搅拌桨叶的选型和设计计算
- 格式:doc
- 大小:18.60 MB
- 文档页数:13
搅拌桨叶尖速度计算公式
搅拌桨叶尖速度计算公式是用来计算搅拌器桨叶尖部分的旋转速度的公式。
搅拌桨叶尖速度是指桨叶尖部分在旋转过程中所达到的最大线速度。
这个速度对于搅拌器的搅拌效果以及机械结构的设计都非常重要。
要计算搅拌桨叶尖速度,我们可以使用以下公式:
搅拌桨叶尖速度 = 桨叶旋转半径 × 桨叶旋转角速度
其中,桨叶旋转半径是指从桨叶转轴到桨叶尖部的距离,通常以米为单位表示;桨叶旋转角速度是指桨叶单位时间内旋转的角度,通常以弧度/秒为单位表示。
通过这个公式,我们可以精确地计算出搅拌桨叶尖速度,从而更好地了解搅拌器的运行状态和搅拌效果。
当然,在实际应用中,我们还需要考虑到其他一些因素,如桨叶的形状、桨叶的数量、搅拌介质的性质等等。
这些因素也会对搅拌桨叶尖速度产生一定的影响。
总结一下,搅拌桨叶尖速度计算公式是一个重要的工具,可以帮助我们准确地计算出搅拌器桨叶尖部分的旋转速度。
这个公式在搅拌器的设计和搅拌效果评估中起到了关键的作用。
通过合理地使用这个公式,我们可以更好地提高搅拌器的搅拌效率,从而为各行各业
的生产提供更好的服务。
搅拌叶选型相关知识见《搅拌设备》,主要分径向流和轴向流叶轮两种三叶推进式是最典型的轴流型搅拌器,高排液量,低剪切性能;采用挡板或导流筒则轴向循环更强。
排出性能明显提高,因为它循环能力强,动力消耗低,在低粘度,大容量均相、混合过程中应用最能体现它的优势,在低粘度的液体传热、反应、固液比小时的悬浮、溶解等过程中应用广泛。
可调推进式的桨叶可转动±15°,调整倾角,在试验性的工艺过程中作用很大。
可拆推进式的桨连轮毂分成三辨,组装方便,用在需要拆成小件的场合。
常用介质μ<2000cP,常用运转速度n=100~500rpm,v=3~15m/s,最高转速可达1750rpm,常用规格S/DJ=1或2,DJ/D=0.2~0.5,表面要求抛光处理的必须选用焊接型。
螺杆式搅拌器此类搅拌器为慢速型搅拌器,在层流区操作,液体沿着螺旋面上升或下降形成轴向的上下循环,适用于中高粘度液的混和和传热等过程,螺杆式搅拌直径小,轴向推力大,可偏心放置,桨叶离槽壁的距离<1/20 DJ,槽壁可起挡板作用。
螺杆带上导流筒,轴向流动加强,在导流筒内外形成向下向上的循环。
此时,可取导流筒直径D’=0.7D,DJ/Do=0.95,常用介质粘度μ<105 cP,常用运转速度n=0.5~50rpm,ν<1m/s。
三窄叶旋桨式搅拌器也是常用的旋桨式搅拌器,性能、应用都相似,相对于宽叶旋桨式,它的排出流量小些,输入功率小些,常用介质粘度μ<104cP,常用转速n=60~500rpm,常用尺寸DJ /D=0.2~0.5,B/DJ=0.2,常用左旋,可制成右旋。
斜叶桨式搅拌器此搅拌器桨叶可成24°、45°或60°倾角,有轴向分流、径向分流,流型比平直叶桨式复杂,排出能量比平直桨高,综合效果更好,适用过程相同,因此应用频率比平直叶桨式高,运行条件同平直叶桨式。
六叶开启涡轮式搅拌器本类搅拌器流型为径向流,在有挡板时可自桨叶为界形成上下两个循环流,具有高剪切力和较大的循环能力,其中直叶开启涡轮式剪切力最大,弯叶开启涡轮式剪切力最小,斜叶开启涡轮居中。
搅拌机的设计计算7.5kw 搅拌机设计:雷,此时为湍流,2K Np ==φ常数。
查表知:诺数的计算:4032.08.0130010436833Re 260852⨯≈===⨯⨯μραin 即410Re >蜗轮式,四平片时,5.42=K 。
由公式513d n N N p ρ=,式中Np ——功率准数。
则,搅拌功率5132d n K N ρ= 5360858.0)(13005.4⨯⨯⨯= W W 45.55450== 则,电机的最小功率为: ηNN =电 ,取η=0.85则KW N 41.685.045.5电==则选用电机的功率为7.5KW 。
圆盘直径φ450mm ,选定叶轮直径φ800mm 。
桨叶的危险断面Ⅰ—Ⅰ(如上图):该断面的弯矩值: (对于折叶蜗轮)θSin nN x r x Zj M 155.9030⨯⨯⨯=-式中n ——转速;N ——功率;x ——桨叶上液体阻力的合力的作用位置。
计算公式为:32314241430r rr r x --⨯= 334412.04.012.04.043--⨯= =0.306(m)则θSin nN x r x Zj M 155.9030⨯⨯⨯=-0345185105.7306.0225.0306.0455.9Sin ⨯⨯⨯=⨯- =78.86(N.m )(Z=4叶片,θ=45°倾角)对于Q235A 材料,MPa 240~2205=σ当取n=2~2.5时,[σ]=88~100Mpa. 取[σ]=90Mpa 计算,得62bh =ω(矩形截面) 且b=200mm ,求h 值。
由][σω≥M有666.81090622.0⨯≥⨯⨯h η,可得h ≥0.00512m, 即h ≥5.12mm考虑到腐蚀,则每边增加1mm 得腐蚀余量。
即,需叶片厚度为≥7.12, 取8mm 厚的钢板。
叶轮轴扭转强度计算验证叶轮轴选用φ76×5的无缝钢管,材料20号钢。
第二节搅拌桨叶的设计和选型一、搅拌机结构与组成组成:搅拌器电动机减速器容器排料管挡板适用物料:低粘度物料二、混合机理利用低粘度物料流动性好的特性实现混合1、对流混合在搅拌容器中.通过搅拌器的旋转把机械能传给液体物料造成液体的流动.属强制对流。
包括两种形式:(1)主体对流:搅拌器带动物料大范围的循环流动(2)涡流对流:旋涡的对流运动液体层界面强烈剪切旋涡扩散主体对流宏观混合涡流对流2、分子扩散混合液体分子间的运动微观混合作用:形成液体分子间的均匀分布对流混合可提高分子扩散混合3、剪切混合剪切混合:搅拌桨直接与物料作用.把物料撕成越来越薄的薄层.达到混合的目的。
高粘度过物料混合过程.主要是剪切作用。
电动机减速器搅拌器容器排料管三、混合效果的度量 1、调匀度I设A 、B 两种液体.各取体积vA 及vB 置于一容器中.则容器内液体A 的平均体积浓度CA0为: (理论值) 经过搅拌后.在容器各处取样分析实际体积浓度CA.比较CA0 、CA . 若各处 CA0=CA 则表明搅拌均匀若各处 CA0=CA 则表明搅拌尚不均匀.偏离越大.均匀程度越差。
引入调匀度衡量样品与均匀状态的偏离程度 定义某液体的调匀度 I 为:(当样品中CA < CA0时)或 (当样品中CA > CA0时)显然 I ≤1若取m 个样品.则该样品的平均调匀度为当混合均匀时2、混合尺度设有A 、B 两种液体混合后达到微粒均布状态。
BA A A V V V C +=00A A C C I =011A A C CI --=m I I I I m+⋯⋯++=-211=-IA BAB (a)(b)混合尺度分设备尺度微团尺度分子尺度对上述两种状态:在设备尺度上:两者都是均匀的(宏观均匀状态)在微团尺度上:两者具有不同的均匀度。
在分子尺度上:两者都是不均匀的(当微团消失.称分子尺度的均匀或微观均匀)如取样尺寸远大于微团尺寸.则两种状态的平均调匀度接近于己于1。
搅拌器设计计算(作者:纪学鑫)一、设计数据:1、混合池实际体积V=1.15m ×1.15m ×6.5m ≈8.60m ³∴设混合池有效容积V=8m ³2、混合池流量Q=0.035m ³/s3、混合时间t=10s4、混合池横截面尺寸1.15m × 1.15m ,当量直径D=πω4L =π15.115.14⨯⨯=1.30m 5、混合池液面高度H =24πD V =m ..π036301842≈⨯⨯ ∴混合池高度H '=6.03m+(0.3~0.5)m=6.33~6.53 (m);取6.5m6、挡板结构及安装尺寸()m 54.0036.0m 241361~)(~≈⎪⎭⎫ ⎝⎛D ;数值根据《给水排水设计手册》表4-28查得,以下均已此手册作为查询依据。
7、取平均水温时,水的粘度值()s a ⋅P μ=1.14×10-3s a ⋅P取水的密度3/kg 1000m =ρ8、搅拌强度1)搅拌速度梯度G ,一般取500~1000s -1。
混合功率估算:N Q =K e Q(kw)K e --单位流量需要的功率,K e 一般=4.3~173/s kw m ⋅∴混合功率估算:3/s kw 17~3.4m N Q ⋅=1-3-3e e )30.1365~65.686(s8s a 1014.1m /s kw 17~3.41000t 1000t 1000s P K Q Q K G ≈⨯⋅⨯⋅===⇒)(μμ 取搅拌速度梯度1-s 740=G2)体积循环次数'Z搅拌器排液量'Q ,213.08.008.1385.0)/(333'=⨯⨯==s m nd k Q q折叶桨式,片,245=︒=Z θ,流动准数385.0k q 取,见表4-27查取;---n 搅拌器转速)(s /r ;d 搅拌器直径(m) 转速d 60n πν=;---线速度v ,直径d ,根据表4-30查取。
1前言建材产品的生产,从原料、燃料到半成品都需要进行破碎和粉磨,其目的是使物料的表面积增加,以提高物理作用的效果及化学反应的速度,如促进均匀混合,提高物料的流动性,便于贮存和运输,提高产量等。
水泥熟料和石膏一起磨碎成最终产品,其磨碎的粒度越细,表面积越大,则水泥的标号就越高。
改善和提高产品的质量和数量,减少动力消耗,降低生产成本,对达到优质、高产、低消耗具有重要意义。
机械冲击粉碎是建材行业材料破碎的主要手段,其设备效率是重要的技术和经济指标。
目前在搅拌机的设计研究中,主要集中在耐磨材料和常规设计的改进。
在水泥行业、选矿电力等工业领域中广泛使用粉磨机械,但各类粉磨机械都有生产效率低,能耗高的缺点。
当前的发展趋势是“以破代磨”,借助加强粉磨机前的粉碎,降低入料粒度,可大幅度提高粉磨机产量,降低综合能耗。
本课题是结合市场上所使用的各类型号的搅拌机及由厂家在使用过程中所反馈的信息,分析其问题的来源,并相互比较综合各类搅拌机的优点,经师生讨论而确定的。
设计要求:a、最大进料粒度:<150mm;b、出料粒度:<10mm;c、生产能力:25-30t/h。
使用范围:桨叶式搅拌机既可以用于生料的破碎,又可以用于熟料的破碎。
它适用于粉碎水泥熟料、粒状高炉矿渣、石灰石、砂岩、页岩、煤矸石、煤块、铝块石、金矿石、钼矿石等多种物料。
它广泛应用于:建材、化工、冶金、电力、煤炭、矿山等工业部门。
技术要求:机械设计应保证其功能良好、使用可靠、维护方便;零件结构设计要选择合理的毛坯型式和材料,并尽可能的采用标准件和通用件,并具有良好的工艺性。
设计方法:采用二维CAD绘制图纸和在UG平台上创建三维模型相结合的方法,更加直观地将所要设计的结构表达出来。
本课题着重解决如何将反击式搅拌机和锤式搅拌机的优点结合、锤头磨损问题和机体平衡问题、搅拌机在工作过程中的粉尘泄露问题及搅拌机的各工作参数的优化确定方法等。
本设计具有很强的实用价值。
第二节搅拌桨叶的设计和选型一、搅拌机结构与组成组成:搅拌器电动机减速器容器排料管挡板适用物料:低粘度物料二、混合机理利用低粘度物料流动性好的特性实现混合1、对流混合在搅拌容器中.通过搅拌器的旋转把机械能传给液体物料造成液体的流动.属强制对流。
包括两种形式:(1)主体对流:搅拌器带动物料大范围的循环流动(2)涡流对流:旋涡的对流运动液体层界面强烈剪切旋涡扩散主体对流宏观混合涡流对流2、分子扩散混合液体分子间的运动微观混合作用:形成液体分子间的均匀分布对流混合可提高分子扩散混合3、剪切混合剪切混合:搅拌桨直接与物料作用.把物料撕成越来越薄的薄层.达到混合的目的。
高粘度过物料混合过程.主要是剪切作用。
电动机减速器搅拌器容器排料管三、混合效果的度量 1、调匀度I设A 、B 两种液体.各取体积vA 及vB 置于一容器中.则容器内液体A 的平均体积浓度CA0为: (理论值) 经过搅拌后.在容器各处取样分析实际体积浓度CA.比较CA0 、CA . 若各处 CA0=CA 则表明搅拌均匀若各处 CA0=CA 则表明搅拌尚不均匀.偏离越大.均匀程度越差。
引入调匀度衡量样品与均匀状态的偏离程度 定义某液体的调匀度 I 为:(当样品中CA < CA0时)或 (当样品中CA > CA0时)显然 I ≤1若取m 个样品.则该样品的平均调匀度为当混合均匀时2、混合尺度设有A 、B 两种液体混合后达到微粒均布状态。
BA A A V V V C +=00A A C C I =011A A C CI --=m I I I I m+⋯⋯++=-211=-IA BAB (a)(b)混合尺度分设备尺度微团尺度分子尺度对上述两种状态:在设备尺度上:两者都是均匀的(宏观均匀状态)在微团尺度上:两者具有不同的均匀度。
在分子尺度上:两者都是不均匀的(当微团消失.称分子尺度的均匀或微观均匀)如取样尺寸远大于微团尺寸.则两种状态的平均调匀度接近于己于1。
(2.0m3)锚式搅拌机设计计算1 已知参数:反应釜尺寸φ1300X15002 搅拌器选型:搅拌介质为高黏度液体,选用锚式搅拌机;3 参数确定:介质粘度μ=10PaS介质密度ρ=1500kg/m3设定搅拌机转速n=25r/min选取桨叶直径d=1.17m3 求外缘线速度:v=nπd/60=25×π×1.17/60=1.53m/s(搅拌器的外缘线速度范围为1-5m/s)4 求雷诺数:Re=d2nρ/μ=1.172×(25/60)×1500/10=85.565 根据雷诺数,可求的功率准数Np=2.7446 求搅拌功率: N=Npρn3d5/102g=2.744×1500×(25/60)3×1.175/102×9.81=0.6524kw7 校核搅拌强度:⑴根据体积循环次数Z’(此方法根据美国凯米尼尔公司和莱宁公司有关资料)A 搅拌器排液量Q’=Kqnd3=0.77×(25/60)×1.173=0.514m3/s。
其中Kq-流动准数,搅拌器的流动准数为0.77B 体积循环次数Z’=Q’t/V=0.514×30/2=6.28其中t-混合时间,V-有效容积。
在混合时间内,池内液体的体积循环次数不小于1.2,所以满足搅拌强度的要求。
⑵根据混合均匀度U (此方法根据美国凯米尼尔公司和莱宁公司有关资料)-ln(1-U)=tan(d/D)b(D/H)0.5其中t-混合时间,a,b-混合速率常数,U-混合均匀度得出U=98%,满足搅拌强度要求。
8 电机功率计算:NA=KgN/η=1.2×0.6524/0.9=0.87KW。
其中Kg-电机工况系数,η-机械传动效率。
9 选用电机功率为4KW,锡减牌减速机BLD13-59-4KW10搅拌轴计算:⑴按扭转强度计算:d1≥C1(NA/n)(1/3)=89.2×(2.2/25)(1/3)=55.52mm⑵按扭转刚度计算:d2=C2(NA/n)(1/4) =91.5×(2.2/88)(1/4)=49.83mm故按结构取搅拌轴直径d=65mm。
制浆高速搅拌桨叶优化设计搅拌是纸浆制造的关键环节之一,它能够使浆料更加均匀地混合,为后续的生产工序提供良好的基础。
而搅拌的核心在于搅拌桨叶的设计与制造。
近年来,随着纸浆制造技术的不断发展,制浆高速搅拌桨叶的优化设计越来越受到关注。
制浆高速搅拌桨叶的设计原理制浆高速搅拌桨叶的设计原理主要涉及纸浆的流体力学和搅拌力学。
为了实现最佳的影响效果,搅拌桨叶必须在纸浆流动情况下获得适当的旋转和推动力。
此外,搅拌桨叶的结构必须与生产工艺相适应,以满足将浆料混合均匀的要求。
因此,在进行制浆高速搅拌桨叶的设计过程中,需要考虑多种因素,包括流体力学、搅拌力学、结构受力和生产工艺等方面。
优化设计的必要性在制浆生产中,提高搅拌桨叶的效率和质量是一个非常重要的问题。
市场竞争的加剧也使得制浆企业更加注重搅拌桨叶的优化。
然而,优化搅拌桨叶的设计并不是一件容易的事情。
需要考虑多种因素,如搅拌桨叶的形状、角度、旋转速度、流量等等。
因此,只有通过深入的研究和创新思维,才能找到更加有效、节约原材料、能够提高生产效率的高速搅拌桨叶设计方案。
优化设计的具体措施针对制浆高速搅拌桨叶的优化设计,可以采用多种措施来提升搅拌桨叶的效率和质量。
这些措施包括:1.采用先进的计算技术对搅拌桨叶进行模拟分析;2.优化搅拌桨叶的形状和角度,提高纸浆制造的混合效率;3.控制搅拌桨叶的旋转速度和流量,使得纸浆得到最佳的混合效果;4.采用先进的材料技术,选择更加优质的搅拌桨叶材料;5.根据生产实际需要,针对固体浆料、液体浆料等不同类型的纸浆进行适当的搅拌桨叶设计和制造;6.加强搅拌桨叶的维护和保养,延长使用寿命。
总之,制浆高速搅拌桨叶的优化设计是一个系统性、复杂性和多样性较强的问题。
在设计过程中,应该综合考虑多种因素,采用科学的方法和优质的材料,制造出更加高效、优质的搅拌桨叶,进一步推动纸浆制造的技术进步。