大学概率论习题六详解.doc
- 格式:doc
- 大小:749.00 KB
- 文档页数:7
概率论与数理统计课后答案第6章第6章习题参考答案1.设是取⾃总体X的⼀个样本,在下列情形下,试求总体参数的矩估计与最⼤似然估计:(1),其中未知,;(2),其中未知,。
2.设是取⾃总体X的⼀个样本,其中X服从参数为的泊松分布,其中未知,,求的矩估计与最⼤似然估计,如得到⼀组样本观测值X 0 1 2 3 4频数17 20 10 2 1求的矩估计值与最⼤似然估计值。
3.设是取⾃总体X的⼀个样本,其中X服从区间的均匀分布,其中未知,求的矩估计。
4.设是取⾃总体X的⼀个样本,X的密度函数为其中未知,求的矩估计。
5.设是取⾃总体X的⼀个样本,X的密度函数为其中未知,求的矩估计和最⼤似然估计。
6.设是取⾃总体X的⼀个样本,总体X服从参数为的⼏何分布,即,其中未知,,求的最⼤似然估计。
7. 已知某路⼝车辆经过的时间间隔服从指数分布,其中未知,现在观测到六个时间间隔数据(单位:s):1.8,3.2,4,8,4.5,2.5,试求该路⼝车辆经过的平均时间间隔的矩估计值与最⼤似然估计值。
8.设总体X的密度函数为,其中未知,设是取⾃这个总体的⼀个样本,试求的最⼤似然估计。
9. 在第3题中的矩估计是否是的⽆偏估计?解故的矩估计量是的⽆偏估计。
10.试证第8题中的最⼤似然估计是的⽆偏估计。
11. 设为总体的样本,证明都是总体均值的⽆偏估计,并进⼀步判断哪⼀个估计有效。
12.设是取⾃总体的⼀个样本,其中未知,令,试证是的相合估计。
13.某车间⽣产滚珠,从长期实践中知道,滚珠直径X服从正态分布,从某天⽣产的产品中随机抽取6个,量得直径如下(单位:mm):14.7,15.0,14.9,14.8,15.2,15.1,求的0.9双侧置信区间和0.99双侧置信区间。
14.假定某商店中⼀种商品的⽉销售量服从正态分布,未知。
为了合理的确定对该商品的进货量,需对和作估计,为此随机抽取七个⽉,其销售量分别为:64,57,49,81,76,70,59,试求的双侧0.95置信区间和⽅差的双侧0.9置信区间。
i习题一3 设,,B A 为二事件,化简下列事件:B B B A B BA B A B A B A =⋃=⋃⋃=⋃⋃)()())()(1(B B A B B A A A B A B A =⋃⋃⋃=⋃⋃)())()(2(4 电话号码由5个数字组成,每个数字可能是从0到9这10个数字中的任一个,求电话号码由5个不同数字组成的概率。
3024.010302410427210678910445==⋅=⋅⋅⋅⋅=p5 n 张奖券中有m 张有奖的,k 个人购买,每人一张,求其中至少有一人中奖的概率。
答案:.1k n k mn C C --6 从5双不同的鞋子中任取4只,这4只鞋子中“至少有两只配成一双”的概率是多少?解;将这五双靴子分别编号分组},,,,{};,,,,{5432154321b b b b b B a a a a a A ==,则C 表示:“至少有两只配成一双”;从5双不同的鞋子中任取4只,其可能选法有.45C不能配对只能是:一组中选i 只,另一组中选4-i 只,且编号不同,其可能选法为)0,1,2,3,4(;455=--i C C i i i41045341523251235451)(1)(C C C C C C C C C C P C P ++++-=-= 2113218177224161247720104060401011234789105453245224551=-=⋅⋅-=⋅++++-=⋅⋅⋅⋅⋅⋅⋅+⋅+⋅⋅+⋅⋅+-= 7在[—1,1]上任取一点,求该点到原点的距离不超过51的概率。
答案:518在长度为a 的线段内任取两点,将其分成三段,求它们可以构成三角形的概率。
,0,0a y a x <<<<且a y x <+<0,又41222,,=⎪⎪⎪⎩⎪⎪⎪⎨⎧<<>+⇒⎪⎩⎪⎨⎧--<---<--->+P ay a x a y x y x a x y y x a y x y x a y x 9在区间)1,0(内任取两个数,求这两个数的积小于41的概率。
第13次1在总体N (U 「2)中抽取样本 X !,X 2,X 3 (」已知,二2未知),指出X ! X 2 X 3,解 X 1 X 2 X 3 , X 2 2h , max(X 1 ,X 2,X 3) , |X 1—'X 31 是统计量2给定样本观测值92,94,103,105,106求样本均值和方差1解 X =丄(9294 103 105 106) =100 521 2 2 2 2 2S[(92 -100)(94 -100) (103-100)(105 -100) (106 -100)]5 -1=42.53在总体X ~ N(12,22)中随机抽取容量为 5的样本,求样本均值与总体均值之差的绝对值大于1的概率 2解 注意到 X~N (叫——)n - (2 丫有 X ~ N(12,)& 5丿13 _ 12 11 _ 12P{| X -12 | 1} =1 - P{11 :: X :: 13} =1 -[门( )一 门( 2 )]、5. 5=1一:门( )亠叫一 )=1一门()1一门()=0.26282 2 2 24 已知 X ~t(8),求(1)P{X 2.306},P{X <1.3968}(2)若 P{X }=0.01 求’解 (1)P{X 2.306} =0.025,P{ X ::: 1.3968} = P{ X 1.3968} = 1 - 0.1 = 0.9(2)P{X } =0.01= • - 2.89655 已知 X ~2(8),求(1)P{X 2.18},P{X :: 20.09}(2)若 P{X 「} =0.025求,(3)若 P{X :: } =0.95 求■ 解(1)P{X 2.18} =0.975,P{X :: 20.09} =1-P{X 20.09} = 1 -0.01 = 0.99(2) P{X •} =0.025 二,-17.534X 2 2」,max(X ,,X 2,X 3)|X i -X 3 I 哪些是统计量?2 2X iX 2 X2 3(3) P{X }=0.95 P{X . •} =0.05 二,-15.5076设总体X ~ N (3.2,62 3 4), X ,,X 2,...,X n 是X 的样本,则容量n 应取多大,才能使得P{1.2 :: X :: 5.2} _0.95P{1.2 :::X ::5.2}二仁5^尹)一讥违竺)凡(亍)一讥一亍)n= :.:,( □)_:「( 0) =2+(」)_1 _0.9533 3y' n Tn ::」()_ 0.975 1.96 n_ 34.5 7 4433所以n 最小为35第14次1从某正态总体 X 取得样本观测值:14.7,15.1,14.8,15.0, 15.2,14.6,用矩法估计总体均值」和方差c 2 解」-X =1(14.7 15.1 14.8 15.0 15.2 14.6) =14.96A —1-X21 n--------------------------- 2 1 2 2 2 匚 (X i -X) [(14.7—14.9)(15.1—14.9)(14.8—14.9)n i 总 6(15.0-14.9)2 (15.2 -14.9)2 (14.6 -14.9)2] =0.28X 乞1 2总体x 的密度为p(x) =1 飞,样本为X 1,X 2 ,...X n 求二的矩法估计量归 ex 〉11 3总体x 的密度为p (x )=1。
《概率论与数理统计》第六章习题exe6-1解:10()0x b f x b ⎧<<⎪=⎨⎪⎩其他01()()2bb E X xf x dx x dx b +∞-∞==⋅=⎰⎰ 令11μ=A ,即2b X =,解得b 的矩估计量为ˆ2b X = 2ˆ2(0.50.60.1 1.30.9 1.60.70.9 1.0) 1.6899bx ==++++++++= exe6-2解:202()()()3x E X xf x dx x dx θθθθ+∞-∞-==⋅=⎰⎰令11μ=A ,即,3θ=X 解得θ的矩估计量为ˆ3X θ= Exe6-3解:(1)由于12222()()()()(1)()E X mpE X D X E X mp p mp μμ==⎧⎨==+=-+⎩ 令 ⎩⎨⎧==.2211μμA A求解得221111p m p μμμμ⎧-=-⎪⎪⎨⎪=⎪⎩,p, m 的矩估计量为22211(1)ˆ11ˆˆA A n S pA nX X m p ⎧--=-=-⎪⎪⎨⎪=⎪⎩Exe6-4解:(1)()E X λ= 令11μ=A ,即,λ=X 解得λ的矩估计量为ˆX λ= {}),2,1,0(!===-x e x x X P xλλ{}),2,1,0(!===-i i xi x e x x X P iλλ似然函数11111(){}()!!niii x n nx n i ni i i ii eL P X x e x x λλλλλ=--===∑====∏∏∏11ln ()()ln ln(!)nni i i i L n x x λλλ===-+-∑∑1ln ()0nii x d L n d λλλ==-+=∑解得λ的最大似然估计值为 11ˆni i x x n λ===∑ (2)由(1)知1ˆ(6496101163710)7.210x λ==+++++++++= Exe6-5解:(1)似然函数1(1)111(){}(1)(1)ni i i nnx x ni i i L p P X x p p p p =--==∑===-=-∏∏∑-==-ni i nx np p 1)1(1ln ()ln (1)ln ni i L p n p x p ==+-⋅∑)1ln()(ln 1p n x p n ni i --+=∑=1(1)ln ()01ni i x d L p n dp p p =-=-=-∑01)(ln 1=---=∑=pn x p ndp p L d ni i 解得p 的最大似然估计值为 11ˆnii npxx===∑ (2)155ˆ5174926px ===++++ Exe6-6解:由2()2()x f x μσ--=(1)2σ已知,似然函数221()()2211()(,)ni i i x nx n nii i L f x eμμσσμμ=----==∑===∏2211ln ())()2nii L n x μμσ==---∑21ln ()1(22)02nii d L x d μμμσ==--=∑即11()0nniii i x n xμμ==-=-=∑∑解得μ的最大似然估计值 1ˆnii xx nμ===∑(2)μ已知,似然函数为212222)(222)(12122121),()(σμσμπσσπσσ∑⎪⎭⎫ ⎝⎛====----==∏∏ni i i x nx ni n i i e ex f L21222)(21)ln(2)2ln(2)(ln μσσπσ-∑---==n i ix n n L 0)()(212)(ln 2122222=-+-=∑=μσσσσni i x n L d d 解得∑=-=n i i x x n 122)(1ˆσ,故2σ的最大似然估计值为 .)(1ˆ122∑=-=n i i i x x n σ Exe6-7解:(1)矩估计量2220()()()(3)2xt x xt xx E X xf x dx x e dx e dx t e dt θθθθθθθθ=--+∞+∞+∞+∞--∞==⋅===Γ=⎰⎰⎰⎰令2X θ=,得ˆ/2X θ= 似然函数211()(,)ix n nii i i x L f x eθθθθ-====∏∏1111ln ()(ln 2ln )ln 2ln nnnii i i i i i x L x x n x θθθθθ====--=--∑∑∑ 令21ln ()210ni i d L n x d θθθθ==-+=∑解得θ的最大似然估计值为111ˆ22n ii x x n θ===∑ (2)2311()(,)2ixnni i i i x L f x e θθθθ-====∏∏331111ln ()[2ln ln(2)]2ln ln(2)nnnii i i i i i x L x x n x θθθθθ====--=--∑∑∑令2321ln ()1602nii d L n xd θθθθθ==-⋅-=∑013)(ln 1223=+⋅-=∑=ni ixn d L d θθθθθ解得θ的最大似然估计值为 111ˆ33ni i x x n θ===∑ (3) ),(~p m B X ,m 已知{}∏∏=-=-===ni x m x x m ni i i i ip p C x X P p L 11)1()(1111ln ()[ln ln ()ln(1)]ln ln ln(1)()i inx m i i i nnnx m i i i i i L p C x p m x p C p x p nm x =====++--=++--∑∑∑∑令 11ln ()01n ni ii i x nm x d L p dp p p==-=-=-∑∑即1111(1)1n nniiii i i x xxnmppp p p===+==---∑∑∑ 解得p 的最大似然估计值为 1ˆnii xxpmnm===∑ Exe6-8解:(1)似然函数为{}{}{})1(2)1(2121)(522θθθθθθθ-=⋅-⋅==⋅=⋅==X P X P X P L)1ln(ln 52ln )(ln θθθ-++=L 令 0115)(ln =--=θθθθL d d 解得θ的最大似然估计值为.65ˆ=θ Exe6-9解:2121222222)()(22)(12)(111212121),,(),,(),(σβαβασβασβασπσπσπβαβαβα∑∑⎪⎪⎭⎫⎝⎛=====+-+---+--=---===∏∏∏∏ni i n i i i i i i y x ny ni x ni n i i Y n i i X e eey f x f L))()((21ln 2)2ln(),(ln 21212βαβασσπβα+-∑+--∑---===ni i ni i y x n n L0))()((22),(ln 112=+-+--=∂∂∑∑==βαβασβααni i n i i y x L 0)()((22),(ln 112=+----=∂∂∑∑==βαβασβαβn i i n i i x x L 联立 解得,2ˆ,2ˆyx y x -=+=βα故βα,的最大似然估计量为 .2ˆ,2ˆYX Y X -=+=βαExe6-10解:(1)由1/2EX μθ==,得θ的矩估计量ˆ2X θ= ˆ()2()2()22E E X E X θθθ===⋅= 故θ的矩估计量ˆ2X θ=是θ的无偏估计量。
1、如果12,,,n X X X 为来自总体X 的样本,X 的分布函数为()F x ,则12,,,n X X X 的联合分布函数为 ;如果X 的概率密度为()f x ,则12,,,n X X X 的联合概率密度为 . 解()1n ii F x =∏,()1nii f x =∏2、设12345,,,,X X X X X 是来自总体(0,1)X N ~的样本,则521i i Z X ==~∑ . 解 2(5)Z χ~3、设X ~),(2σμN ,12,,,n X X X 为来自总体X 的样本,则()E X = ,()D X = . 解 12,,,n X X X 为来自总体X 的样本()()()()()()()()12212n n E X E X E X E X D X D X D X D X μσ∴==========()()11221111()11()n n i i i i n ni i i i E X E X E X n n D X D X D X n n nμσ====⎛⎫⎡⎤∴=== ⎪⎢⎥⎝⎭⎣⎦⎛⎫⎡⎤===⎪⎢⎥⎝⎭⎣⎦∑∑∑∑ 4、设总体()X P λ~,12,,,n X X X 为来自X 的一个样本,则()E X =______,()D X =______. 解 12,,,n X X X 为来自总体X 的样本()()()()()()()()1212n n E X E X E X E X D X D X D X D X λλ∴==========()()1121111()11()n n i i i i n n i i i i E X E X E X n n D X D X D X n n nλλ====⎛⎫⎡⎤∴=== ⎪⎢⎥⎝⎭⎣⎦⎛⎫⎡⎤===⎪⎢⎥⎝⎭⎣⎦∑∑∑∑5、如果22(4),(5)X Y χχ~~,且它们相互独立,则X Y +~ . 解 2(9)X Y χ+~6、如果2(10)X χ~,则()E X = ;()D X = . 解 ()10E X =,()20D X =.7、20.025(30)χ= ,20.05(61)χ= . 解 查表得20.025(30)46.979χ=(()2220.050.0511(61) 1.641179.884822z χ≈+=+=.8、设2(0,1),(100)X N Y χ~~,且,XY 相互独立,则统计量t =~. 解~(100)t t == 9、设(22)t t ~,则()E t = ;()D t = .解 22()0,() 2.2222E t D t ===-0.01 ,0.25 . 解 0.01(20) 2.5280t =,0.250.25(50)0.67t z ≈=.11、设22(20),(30)U V χχ~~,且,U V 相互独立,则统计量32UF V=~ . 解 320~(20,30)230U U F F V V ==. 12、若~(25,40)F F ,则1~F.解 1~(40,25)F F.13、若1~(,12)F F n ,则()E X = .解 ()121.2122E X ==-. 14、0.05(9,12)F = ,则()0.9512,9F = .解 0.050.950.0511(9,12) 2.80,(12,9)0.357(9,12) 2.80F F F ====.15、设12,,,n X X X 相互独立,2(,)i i iX N μσ~,则1n i i i a X η==~∑ .解 22111,nn ni i i i i i i i a X N a a ημσ===⎛⎫=~ ⎪⎝⎭∑∑∑16、设12,,,n X X X 是来自正态总体2~(,)X N μσ的样本,则X ~,X ~ . 解 ()2,X N n μσ~(0,1)X N ~ 17、设12,,,n X X X 相互独立,(0,1)i X N ~,则21~n i i T X ==∑ .解 221~()ni i T X n χ==∑18、设两个随机变量X 与Y 相互独立,并且2(0,1),()X N Y n χ~~,则T =~. 解 ()T t n =~ 二、计算题1、设总体()2~60,15X N ,从总体X 中抽取一个容量为100的样本,求样本均值与总体均值之差的绝对值大于3的概率.解 由已知2260,15,100n μσ===~(0,1)Z N =,即60~(0,1)15/10X Z N -=(|60|3)(||30/15)1(||2)P X P Z P Z ->=>=-<2[1(2)]2(10.9772)0.0456.=-Φ=-=2、从一正态总体中抽取容量为10的样本,假定有2%的样本均值与总体均值之差的绝对值在4以上,求总体的标准差.解 ~(0,1)Z N =,由P (|X -μ|>4)=0.02得P |Z |>4(σ/n )=0.02,故210.02⎡⎤-Φ=⎢⎥⎢⎥⎝⎭⎣⎦,即0.99.Φ=⎝⎭ 查表得2.33σ= 所以5.43.σ==。
概率论第六章课后习题答案概率论第六章课后习题答案概率论是一门研究随机现象的数学分支,它在解决实际问题中具有广泛的应用。
第六章是概率论中的重要章节,主要涉及随机变量及其概率分布、数学期望和方差等内容。
在课后习题中,我们将通过解答一些典型问题,进一步加深对这些概念的理解。
1. 随机变量X的概率分布函数为F(x) ={ 0, x < 0{ 1/4, 0 ≤ x < 1{ 1/2, 1 ≤ x < 2{ 3/4, 2 ≤ x < 3{ 1, x ≥ 3(1) 求随机变量X的概率密度函数f(x)。
(2) 求P(0.5 ≤ X ≤ 2.5)。
解:(1) 概率密度函数f(x)是概率分布函数F(x)的导数。
根据导数的定义,我们可以得到:f(x) ={ 0, x < 0{ 1/4, 0 ≤ x < 1{ 1/2, 1 ≤ x < 2{ 1/4, 2 ≤ x < 3{ 0, x ≥ 3(2) P(0.5 ≤ X ≤ 2.5) = F(2.5) - F(0.5) = 3/4 - 1/4 = 1/2 2. 设随机变量X的概率密度函数为f(x) ={ c(1 - x^2), -1 ≤ x ≤ 1{ 0, 其他(1) 求常数c的值。
(2) 求P(|X| > 0.5)。
解:(1) 概率密度函数f(x)的积分值等于1。
我们可以计算:∫[-1,1] c(1 - x^2) dx = 1解这个积分方程,可得c = 3/4。
(2) P(|X| > 0.5) = 1 - P(|X| ≤ 0.5)= 1 - ∫[-0.5,0.5] c(1 - x^2) dx= 1 - 3/4 ∫[-0.5,0.5] (1 - x^2) dx= 1 - 3/4 [x - x^3/3] |[-0.5,0.5]= 1 - 3/4 [(0.5 - 0.5^3/3) - (-0.5 + 0.5^3/3)] = 1 - 3/4 [0.5 - 0.5/3 - (-0.5 + 0.5/3)]= 1 - 3/4 [1/3]= 1 - 1/4= 3/43. 设随机变量X的概率密度函数为f(x) ={ kx^2, 0 ≤ x ≤ 2{ 0, 其他(1) 求常数k的值。
大学概率论习题六详解(A )1、设n X X X ,,,21 是取自总体),2(~p B X 的样本,其中10<<p ,求:(1)∑=ni iX1的分布列、期望与方差;(2)1X 与2X 的联合分布列。
解 (1)因为),2(~p B X i ,n i ,,2,1 =且独立,则∑=ni iX1的分布是),2(p n B ,期望为np X E ni i 2)(1=∑=,方差为)1(2)(1p np X D ni i -=∑=。
(2)因为),2(~p B X i ,2,1=i 且独立,则1X 与2X 的联合分布列为)()(),(2121y X P x X P y X x X P =====y x y x y x p p C C --+-=422)1(其中2,1,0,=y x2、设321,,X X X 是取自总体),(~2σμN X 的样本,其中μ、σ为参数,求:(1)样本321,,X X X 的联合分布密度;(2)样本均值的期望、方差与标准差。
解 (1)因为),(~2σμN X i ,3,2,1=i 且独立,则样本1X ,2X ,3X 的联合分布密度为]})()()[(21ex p{)2(1),,(22223μμμσσπ-+-+--=z y x z y x p (2)μ=)(X E ,3)(2σ=X D ,3)()(σσ==X D X 。
3、设某地两个调查员,分别在该地东部与西部调查职工的月收入。
调查员甲在东部随机调查了200位职工,得样本均值为800元,样本标准差为200元;调查员乙在西部随机调查了180位职工,得样本均值为620元,样本标准差为150元。
现将这两个样本看成一个容量为380的样本,求样本均值与样本标准差。
解 设调查员甲调查的样本容量为200=n ,样本均值为800=x ,样本标准差为200=x S ,样本方差为22200=x S 。
调查员乙调查的样本容量为180=m ,样本均值为620=y ,样本标准差为150=y S ,样本方差为22150=y S 。
如果将甲、乙调查员调查的职工月收入合为一个样本,则该样本的样本容量为380180200=+=+m n ,其样本均值为74.714)620180800200(3801)(1=⨯+⨯=++=y m x n m n z 样本方差为])()()1()1[(1122222z y m z x n S m S n m n S y x -+-+-+--+=])()()()1()1[(1122222mn y m x n y m x n S m S n m n y x ++-++-+--+= 222800200150179200199[3791⨯+⨯+⨯=]380)620180800200(62018022⨯+⨯-⨯+ 16.39728=所以,该样本的标准差为:32.199=S 。
4、设1021,,,X X X 是取自总体),1(~p B X 的样本,其中10<<p ,且p 未知,指出以下样本的函数中哪些是统计量,哪些不是统计量,为什么?(1)∑==101110i iX T ;(2))(1102X E X T -= (3)p X T -=3;(4)},,,m ax {10214X X X T =解 (1)、(4)是统计量,因为它们是样本的函数且不含未知参数p ;而(2)、(3)不是统计量,因为它们虽然是样本的函数,但含未知参数p 。
5、从总体)3.6,52(~2N X 中随机抽取了一个容量为36的样本,求样本均值X 落在区间[50.8,53.8]内的概率。
解 因为总体)3.6,52(~2N X ,所以()205.1,52~N X ,故()⎪⎭⎫⎝⎛-Φ-⎪⎭⎫ ⎝⎛-Φ=≤≤05.1528.5005.1528.538.538.50X P8293.0=6、设总体)5.0,(~2μN X ,样本n X X X ,,,21 取自总体X 。
如果要以95.4%的概率保证1.0<-μX 成立,那么样本容量n 应取多大?解 由于总体()25.0,~μN X ,所以⎪⎪⎭⎫ ⎝⎛nN X 25.0,~μ,由于 因为()⎪⎪⎭⎫⎝⎛-Φ-⎪⎪⎭⎫⎝⎛Φ=<-n n X P /5.01.0/5.01.01.0μ954.01/5.01.02≥-⎪⎪⎭⎫⎝⎛Φ=n即要求977.0/5.01.0≥⎪⎪⎭⎫⎝⎛Φn利用标准正态分布表,确定0.977的分位数为2.00,故00.2/5.01.0≥n解得200≥n ,所以样本容量n 应取200=n 。
7、设有一枚均匀的硬币,以X 表示“抛一次硬币正面朝上的次数”,试问要抛多少次才能使样本均值X 落在区间[0.4,0.6]内的概率不少于0.9?解 因为)5.0,1(~B X ,在n 充分大时,由中心极限定理,可以近似认为()n N X /25.0,5.0~,则要求()⎪⎪⎭⎫⎝⎛-Φ-⎪⎪⎭⎫⎝⎛-Φ≈<<n n X P /5.05.04.0/5.05.06.05.04.09.01/5.01.02≥-⎪⎪⎭⎫⎝⎛Φ=n即要求()95.02.0/5.01.0≥Φ=⎪⎪⎭⎫⎝⎛Φn n由正态分布表查得645.12.0≥n ,解得,65.67≥n 即至少应抛68次。
8、 设随机变量21Y Y X 和,相互独立且都服从标准正态分布,求随机变量22212Y Y X Z +=的概率分布.解 由条件知21Y Y X 和,相互独立且都服从标准正态分布.随机变量22212Y Y +=χ作为两个独立标准正态随机变量的平方和,服从自由度为2的2χ分布.因为2222221χXY Y X Z =+=,其中(1))10(~,N X ,(2)2χ服从自由度为2的2χ分布,(3)X 和22212Y Y +=χ相互独立,所以由服从t 分布的随机变量的典型模式知,随机变量Z 服从自由度为2的t 分布.9、在所调查的100绘出家庭中拥有电脑频率的线条图。
解 设X 表示城市每户家庭拥有的电脑数,则被调查家庭中拥有电脑数的频率分布表为则家庭中拥有电脑频率的线条图为10、一组工人完成某一装配工序所需的时间(分)分别如下:35 38 44 33 44 43 48 40 45 30 45 32 42 39 49 37 45 37 36 42 35 41 45 46 34 30 43 37 44 49 36 46 32 36 37 37 45 36 46 42 38 43 34 38 47 35 29 41 40 41 求:(1)样本均值、样本方差与标准差;(2) 作出样本频率直方图及其累积频率直方图。
解 (1)74.39501501==∑=i i x x ,62.1361)(5012=-=∑=i i x x Q , 78816.271502=-=QS ,27145.578816.272===S S 。
(2) 以27为第一组的左端点,组距定为3区间],(1i i a a - 频数i n 频率i f 频率各组高i h累计频率i F (27,30] (30,33] (33,36] (36,39] (39,42] (42,45] (45,48] (48,51]3 3 9 9 8 11 5 20.06 0.06 0.18 0.18 0.16 0.22 0.10 0.040.02 0.02 0.06 0.06 0.053 0.073 0.033 0.0130.06 0.12 0.30 0.48 0.64 0.86 0.96 1.00作出样本累积频率直方图为:11、某商店100天电冰箱的日销售情况有如下统计数据求经验分布函数)(x F n ,样本均值X ,样本方差2S 。
解 易见()().;;;9470.1991009275.175.16156303202100185.3156303202100120222202222≈==-==⨯++⨯+⨯==⨯++⨯+⨯=S S X X S X X由所给统计数据,容易写出经验分布函数:⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧≥<≤<≤<≤<≤<=61 6585.05460.04350.03220.02 0 )(x x x x x x x F n ,,,,,, 12、某电子元件寿命X 服从参数为0015.0=λ的指数分布,其分布函数为x e x F λ--=1)( 0>x如今从中抽取6个电子元件测其寿命,获得容量为6的样本621,,,X X X ,求下列事件的概率:(1)“到800小时没有一个元件失效”;(2)“到3000小时所有元件都失效”。
解 指数分布的函数是0,1)(>-=-x ex F xλ,这里0015.0=λ。
(1)令()),,,min(6211X X X X =,则其分布函数为[]xe x F x F λ6611)(11)(--=--=)800()800),,(min()1(621>=>X P X X X P0007466.0)800(18000015.061==-=⨯⨯-e F所以,“到800小时没有一个元件失效” 的概率为0.0007466。
(2)令()()6216,,,max X X X X =,则其分布函数为: ()()[]()6661x ex F x F λ--==()()()()()300030003000,,,max 66621F X P X X X P =<=<()93517.01630000015.0=-=⨯e所以,“到3000小时所有元件都失效” 的概率为0.93517。
(B )1、设n x 与2n S 分别是容量为n 的样本均值与样本修正方差,如今又获得了一个样本观察值1+n x ,那么将它加入到原来的样本中,便得到容量为1+n 的样本,证明:111++=++n x x n x n n n ,21221)(111n n n n x x n S n n S -++-=++证n ni ix n x=∑=1,∑+=++=111n i n n i x x n x故其样本均值为111++=++n x x n x n n n 。
()∑=+-=ni nnix n s n x12221,()21112221++=++-=∑n n i n n i x x n s n x因此该样本方差为()()⎥⎦⎤⎢⎣⎡++-++-=+++212122211111n n n n n n x x n n x x n s n n s ()212111n n n x x n s n n -++-=+ 2、设n X X X ,,,21 是取自总体),(~2σμN X 的样本,2S 是样本方差。
求)(2S E ,)(2S D 。