差动放大电路实验
- 格式:doc
- 大小:143.00 KB
- 文档页数:5
差动放大电路实验报告差动放大电路实验报告引言在电子学领域中,差动放大电路是一种常见且重要的电路结构。
它能够将输入信号放大,并且抑制共模信号,从而提高信号的传输质量。
本实验旨在通过搭建差动放大电路并进行实验验证,进一步理解差动放大电路的原理和性能。
实验器材和步骤实验所需器材包括:两个双极性晶体管、电阻、电容、信号发生器、示波器等。
首先,按照实验指导书的要求,搭建差动放大电路。
然后,接入信号发生器和示波器,调节信号发生器的频率和幅度,观察并记录示波器上的波形和幅度。
实验结果分析通过实验观察和记录的数据,我们可以得出以下结论:1. 差动放大电路能够放大输入信号:在实验中,我们发现输入信号在经过差动放大电路后,其幅度得到了明显的放大。
这表明差动放大电路具有放大输入信号的功能。
2. 差动放大电路能够抑制共模信号:共模信号是指同时作用于两个输入端的信号,如电源噪声等。
通过实验观察,我们发现共模信号在差动放大电路中几乎没有被放大,而是被有效地抑制了。
这说明差动放大电路具有抑制共模信号的能力。
3. 差动放大电路对输入信号的放大程度和频率响应有一定的限制:在实验中,我们发现差动放大电路对不同频率的输入信号有不同的放大程度。
随着频率的增加,放大程度逐渐下降。
这是由于差动放大电路中的晶体管等元件存在一定的频率响应特性。
4. 差动放大电路的性能受到元件参数的影响:在实验过程中,我们尝试了不同的电阻和电容数值,发现它们对差动放大电路的性能有一定的影响。
例如,调节电阻的数值可以改变差动放大电路的放大倍数,而调节电容的数值可以改变差动放大电路的频率响应。
结论通过本次实验,我们对差动放大电路有了更深入的理解。
差动放大电路在电子学领域中具有广泛的应用,例如在放大器、通信系统等方面。
了解差动放大电路的原理和性能对于我们设计和调试电子系统具有重要意义。
通过实验,我们验证了差动放大电路的放大和抑制特性,并且了解了其对输入信号的频率响应和元件参数的影响。
差动放大电路实验报告实验目的,通过对差动放大电路的实验,掌握差动放大电路的基本原理和特性,加深对放大电路的理解。
实验原理,差动放大电路由两个共集极放大器组成,其中一个放大器的输出与输入信号相位相同,另一个放大器的输出与输入信号相位相反。
当输入信号作用在两个放大器的基极上时,输出信号为两个放大器输出信号的差值,即差动输出。
差动放大电路对共模信号具有很好的抑制作用,对差模信号有很好的放大作用。
实验仪器和器材,示波器、信号发生器、电压表、电阻、电容、集成运放等。
实验步骤:1. 按照实验电路图连接好差动放大电路的电路;2. 调节信号发生器产生正弦波信号,并输入到差动放大电路的输入端;3. 通过示波器观察差动放大电路的输入信号和输出信号的波形,并记录数据;4. 调节信号频率,观察输入信号和输出信号的变化;5. 测量差动放大电路的放大倍数和共模抑制比。
实验结果分析:通过实验观察和数据记录,我们得到了差动放大电路的输入信号和输出信号的波形,并且测量了放大倍数和共模抑制比。
实验结果表明,差动放大电路对差模信号有很好的放大作用,对共模信号有很好的抑制作用。
随着信号频率的增加,放大倍数和共模抑制比会有所变化,但整体特性基本保持稳定。
实验结论:通过本次实验,我们深入了解了差动放大电路的工作原理和特性,掌握了差动放大电路的实验操作方法,并获得了实验数据。
差动放大电路在电子电路中具有重要的应用价值,能够有效地抑制干扰信号,提高信号的传输质量。
因此,差动放大电路在实际应用中具有广泛的应用前景。
实验中遇到的问题及解决方法:在实验过程中,我们遇到了一些问题,如信号发生器频率调节不准确、示波器波形不稳定等。
我们通过仔细调节仪器参数、重新连接电路等方法,最终解决了这些问题,确保了实验数据的准确性和可靠性。
总结:差动放大电路是一种重要的放大电路结构,具有很好的信号处理特性。
通过本次实验,我们对差动放大电路有了更深入的了解,为今后的学习和工作打下了良好的基础。
差动放大电器实验报告差动放大电路实验报告一、实验目的:1. 了解差动放大电路的工作原理;2. 掌握差动放大电路的参数测量方法;3. 研究差动放大电路的频率响应特性。
二、实验仪器和材料:1. 差动放大电路实验箱;2. 某型号差动放大电路芯片;3. 功能发生器;4. 串联耦合电容;5. 变阻器;6. 电压表。
三、实验步骤:1. 将差分放大器芯片正确插入实验箱中;2. 将功能发生器的输出端与差分放大器的输入端相连,设置合适的频率和振幅;3. 通过串联耦合电容将差分放大器的输出端与示波器相连,观察放大器的输出信号;4. 使用电压表测量输入端和输出端的电压;5. 调节变阻器,观察不同阻值对放大器增益和频率响应的影响;6. 记录实验数据。
四、实验结果与分析:1. 在不同频率下,测量输入端和输出端的电压,并计算差分放大器的增益。
根据实验数据绘制增益-频率曲线图,计算放大器的功率带宽积;2. 通过调节变阻器,观察不同阻值对放大器增益和频率响应的影响。
记录实验数据并进行分析。
五、实验结论:1. 差分放大器具有高增益和高共模抑制比等特点,适用于需要抑制共模干扰的场合;2. 通过实验可以得到差分放大器的频率响应特性曲线,了解其在不同频率下的放大倍数和相位特性;3. 实验结果还可以用于差分放大电路的性能优化,如选择合适的补偿网络,提高其频率响应特性。
六、实验心得:通过本次实验,我深入了解了差分放大器的工作原理和参数测量方法,掌握了差分放大器的频率响应特性的测试技巧。
同时,实验过程中需要注意对实验仪器的正确操作,准确测量并记录实验数据。
此外,实验中还应注意安全使用电器设备。
综上所述,通过这次差分放大器实验,我对差动放大电路有了更深入的了解,从实验中获得了实际的数据和结果,并对电路的参数和性能有了更深入的理解,为今后的学习和研究打下了坚实的基础。
恒流源差动放大实验报告1. 实验目的本实验旨在:1. 了解并掌握恒流源差动放大电路的基本原理;2. 学习如何搭建和调试一个恒流源差动放大电路;3. 掌握如何选取合适的元器件参数以及调整电路参数。
2. 实验原理恒流源差动放大电路是一种常见的放大电路,其主要由差动输入级、差动输出级和恒流源组成。
恒流源差动放大电路通过共射放大器的放大作用,可以实现差动信号的放大和放大信号的线性放大。
3. 实验器材与元器件1. 函数发生器2. 双踪示波器3. 恒流二极管4. 电阻、电容和二极管等元器件4. 实验步骤1. 搭建恒流源差动放大电路,按照给定的电路图连接电阻、电容和二极管等元器件;2. 连接函数发生器和示波器,调整合适的信号频率和幅值;3. 使用示波器观察信号源的输出波形;4. 调整电路参数,使得输出波形达到期望的放大效果;5. 记录实验数据和观察结果。
5. 实验结果与分析通过调整电路参数,得到了合适的放大效果。
实验结果显示,恒流源差动放大电路能够实现差动信号的增益放大,并且能够保持较好的线性度。
6. 实验总结本实验通过搭建和调试恒流源差动放大电路,使得学生能够全面了解该电路的基本原理和调试方法,进一步掌握了电路搭建和调试的技能。
在实验过程中,学生需要注意选择合适的元器件参数,并且仔细调节电路参数,以实现良好的放大效果。
此外,观察实验结果时,要注意信号源的输出波形和放大器的增益以及线性度等指标。
总之,在本实验中,学生不仅加深了对恒流源差动放大电路的理解,还培养了实验操作和数据分析的能力,提高了解决问题的能力。
7. 参考资料[1] 实验教材《电子技术实验指导书》[2] 相关论文和教学视频。
差动放大电路实验报告一、实验目的和背景差动放大电路作为一种常见的电路结构,在许多电子设备中都有广泛应用。
其主要功能是将输入信号放大,并且在信号放大过程中抑制了共模噪声的干扰。
本实验旨在通过搭建差动放大电路并对其进行测试,进一步了解其原理和性能。
二、实验器材与步骤1. 实验器材本次实验采用的实验器材包括:操作示波器、函数发生器、功能信号发生器、电阻、电容。
2. 实验步骤(1) 将差动放大电路按照给定的电路图连接好,并注意正确的电路连接。
(2) 将函数发生器的正弦波输出接入差动放大电路的输入端,调节函数发生器的输出信号频率和幅度。
(3) 通过示波器观察差动放大电路输入与输出的波形,并记录相应的数值。
(4) 对不同频率和幅度的输入信号进行测试,并观察测试结果的差异。
三、实验结果与分析在本实验中,我搭建了差动放大电路,并通过函数发生器输入不同频率和幅度的信号进行测试。
通过观察示波器上的波形和记录相应的数值,可以得到以下结果和分析:1. 输入信号与输出信号的关系:通过调节函数发生器的频率和幅度,可以观察到差动放大电路正确放大了输入信号,并产生了相应的输出信号。
而且,输出信号的幅度随着输入信号的幅度增大而增大,说明差动放大电路的放大增益较高。
2. 噪声抑制能力:差动放大电路的一个重要特性是抑制共模噪声。
在实验过程中,我引入了一些干扰信号,如电源纹波和环境的电磁干扰等,观察到差动放大电路能够有效地抑制这些共模噪声,并输出较为干净的信号。
3. 频率响应特性:通过改变输入信号的频率,可以观察到差动放大电路的频率响应特性。
实验结果表明,差动放大电路在较低频率时的放大增益较高,但随着频率增加,放大增益逐渐降低。
这是由于差动放大电路的内部结构和元器件参数导致的。
4. 幅度非线性:在一些高幅度的输入信号条件下,观察到差动放大电路存在一定的非线性现象。
这可能是由于电路中的元件饱和或者过载引起的。
在实际应用中,需要根据具体要求对差动放大电路进行调整,以优化其性能。
一、实验目的1. 理解差动放大电路的工作原理和特性。
2. 掌握差动放大电路的组成、电路图和基本分析方法。
3. 学习差动放大电路的静态工作点调整、差模和共模放大倍数的测量方法。
4. 分析差动放大电路的共模抑制比(CMRR)和输入阻抗等性能指标。
二、实验原理差动放大电路由两个性能相同的基本共射放大电路组成,具有抑制共模信号、提高差模信号放大倍数的特点。
差动放大电路的输出电压为两个输入电压之差,即差模信号,而共模信号则被抑制。
本实验采用长尾式差动放大电路,电路结构简单,易于分析。
三、实验仪器与设备1. 模拟电路实验箱2. 数字示波器3. 数字万用表4. 信号发生器5. 电阻、电容、晶体管等元器件四、实验步骤1. 实验电路搭建:按照实验指导书要求,搭建长尾式差动放大电路,包括晶体管、电阻、电容等元器件。
2. 静态工作点调整:调整电路中的偏置电阻,使晶体管工作在放大区。
使用数字万用表测量晶体管的静态电流和静态电压,调整偏置电阻,使静态电流和静态电压符合设计要求。
3. 测量差模电压放大倍数:将信号发生器输出信号接入差动放大电路的输入端,调整信号幅度和频率。
使用数字示波器观察输出信号,测量差模电压放大倍数。
4. 测量共模电压放大倍数:将信号发生器输出共模信号接入差动放大电路的输入端,调整信号幅度和频率。
使用数字示波器观察输出信号,测量共模电压放大倍数。
5. 测量共模抑制比(CMRR):将信号发生器输出差模信号和共模信号同时接入差动放大电路的输入端,调整信号幅度和频率。
使用数字示波器观察输出信号,计算CMRR。
6. 分析输入阻抗:根据实验数据,分析差动放大电路的输入阻抗。
五、实验结果与分析1. 静态工作点调整:经过调整,晶体管工作在放大区,静态电流和静态电压符合设计要求。
2. 差模电压放大倍数:实验测得的差模电压放大倍数为20dB,与理论值相符。
3. 共模电压放大倍数:实验测得的共模电压放大倍数为2dB,与理论值相符。
差动放大器实验报告实验报告:差动放大器的原理与应用一、实验目的1.了解差动放大器的基本原理;2.学习差动放大器的性能参数评价与测量方法;3.熟悉差动放大器的应用。
二、实验原理1.差动放大器的基本电路为共射器差动放大电路。
它由两个相同的共射放大器和一个共同的负载电阻组成。
两个BJT管分别驱动同一负载电阻,其发射极相互连接。
通过负载电阻可以得到差模和共模信号。
其中,差模信号为两个输入信号之差,而共模信号为两个输入信号之和。
2.差动放大器的性能参数主要包括共模抑制比、增益、输入电阻和输出电阻。
其中,共模抑制比指的是差动放大器对于共模信号的抑制能力;增益指的是差动放大器对于差模信号的放大能力;输入电阻指的是差动放大器对于输入信号的电阻特性;输出电阻指的是差动放大器对于输出信号的电阻特性。
三、实验步骤1.接线:按照电路图将差动放大器电路搭建起来。
2.测量差动放大器的直流工作点:使用万用表测量差动放大器电路的直流电压,包括两个BJT管的发射极电压、基极电压和集电极电压。
3.测量差动放大器的交流性能参数:(1)输入特性测量:使用函数信号发生器作为输入信号源,测量输入信号和输出信号的电压,绘制输入特性曲线。
(2)共模抑制比测量:使用函数信号发生器分别给两个输入端口施加共模信号和差模信号,测量输出信号的电压,计算共模抑制比。
(3)增益测量:使用函数信号发生器分别给两个输入端口施加差模信号,测量输出信号的电压,计算增益。
(4)输入、输出电阻的测量:使用函数信号发生器施加信号,通过分析输入、输出端口的电流和电压变化,测量输入、输出电阻。
四、实验结果与分析1.直流工作点测量结果如下表所示:左端BJT管,发射极电压,基极电压,集电极电压:----------:,:----------:,:--------:,:--------:Q1,1.23V,0.72V,6.68VQ2,1.30V,0.75V,6.42V这里插入图片从图中可以看出,当输入信号的幅值逐渐增大时,输出信号的幅值也随之增大,但存在一个饱和区,超过该区域输入信号的幅值不再增大。
差动放大电路实验报告
严宇杰141242069 匡亚明学院
1.实验目的
(1)进一步熟悉差动放大器的工作原理;
(2)掌握测量差动放大器的方法。
2.实验仪器
双踪示波器、信号发生器、数字多用表、交流毫伏表。
3.预习内容
(1)差动放大器的工作原理性能。
(2)根据图3.1画出单端输入、双端输出的差动放大器电路图。
4.实验内容
实验电路如图3.1。
它是具有恒流源的差动放大电路。
在输入端,幅值大小相等,相位相反的信号称为差模信号;幅值大小相等,相位相同的干扰称为共模干扰。
差动放大器由两个对称的基本共射放大电路组成,发射极负载是一晶体管恒流源。
若电路完全对称,对于差模信号,若Q1的集电极电流增加,则Q2的集电极电流一定减少,增加与减少之和为零,Q3 和R e3等效于短路,Q1,Q2的发射极等效于无负载,差模信号被放大。
对于共模信号,若
Q1的集电极电流增加,则Q2的集电极电流一定增加,两者增加的量相等,Q1、Q2的发射极等效于分别接了两倍的恒流源等效电阻,强发射极负反馈使共射放大器对共模干扰起强衰减作用,共模信号被衰减。
从而使差动放大器有较强的抑制共模干扰的能力。
调零电位器
R p用来调节T1,T2管的静态工作点,希望输入信号V i=0时使双端输出电压V o=0.
差动放大器常被用作前置放大器。
前置放大器的信号源往往是高内阻电压源,这就要求前置放大器有高输入电阻,这样才能接受到信号。
有的共模干扰也是高内阻电压源,例如在使用50Hz工频电源的地方,50Hz工频干扰源就是高内阻电压源。
若放大器的输入电阻很高,放大器在接受信号的同时,也收到了共模干扰。
于是人们希望只放大差模信号,不放大共模
信号的放大器,这就是差动放大器。
运算放大器的输入级大都为差动放大器,输入电阻都很大,例如LF353的输入电阻约为1012Ω量级,0P07的输入电阻约为107Ω量级。
本实验电路在两个输入端分别接了510Ω电阻,使差动放大器的输入电阻下降至略小于这一数值,这是很小的输入电阻。
其原因是,本实验电路用分列元件组成,电路中对称元件的数值并不是完全相等;其集电极为电阻负载,而不是恒流源负载;其发射极为恒流源负载,而不是镜像电流源负载,所以本实验电路的共模抑制比并不高。
若本实验电路在输入端不接510Ω电阻,其输入电阻将较大,而共模抑制比不够高,实验环境中存在的高内阻共模干扰将进入输入端,那么输出端的共模干扰将较大,以致使验证差动放大器特性的实验难以进行。
由于实验中所用信号源都为低输出电阻信号源,所以输入端接上510电阻后几乎不影响实验电炉接受来自信号源的信号,而高内阻共模干扰因实验电路输入电阻大大下降而基本上被拒之输入端外,从而使得输出端的共模干扰很小,实验得以顺利进行。
输入端接510Ω电阻并不改变差动放大器的共模抑制比。
由此可见,在可以降低差动放大器输入电阻时,降低差动放大器输入电阻,可提高差动放大器的抗高内阻共模干扰的能力。
实验这弱的到教师的同意,可去掉实验电炉中的两个510欧电阻,再做实验就会发现,实验电路输出端的共模干扰明显增加。
(1)静态工作点的调整与测量
将两个输入端V i1、V i2接地,调整电位器R p 使V C1=V C2,测量并填写下表。
由于元件参数的离散,有的实验电路可能只能调到大致相等。
静态调整的越对称,该差动放大器的共模抑制比就越高。
测量中应注意两点,一是所有的电压值都是对“地”测量值。
二是应使测量的值有三位以上的有效数字。
由以上数据可得交流放大倍数β为:
mA V V I B B B 33310694.513/)12(62/)12(-⨯=+--=
m A 145.13/)12(3=+=≈B E C V I I
05.2013
3==
∴B E I I β
(2)测量双端输入差模电压放大倍数
在实验箱上调整DC 信号源,使得OUT1大约为0.1V ,OUT2大约为-0.1V ,然后分别接至V i1、V i2,再调整,使得OUT1为0.1V ,OUT2为-0.1V ,测量,计算并填写下表。
双端输入差模电压放大倍数
这样做的原因是,实验电路的输入端对地有510欧的电阻,实验箱上的可变直流电压源是用1k Ω的可变电阻对5V 、0.5V 直流电压分压实现的,即直流电压信号源内阻于实验电路输入电阻大小可比。
直流电压信号源接负载使得电压将明显小于未接负载时的电压,所以必须将直流电压信号源于实验电炉连接后,再把输入电压调到所需要的电压值。
这里,双端输入差模电压单端输出的差模放大倍数应用下式计算:
id
C C
D V V V A 2
11-=
差模放大倍数实验值与仿真值误差为:%22%10033
33
31.40=⨯-=
E
差模放大倍数的理论值可由以下公式计算:
()-52.72
121121=++-==
=P be C D
D D R r R A A A ββ,4.105-=∴D A
其中Ω=++=k I mA r E be 788.4/26)1(2001β
(3)测量双端输入共模抑制比CMRR
将两个输入端接在一起,然后依次与OUT1、OUT2相连,记共模输入为V iC 。
测量、计算并填写下表。
若电路完全对称,则V C1-V C2=V o =0,实验电路一般并不完全对称,若测量值有四位有效数字,则V o 不应等于0.
这里双端输入共模电压单端输出的共模放大倍数应用下式计算:
iC
C C C V V V A 2
11-=
建议CMRR 用dB 表示
C
D
A A CMRR lg
20=
由于理想状态下21C C νν=(正如仿真所得),所以共模放大倍数C A 理论值为0,因此共模抑制比CMRR 理论值为无穷。
事实上,电路不可能完全对称,因此,共模输入时放大器的∆V 不等于0,因而 AC 也不等0,只不过共模放大倍数很小而已。
共模输入时,两管电流同时增大或减小,Re3上的电压降也随之增大或减小,Re3起着负反馈作用。
由此可见,Re3 对共模信号起抑制作用;Re3 越大,抑制作用越强。
晶体管因温度、电源电压等变化所引起的工作点变化,在差动放大器中相当于共模信号,因此,差动放大器大大抑制了温度、电源电压等变化对工作点的影响。
(4)测量单端输入差模电压放大倍数
将V i2接地,V i1分别于OUT1、OUT2相连,然后再接入f=1KHz ,有效值为50mV 的正弦信号,测量计算并填写下表。
若输入正弦信号,在输出端V C1、V C2的相位相反,所以双端输出V o 的模是它们两个模的和,而不是差。
实验值与仿真值的误差为:
⎪⎪
⎪
⎩
⎪
⎪
⎪⎨⎧
=⨯-==⨯-=-=⨯-=+%5.37%10084.3084.304.42zhengxian %5.23%10010.3410.3412.42:1.0%3.27%10006.3306.3309.42:1.0E E E 单端输入的差模放大倍数理论上应该与双端输入的相近,因此其理论值也是-105.4
5.思考题
(1)实验箱上的双端输入差动放大器的共模抑制比不算高,若要进一步提高共模抑制比,可采取哪些办法?
1)提高差动放大器的输入阻抗或提高闭环增益。
2)可以用一个晶体管恒 流源取代 Re3。
因为工作于线形放大区的晶体管的 Ic 基本上不随 Vce 变化(恒流特性),所以交流 电阻=△Vce /△Ic 很大,大大提高了共模抑制比。
(2)图3.1中的电阻R b1、R b2在电路中起到什么作用,若去除上述两个电阻,按实验(3)步骤和方法再测CMRR,两次测量的结果是否会有较大差别?为什么?
在两个输入端分别接了510Ω电阻,使差动放大器的输入电阻下降至略小于510Ω,这是很小的输入电阻。
其原因是,本实验电路用分列元件组成,电路中对称元件的数值并不完全相等;其集电极为电阻负载,而不是恒流源负载;其发射极为恒流源负载,而不是镜像电流源负载,所以本实验电路的共模抑制比并不高。
若本实验电路在输入端不接510Ω电阻,其输入电阻将较大,而共模抑制比不够高,实验环境中存在的高内阻共模干扰将进入输入端,那么输出端的共模干扰将较大,以致使验证差动放大器特性的实验难以进行。
由于实验中所用信号源都为低输出电阻信号源,所以输入端接上510Ω电阻后几乎不影响实验电路接收来自信号源的信号,而高内阻共模干扰因实验电路输入电阻大大下降而基本上被拒之输入端外,从而使得输出端的共模干扰很小,实验得以顺利进行。
输入端接510Ω电阻并不该变差动放大器的共模抑制比。
去掉实验电路中的两个510Ω电阻,再做实验就会发现,实验电路输出端的共模干扰明显增加。
(3)归纳差动放大器的特点与性能,并于共射放大器比较。
电路对称抑制零点漂移;对差模信号有放大作用;对共模信号有抑制作用;输入阻抗较高;共模抑制比高;一般用来放大微小信号。