻转呢?答:选中元件,点击鼠标右键,通过点击“90 Clockwise ”和“90 CounterCW ”即可实现元件的水平翻转和垂直翻转。
物理与电子科学系实验报告课程名称EDA实验班级姓名学号实验日期2011年5月5号实验学时 2 实验地点物理系机房任课教师指导老师实验课题差动放大器实验成绩实验目的熟悉差动放大器工作原理;掌握用差动放大器基本测试方法;实验原理如图4-2-5所示,是差动放大器的基本结构。
它由两个元件参数相同的基本共射放大电路组成。
调零电位器Rp用来调节T1、T2管的静态工作点,使得输入信号Ui=0时,双端输出电压UO=0。
RE为两管共用的发射极电阻,它对差模信号无负反馈作用,因而不影响差模电压放大倍数,但对共模信号有较强的负反馈作用,故可以有效地抑制零漂,稳定静态工作点。
实验设备及软件环境个人电脑一台Multisim 10集成开发环境一. 实验内容电路如图4-2-5所示。
分析电路各点的直流电压(着重分析Uo);调节电位器Rp,分析Uc1和Uc2以及Uo,写出结论。
(注:因为元件都是理想的标准参数,所以用Rp来讨论共模特性);双端输入:恢复Rp为50%,调出一电压为0。
1V的直流信号,“+”接Ui1,“-”接Ui2,再分析Uc1和Uc2及Uo,计算差模放大倍数(即单端输出和双端输出),记录数据并分析;单端输入:调出一电压为0.1V的直流信号,“+”接Ui1,“-”接地,再分析Uc1和Uc2及Uo,计算差模放大倍数;“+”接地,“-”接Ui1,再做一次;同样“+”接Ui2,“-”接地,再分析Uc1和Uc2及Uo,计算差模放大倍数;总结结论:图4-2-55)调整电路4-2-5中Rp,人为打破电路的平衡(因为实际电路中很难做到平衡),将Ui1、Ui2两输入端连接,调出一电压为0.1V的直流信号,“+”接输入端“-”接地,讨论共模增益;6)在第(5)步的基础上重复第(3)步,讨论并计算电路的共模抑制比;7)在Ui1端加入幅度为0.05mV、频率为1KHz的交流信号,用示波器分别观察Uc1、Uc2、Uo的波形,写出结论。
二、实验步骤按图4-2-5将电路图在Multisim设计好1分析电路各点的直流电压(着重分析Uo),点菜单栏的“仿真”→“分析”→“直流工作点分析”出现如下结果:Uo=V(6)-V(7)=11.58753-11.58753=0V2. 调节电位器Rp,用探针分析Uc1和Uc2以及Uo:30%Rp时电压变化50%Rp时电压变化70%Rp时电压变化结论:电压Rp 30%Rp 50%Rp 70%RpUc1(v) 11.7 11.6 11.3Uc2(v) 11.3 11.6 11.7U0(V) 0.3 0 -0.33. 双端输入—单端输出、双端输出组态在输入端Ui1,Ui2之间,分别加直流差模信号+0.1V,用直流电压表分别测量单端输出电压Uc1(T1集电极对地电压),Uc2(T2集电极对地电压)和双端输出电压U0(注意电压极性),填入表1中。