大学概率论与数理统计期末试卷A+答案
- 格式:docx
- 大小:249.53 KB
- 文档页数:2
概率论与数理统计期末考试试题及参考答案一、选择题(每题2分,共20分)1. 设A、B为两个事件,且P(A) = 0.5,P(B) = 0.6,则P(A∪B)等于()A. 0.1B. 0.3C. 0.5D. 0.7参考答案:D2. 设随机变量X的分布函数为F(x),若F(x)是严格单调增加的,则X的数学期望()A. 存在且大于0B. 存在且小于0C. 存在且等于0D. 不存在参考答案:A3. 设X~N(0,1),以下哪个结论是正确的()A. P(X<0) = 0.5B. P(X>0) = 0.5C. P(X=0) = 0.5D. P(X≠0) = 0.5参考答案:A4. 在伯努利试验中,每次试验成功的概率为p,失败的概率为1-p,则连续n次试验成功的概率为()A. p^nB. (1-p)^nC. npD. n(1-p)参考答案:A5. 设随机变量X~B(n,p),则X的二阶矩E(X^2)等于()A. np(1-p)B. npC. np^2D. n^2p^2参考答案:A二、填空题(每题3分,共15分)1. 设随机变量X~N(μ,σ^2),则X的数学期望E(X) = _______。
参考答案:μ2. 若随机变量X、Y相互独立,且X~N(0,1),Y~N(0,1),则X+Y的概率密度函数f(x) = _______。
参考答案:f(x) = (1/√(2πσ^2))exp(-x^2/(2σ^2))3. 设随机变量X、Y相互独立,且X~B(n,p),Y~B(m,p),则X+Y~_______。
参考答案:B(n+m,p)4. 设随机变量X、Y的协方差Cov(X,Y) = 0,则X、Y的相关系数ρ = _______。
参考答案:ρ = 05. 设随机变量X~χ^2(n),则X的期望E(X) = _______,方差Var(X) = _______。
参考答案:E(X) = n,Var(X) = 2n三、计算题(每题10分,共40分)1. 设随机变量X、Y相互独立,且X~N(0,1),Y~N(0,1),求X+Y的概率密度函数f(x)。
2020-2021《概率论与数理统计》期末课程考试试卷A适用专业:信计 考试日期:试卷类型:闭卷 考试时间:120分钟 试卷总分:100分一.填空题(每题2分,共10分)1.设事件B A ,互不相容,若()(),5.0,3.0==B P A P 则()AB P 为__________. 设事件B A ,相互独立,若()(),5.0,3.0==B P A P 则()AB P 为__________.2.设n ξξξ,,21 为取自母体服从正态分布()2,σμN 的子样,ξ为子样均值,2nS为子样方差。
则ξ服从的分布为____________,()nS n 1--μξ服从的分布为_____________.A3. 设n ξξξ,,21 为取自母体服从正态分布()1,0N 的子样,则∑=ni i12ξ服从的分布为_____________.4. 设ξ与η相互独立,分别是服从自由度为n 及m 的2x 分布的随机变量,则mn ηξς=服从的分布为_____________.5. 将一枚硬币重复掷N 次,以X 和Y 分别表示正面向上和反面向上的次数,则X 和Y 的相关系数等于__________.二、选择题(每小题2分共10分)1.设B A ,为互不相容事件,且()(),0,0>>B P A P 则结论正确的有( ) (A )()0>B A P (B )())(A P B A P > (C) ()0=B A P (D) ()()()B P A P B A P = 2、设随机变量ξ的概率密度函数为()x ϕ,且有()x ϕ()x -=ϕ,()x F 是ξ的分布函数,则对任意实数a ,有( ) (A )()()dx x a F a⎰-=-01ϕ (B )()()dx x a F a⎰-=-021ϕ (C)()()a F a F =- (D)()()12-=-a F a F3、设随机变量X 服从正态分布()2,σμN ,则随着σ的增大,()σμ<-X P ( )(A )单调增大 (B )单调减少 (C )保持不变 (D )增减不定4、任一连续型随机变量的概率密度函数()x ϕ一定满足( )(A )()10≤≤x ϕ;(B )定义域内单调不减;(C )()1=⎰+∞∞-dx x ϕ;(D )()1lim =+∞→x x ϕ。
概率论与数理统计开/闭卷闭卷A/B 卷 A课程编号 2219002801—2219002811课程名称 概率论与数理统计学分 3基本题6小题,每小题5分,满分30分。
在每小题给出的四个选项中,只有一把所选项前的字母填在题后的括号内)(每道选择题选对满分,选错分)。
事件表达式A B 的意思是 ( ) ) 事件A 与事件B 同时发生 (B ) 事件A 发生但事件B 不发生) 事件B 发生但事件A 不发生 (D) 事件A 与事件B 至少有一件发生D ,根据A B 的定义可知。
假设事件A 与事件B 互为对立,则事件A B ( )) 是不可能事件 (B ) 是可能事件 C) 发生的概率为1 (D) 是必然事件 :选A,这是因为对立事件的积事件是不可能事件。
已知随机变量X ,Y 相互独立,且都服从标准正态分布,则X 2+Y 2服从 ( ) A) 自由度为1的χ2分布 (B ) 自由度为2的χ2分布 ) 自由度为1的F 分布 (D) 自由度为2的F 分布选B ,因为n 个相互独立的服从标准正态分布的随机变量的平方和服从自由度为n 的2分布.已知随机变量X ,Y 相互独立,X ~N (2,4),Y ~N (-2,1), 则( ) X +Y ~P (4) (B ) X +Y ~U (2,4) (C) X +Y ~N (0,5) (D ) +Y ~N (0,3)C ,因为相互独立的正态变量相加仍然服从正态分布,而E (X +Y )=E (X )+E (Y )D (X +Y )=D (X )+D (Y )=4+1=5, 所以有X +Y ~N (0,5)。
样本(X 1,X 2,X 3)取自总体X ,E (X )=μ, D (X )=σ2, 则有( ) A) X 1+X 2+X 3是μ的无偏估计(B )1233X X X ++是μ的无偏估计) 22X 是σ2的无偏估计(D ) 21233X X X ++⎛⎫ ⎪⎝⎭是σ2的无偏估计:选B ,因为样本均值是总体期望的无偏估计,其它三项都不成立。
《概率论与数理统计A 》期末习题一答案一、简答题(本题满分30分,共含6小题,每小题5分)1、设A ,B 为随机事件,A 与B 相互独立,2.0)(=A P ,4.0)(=B P ,求()P AB 。
解:32.04.08.0)()()(=⨯==B P A P B A P 。
(5分)2、设随机变量X 的概率密度为⎩⎨⎧<<=其他 010 )(x cx x f ,求常数c 的值。
解:121)(1===⎰⎰+∞∞-c dx cx dx x f ,因此2=c 。
(5分) 3、 已知随机变量)4,1(~N X ,求}21{<<X P 。
解:()021}21221211{}21{Φ-⎪⎭⎫⎝⎛Φ=-<-<-=<<X P X P (3分) 1915.05.06915.0=-=。
(2分)4、设随机变量X 和Y 相互独立,)4,3(~N X ,)9,2(~N Y ,求变量12+-=Y X Z 的数学期望和方差。
解:()()()()51261212=+-=+-=+-=Y E X E Y X E Z E ; (2分)()()()()25916412=+=+=+-=Y D X D Y X D Z D 。
(3分) 5、 已知10个产品中有3个次品,现从中有放回地取3次,每次任取1个,求所取的3个产品中恰有2个次品的概率。
解:设X :所取得3个产品中次品的个数,则⎪⎭⎫⎝⎛103,3~B X (2分)1000189107103}2{223=⎪⎭⎫ ⎝⎛⋅⎪⎭⎫ ⎝⎛⋅==C X P (3分) 6、设随机变量X 、Y 相互独立,且都服从标准正态分布,则Z(同时要写出分布的参数) ?~(1)t 。
(5分)二、(本题满分10分) 编号为1,2,3的三台仪器正在工作的概率分别为0.9,0.8和0.4,从中任选一台。
(1) 求此台仪器正在工作的概率;(2) 已知选到的仪器正在工作,求它编号为2的概率。
第一部分 基本题一、选择题(共6小题,每小题5分,满分30分。
在每小题给出的四个选项中,只有一个是符合题目要求的,把所选项前的字母填在题后的括号内)(每道选择题选对满分,选错0分) 1. 事件表达式A B 的意思是 ( ) (A) 事件A 与事件B 同时发生 (B) 事件A 发生但事件B 不发生(C) 事件B 发生但事件A 不发生 (D) 事件A 与事件B 至少有一件发生答:选D ,根据A B 的定义可知。
2. 假设事件A 与事件B 互为对立,则事件A B ( )(A) 是不可能事件 (B) 是可能事件 (C) 发生的概率为1 (D) 是必然事件 答:选A ,这是因为对立事件的积事件是不可能事件。
3. 已知随机变量X ,Y 相互独立,且都服从标准正态分布,则X 2+Y 2服从 ( ) (A) 自由度为1的χ2分布 (B) 自由度为2的χ2分布 (C) 自由度为1的F 分布 (D) 自由度为2的F 分布答:选B ,因为n 个相互独立的服从标准正态分布的随机变量的平方和服从自由度为n 的χ2分布。
4. 已知随机变量X ,Y 相互独立,X ~N (2,4),Y ~N (-2,1), 则( ) (A) X +Y ~P (4) (B) X +Y ~U (2,4) (C) X +Y ~N (0,5) (D) X +Y ~N (0,3)答:选C ,因为相互独立的正态变量相加仍然服从正态分布,而E (X +Y )=E (X )+E (Y )=2-2=0, D (X +Y )=D (X )+D (Y )=4+1=5, 所以有X +Y ~N (0,5)。
5. 样本(X 1,X 2,X 3)取自总体X ,E (X )=μ, D (X )=σ2, 则有( ) (A) X 1+X 2+X 3是μ的无偏估计(B)1233X X X ++是μ的无偏估计(C) 22X 是σ2的无偏估计(D) 21233X X X ++⎛⎫ ⎪⎝⎭是σ2的无偏估计答:选B ,因为样本均值是总体期望的无偏估计,其它三项都不成立。
12020-2021大学《概率论与数理统计》期末课程考试试卷A1适用专业: 考试日期试卷所需时间:2小时 闭卷 试卷总分 100分考试所需数据: 0.05(19)1,7291t = 0.05(20)1,7247t = 一、填空题:(8小题,每小题2分,共16分)1、设事件A 与B 为随机事件互不相容,()0.2P B =,则()P AB = _ __.2、袋中有10个球,其中6只红球,4只白球,今有2人依次随机地从袋中各取一球,取后放回。
则第2人取得白球的概率为 。
3、若1,2,3,4号学生随机的排成一排,则1号学生站在最后的概率为 .4、 设随机变量X 与Y 互相独立,且~(1,4),~(0,1),X N Y N 则为()=XY E .5、设随机变量2~(0,1),~()X N Y n χ,且X ,Y相互独立,则随机变量t =服从 分布. 6、设12,,,n X X X 是来自总体的样本2~(,)X N μσ,X 分别是样本均值,则有统计量nX /σμ-服从 分布. 7、统计推断的基本问题分为 和 两类问题. 8、已知总体2~(,)X N μσ,12,,,n X X X 是来自总体的样本,(1)2σ为已知,μ的置信水平为1α-的双侧置信区间为 . (2)2σ为未知,μ的置信水平为1α-的双侧置信区间为 .二、单项选择题:(8小题,每题2分,共16分)1、同时抛掷4枚匀称的硬币,则恰好有三枚正面向上的概率( ).A 0.5B 0.25C 0.125D 0.3752、任何一个连续型的随机变量的概率密度()x ϕ一定满足 ( ). A 0()1x ϕ≤≤ B 在定义域内单调不减 C ()1x dx ϕ+∞-∞=⎰ D ()0x ϕ>3、 若X ()2,1~U 则X Y 2=的密度函数()y f 为( )A 、()⎪⎩⎪⎨⎧<<=其他,041,2y y y fB 、()⎪⎩⎪⎨⎧<<=其他,021,2y y y fC 、()⎪⎩⎪⎨⎧<<=其他,041,21y y fD 、()⎪⎩⎪⎨⎧<<=其他,021,21y y f4、若x 的数学期望Ex 存在,则E[E(Ex)]= ( ) A 、Ex B 、x C 、0 D 、()3x E5、下列函数是某随机变量的分布函数的是( )A 、()211x x F += B 、()x x F sin = C 、()⎪⎩⎪⎨⎧>≤+=0,00,112x x x x F D 、()⎪⎩⎪⎨⎧>≤+=0,10,112x x x x F 6、设二维随机变量()Y X ,的概率密度函数为()⎩⎨⎧<<-<<-=其他,011,11,,y x c y x f ,则常数C( )A 、0.25B 、0.5C 、2D 、47、随机变量X 与Y 满足()()D X Y D X Y +=-, 则必有( ) .A X 与Y 独立B X 与Y 不相关C DX=0D DX DY 0⋅=8、在假设检验问题中,检验水平α的意义是 ( ). A 原假设0H 成立,经检验被拒绝的概率 B 原假设0H 成立,经检验不能被拒绝的概率C 原假设0H 不成立,经检验被拒绝的概率院系: 专业班级: 姓名: 学号:装 订 线2D 原假设0H 不成立,经检验不能拒绝的概率.三、(12分)设随机变量的分布列为:已知()1.0=X E ,()9.02=X E 试求(1)1p ,2p ,3p (2)()12+-X D (3) X 的分布函数()X F四、(12分)x 的分布函数为()⎪⎩⎪⎨⎧≥<≤>=e x e x x x X F ,11,ln 1,0求x 的概率密度()x f 及P (x<2),P(0<x≤3).五、(12分)()ηξ,的密度函数为()⎩⎨⎧<<<<=其他,010,6,2x y x y x f 求 ()()y f x f y x ,六、(12分)设()Y X ,联合概率密度函数为()()⎩⎨⎧>>=+-其他,00,0,2,2y x e y x f y x ,求YX Z 2+=的分布函数()z F Z 及密度函数()z f Z七、(10分)设总体X 具有分布律其中(01)θθ<<为未知参数,已知取得样本值1231,2,1x x x ===,试求θ的矩估计值和最大似然估计值.八、(10分)下面列出的是某工厂随便选取的20只部件的装配时间(min ):9.8 10.4 10.6 9.6 9.7 9.9 10.9 11.1 9.6 10.2 10.3 9.6 9.9 11.2 10.6 9.8 10.5 10.1 10.5 9.7设装配时间的总体服从正态分布2(,)N μσ,2,μσ均未知,是否可以认为装配时间的均值显著大于10(取0.05α=)?0.5099s =32020-2021大学《概率论与数理统计》期末课程考试试卷A1答案一、填空题1、0.2;2、0.4;3、0.25;4、0;5、()t n ;6、()0,1N ;7、参数估计、假设检验;8、((/2/2/2/2,11X z X z X t n X t n αααα⎛⎛-+--+- ⎝⎝.二、单项选择题1、B;2、C;3、C;4、A;5、C;6、A;7、B;8、C. 三 解、(1)由()1.0=X E ,()9.02=X E 知123311310.10.9p p p p p p p ++=⎧⎪-=⎨⎪+=⎩,所以120.4,0.1p p ==,30.5p =……4分; (2)()()214 3.56D X D X -+==……8分;(3)()0,10.4,100.5,011,1x x F X x x <-⎧⎪-≤<⎪=⎨≤<⎪⎪≥⎩……12分.四 解、(1)()1,10.x ef x x else ⎧≤<⎪=⎨⎪⎩……4分;(2)P (x<2)=()2ln 2F =……8分; (3)P(0<x ≤3)= ()31F =……12分.五 解、()()()()()()22,66(),016,),0112;xx x y yf x f x y dy dy x x x f y f x y dx dx y y +∞-∞+∞-∞===-<<===<<⎰⎰⎰分;分六 解、由()()()2Z F z P Z z P X Y z =≤=+≤得()()()()()1220211,0zz x x y z Z F z dx e dy z e z --+-==-+≥⎰⎰……8分;,0z Z f zze z ……12分.七 解、22122131322E X分;所以()332分,E X θ-=又()^453分;E X X ==所以的矩估计为566=分θ.由521L,则ln 5ln ln 2ln 17L分;令ln 0d L d,得596分θ=,所以的最大似然估计为5106=分θ八 解、由题可得0010:10;:102H H 分;0.05,20,119,10.24n n x 分;;原假设的拒绝域为16/t n n分;1.7541/0.5099/20xn 0.05(19)1,7291t =,所以在显著性水平为0.05的情况下拒绝原假设10分.。
2020-2021大学《概率论与数理统计》期末课程考试试卷A适用专业: 考试日期:试卷类型:闭卷 考试时间:120分钟 试卷总分:100分一.填空题(每题2分,共10分)1设事件A,B 互不相容,若P (A )=0.3,P (B )=0.7,则P (AB )为_________。
设事件A,B 相互独立,若P (A )=0.3,P (B )=0.7,则P (AB )为______.3.设母体X 服从正态分布N (μ,σ2),X 1,X 2⋯,X n 为取自母体的子样,X̄为子样均值,则X ̄服从的分布为__________.4.设X 1,X 2⋯,X n 相互独立,且都服从正态分布N (0,1),则∑X i 2n i=1服从的分布为_____________.5. 将一枚硬币重复掷N 次,以X 和Y 分别表示正面向上和反面向上的次数,则X 和Y 的相关系数等于__________.二、选择题(每小题2分共10分)1.设A,B 为互不相容事件,且P (A )>0,P (B )>0,则结论正确的有( )(A )P (A |B )>0 (B )P (A |B )>P(A) (C) P (A |B )=0 (D) P (A |B )=P (A )P (B ) 2、设随机变量ξ,η相互独立,且有Dξ=6,Dη=3.则D (2ξ+η)为( ) (A )9 (B )15 (C)21 (D)27 3、设随机变量X 服从正态分布N (μ,σ2),则随着σ的增大,P (|X −μ|<σ)( )(A )单调增大 (B )单调减少 (C )保持不变 (D )增减不定4、任一连续型随机变量的概率密度函数ϕ(x )一定满足( )(A )0≤ϕ(x )≤1;(B )定义域内单调不减;(C )∫ϕ(x )+∞−∞dx =1;(D )lim x→+∞ϕ(x )=1。
5、设随机变量ξ,η满足条件D (ξ+η)=D (ξ−η),则有( )事实上 (A ) Dη=0 (B )ξ,η不相关 (C )ξ,η相互独立 (D )Dξ⋅Dη=0三、综合题(每小题5分共30分)1.某射击小组共有20名射手,其中一级射手4名,二级射手8名,三级射手7名,四级射手1名,一、二、三、四级射手能通过选拔进入决赛的概率分别是0.9,0.7,0.5,0.2,求在小组内任选一名射手,该射手能通过选拔进入决赛的概率。
第 1 页 共 5 页班级 姓名 准考证号‥‥‥‥‥‥密‥‥‥‥‥‥封 ‥‥‥‥‥ 线 ‥‥‥‥内 ‥‥‥‥‥不 ‥‥‥‥‥准 ‥‥‥‥‥答 ‥‥‥‥‥题 ‥‥‥‥‥‥期末考试试卷 参考答案学年学期: 课程名称: 《概率论与数理统计》 适用专业:(满分:100分 时间:120分钟)一、单项选择题(本大题共15小题,每小题2分,共30分)在每小题列出的备选项中选择符合题目要求的,请将其代码填涂在答题卡上相应的位置,错涂、多涂或未涂均无分。
1.设二项分布的随机变量,其数学期望与方差之比为4:3,则该分布的参数p =( ).A .0.5B .0.25C .0.75D .不能确定2.设随机变量X 与Y 的关系为21Y X =+,如果()D X =2,则()D Y =( ).A .4B .6C .8D .103.若X 服从区间[]2,6上的均匀分布,则{23}P x <<=( ).A .0.2B .0.75C .0.5D .0.254.若随机变量X 的期望EX 存在,则()E aX b +=( ).A .aEXB .2a EXC .aEX b +D .2a EX b +5.当随机变量X 的可能值充满( )时,则()cos f x x =可以成为随机变量X 的密度函数.A .π[0,]2B .π[,π]2C .[0,π]D .3π7π[,]226.矿砂中铜含量服从正态分布),(~2σμN X ,2μσ,未知,现从总体中抽取样本521,,,X X X ,5115i i X X ==∑,52211()5i i S X X ==-∑,在显著水平α下检验00:μμ=H ,则所取的统计量为( ).A .5/0σμ-X B .5/0S X μ- C .4/0σμ-X D .4/0S X μ-7.事件表达式A B +的表示( ).A .事件A 与事件B 同时发生 B .事件A 发生但事件B 不发生C .事件B 发生但事件A 不发生D .事件A 与事件B 至少有一个发生8.样本空间S 中的事件A 与B 相互独立的充要条件是( ). A .A B S += B .()()()P AB P A P B =C .AB =∅D .()()()P A B P A P B +=+9.设1X 、2X 是总体X 的样本,则下列统计量不是总体X 的期望的无偏估计量的是( ).A .1XB .121233X X + C .121()2X X + D .121()3X X +10.任何一个连续型随机变量X 的密度函数()f x 一定满足( ).A 卷第 2 页 共 5 页‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 密 ‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 封 ‥‥‥‥‥‥‥‥‥‥‥‥‥‥ 线‥‥‥‥‥‥‥‥‥‥‥‥‥A .0()1f x ≤≤B .() d 1f x x +∞-∞=⎰C .在定义域内单调不减D .lim ()1x f x →+∞= 11.袋中有5球,3新2旧,从中任取一球,无返回的取两次,A =第一次取新球,B =第二次取新球.求P (B|A )=( ).A .12B .23C .35D .1312.已知事件A 和B 互不相容,()0,()0P A P B >>,下式成立的是( ). A .()()()P A B P A P B =+ B .()()()P AB P A P B =C .()1P A B =D .()0P AB >13.若随机变量2(,),3,1,X N EX DX μσ==则11}P X ≤≤={-( ).A .2(1)1A Φ-、 B .(4)(2)B Φ-Φ、C .(4)(2)Φ--Φ-C 、 D .(2)(4)Φ-ΦD 、 14.参数为λ的指数分布的方差是( ).A .1λB .2λC .λD .21λ15.设X 为连续型随机变量,则{1}P X ==( ). A .1B .0C .不能确定D .以上都不对二、判断题(本大题共5小题,每小题2分,共10分)判断正误,正确代码为A ,错误代码为B ,请将正确的答案代码涂在答题卡相应的题号下。
大学《概率论与数理统计》期末考试试卷含答案一、填空题(每空 3 分,共 30分)在显著性检验中,若要使犯两类错误的概率同时变小,则只有增加 样本容量 .设随机变量具有数学期望与方差,则有切比雪夫不等式 .设为连续型随机变量,为实常数,则概率= 0 . 设的分布律为,,若绝对收敛(为正整数),则=.某学生的书桌上放着7本书,其中有3本概率书,现随机取2本书,则取到的全是概率书的概率为. 设服从参数为的分布,则=. 设,则数学期望= 7 .为二维随机变量, 概率密度为, 与的协方差的积分表达式为 .设为总体中抽取的样本的均值,则= . (计算结果用标准正态分布的分布函数表X ()E X μ=2()D X σ={}2P X μσ-≥≤14X a {}P X a =X ,{}1,2,k k P X x p k ===2Y X =1n k k k x p ∞=∑n()E Y 21k k k x p ∞=∑17X λpoisson (2)E X 2λ(2,3)YN 2()E Y (,)X Y (,)f x y X Y (,)Cov X Y (())(())(,)d d x E x y E y f x y x y +∞+∞-∞-∞--⎰⎰X N (3,4)14,,X X {}15P X ≤≤2(2)1Φ-()x Φ示)10. 随机变量,为总体的一个样本,,则常数=.A 卷第1页共4页 概率论试题(45分) 1、(8分)题略解:用,分别表示三人译出该份密码,所求概率为 (2分)由概率公式 (4分)(2分) 2、(8分) 设随机变量,求数学期望与方差.解:(1) = (3分) (2) (3分) (2分)(8分) 某种电器元件的寿命服从均值为的指数分布,现随机地取16只,它们的寿命相互独立,记,用中心极限定理计算的近似值(计算结果用标准正态分布的分布函数表示).2(0,)XN σn X X X ,,,21 X221()(1)ni i Y k X χ==∑k 21n σA B C 、、P A B C ()P A B C P ABC P A P B P C ()=1-()=1-()()()1-1-1-p q r =1-()()()()1,()2,()3,()4,0.5XY E X D X E Y D Y ρ=====()E X Y +(23)D X Y -()E X Y +E X E Y ()+()=1+3=4(23)4()9()12ov(,)D X Y D X D Y C X Y -=+-8361244XYρ=+-=-100h i T 161ii T T ==∑{1920}P T ≥()x Φ解: (3分) (5分)(4分)(10分)设随机变量具有概率密度,.(1)求的概率密度; (2) 求概率.解: (1) (1分)A 卷第2页共4页(2分)(2分)概率密度函数 (2分)(2) . (3分) (11分) 设随机变量具有概率分布如下,且.i i ET D T E T D T 2()=100,()=100,()=1600,()=160000{1920}0.8}1P T P ≥=≥≈-Φ(0.8)X 11()0x x f x ⎧-≤≤=⎨⎩,,其它21Y X =+Y ()Y f y 312P Y ⎧⎫-<<⎨⎬⎩⎭12Y Y y F y y F y≤>时()=0,时()=1212,{}{1}()d Y y F yP Y y P X y f x x <≤≤=+≤=()=02d 1x y ==-2()=Y Y y f y F y≤⎧'⎨⎩1,1<()=0,其它3102Y YP Y F F ⎧⎫-<<=-=⎨⎬⎩⎭311()-(-1)=222(,)X Y {}110P X Y X +===(1)求常数; (2)求与的协方差,并问与是否独立?解: (1) (2分)由(2分) 可得 (1分)(2), , (3分) (2分) 由可知与不独立 (1分) 三、数理统计试题(25分)1、(8分) 题略. A 卷第3页共4页 证明:,相互独立(4分) ,(4分),p q X Y (,)Cov X Y X Y 1111134123p q p q ++++=+=,即{}{}{}{}{}101011010033P X Y X P Y X p P X Y X P X P X p +====+========+,,1p q ==EX 1()=2E Y 1()=-3E XY 1()=-6,-CovX Y E XY E X E Y ()=()()()=0..ij i j P P P ≠X Y 222(1)(0,1),(1)X n S N n χσ--22(1)X n S σ-2(1)X t n -(1)X t n -(10分) 题略解:似然函数 (4分)由 可得为的最大似然估计 (2分)由可知为的无偏估计量,为的有偏估计量 (4分) 、(7分) 题略 解: (2分)检验统计量,拒绝域 (2分)而 (1分)因而拒绝域,即不认为总体的均值仍为4.55 (2分)A 卷第4页共4页2221()(,)2n i i x L μμσσ=⎧⎫-=-⎨⎬⎩⎭∑2221()ln ln(2)ln() 222ni i x n n L μπσσ=-=---∑2222411()ln ln 0,022n ni i i i x x L L nμμμσσσσ==--∂∂===-+=∂∂∑∑221111ˆˆ,()n n i i i i x x n n μσμ====-∑∑2,μσ221ˆˆ(),()n nE E μμσσ-==11ˆn i i x n μ==∑μ2211ˆ()ni i x n σμ==-∑2σ01: 4.55: 4.55H H μμ=≠x z =0.025 1.96z z ≥=0.185 1.960.036z ==>0H。
第1页 第2页
某某大学概率论与数理统计期末试卷A (20200115)
一、 单项选择(每小题3分,共30分,请用铅笔在选项框处涂黑,否则影响自动评分)
A B C D
A B C D
A B C D
A B C D
A B C D
1. □ □ □ □
2. □ □ □ □
3. □ □ □ □
4. □ □ □ □
5. □ □ □ □
6.
□ □ □ □
7. □ □ □ □
8. □ □ □ □
9. □ □ □ □
10. □ □ □ □
二、(8分)假定有三种投资理财的方式:基金理财、国债理财、银行存款,每种投资方式相对物价(CPI)
上涨而言都存在一定的风险。
某人只选择一种投资方式,且选择上述三种投资方式之一进行投资理财的概率分别为0.4、0.3、0.3。
据统计,以上各种理财方式收益赶不上CPI 涨幅的概率分别为0.3,0.2,
0.2.求此人投资收益赶不上CPI 涨幅的概率。
三、(8分)某人的一串钥匙上有3把钥匙,其中只有一把能打开自己的家门,他随意地试用这串钥匙中的某一把去开开门. 若每把钥匙试开一次后除去,求打开门时试开次数X 的分布律和分布函数。
四、(10分)某旅客到达火车站的时间 X 均匀分布在早上7点55分到8点之间,而火车这段时间开出
的时间Y 的概率密度为2,05()250,Y y y f y -⎧≤≤⎪
=⎨⎪⎩
(
5)其他,求(1)此人能及时上火车的概率(2)已知在
=(05)Y y y ≤≤的条件下,X 的条件密度函数。
五、(10分)设随机变量X 与Y 独立同分布,且~(0,1)X N ,求22Z X Y =+的分布密度。
注意:学号参照范例用铅笔工整书写和填涂,上方写学号,下方填涂,一一对齐;每六点连线确定一个数字,连线不间断,不涂改;数字1可连左边或右边,请认真完成。
选择题填涂选项作答,其它题须在框内作答。
本卷共4页。
设123、、A A A 分布表示基金理财、国债理财、银行存款,B 为理财方式收益赶不上CPI 涨幅
3
1
()(()0.40.30.30.20.30.20.24===⨯+⨯+⨯=∑)i i i P B P A P B A
所求分布律为即1
()1,2,33P X k k ===,. 故所求分布函数为0
11
123()223
31
3x x F x x x <⎧⎪≤<⎪=⎨≤<⎪⎪
≥⎩
(
1
)
1,05
5()0,
X x f x ⎧≤≤⎪=⎨
⎪⎩其它,
(,)=()()
X Y X Y f x y f x f y 与独立,则55
2(5)1
()(,).1253
x y
x
y P X Y f x y dxdy dx dy ≤-≤===⎰⎰
⎰⎰
(2)在=(05)Y y y ≤≤的条件下,
因为1,05
5()=()()0,
X X X Y x X Y f x y f x f x ⎧≤≤⎪=⎨⎪⎩与独立,则其它
(,)=()()X Y X Y f x y f x f y 与独立,则,221
(,)exp{()/2}2f x y x y π
=
-+ 0()0≤=当时,Z z F z ,
2222
2222
22
20
00()()()1exp{()/2}21=2π
πθπ
+<-->=≤=+≤=
-+=⎰⎰⎰⎰
⎰当时,Z x y z
r r
z
r z F z P Z z P X Y z x y dxdy d e rdr e rdr
所以Z 的概率密度函数2
2
,0()0z
Z ze z f z -⎧⎪>=⎨⎪⎩,
其它
第3页 第4页
六、(10分)设随机变量X 和Y 相互独立,概率密度分别为
22,0()0,x X e x f x -⎧≥=⎨⎩其他
, 2
12(),2Y f y e y π--
=-∞<<+∞(y )
求: (1 ;)32(Y X E -)(2 );32(Y X D -)(3XY ρ).
七、(8分)假设某天来超市的人数为1000人,每人的消费是独立的,每人购物开支服从U(40,200)分布(单位:元), 问超市该天营业额介于11.8万~12.2万元之间的概率。
( 1.369)0.0855( 1.000)0.1586Φ-=Φ-=,30=5.477
八、(10分)(1)设总体X 概率密度为
1(),2x
f x e x θ
θ
-=-∞<<+∞
其中θ为大于零的未知参数,n X X X ,,,21 为X 的样本,求θ的矩法估计量。
(2)总体X 分布律为
22
123
2(1)(1)X P
θθθθ--
其中θ为未知参数,n X X X ,,,21 为X 的样本,其某次观测值为:1,2,1,求θ的极大似然估计值。
九、(6分)设12,,
,n X X X 为正态总体),(2σμN 的样本,2X 和S 分别为样本均值和样本方差,设221
()T X S n
=-,
(1)证明T 是2μ的无偏估计量(2)当=0=1T μσ,时,求的方差。
解(1(23)23132E X Y EX EY -=-=-=-) (2(23)491910D X Y DX DY -=+=+=) (3)因为X 和Y 相互独立,所以0=XY ρ. 设i X 为第i 个人购物开支,1,2,,200i =,则()120i E X =,2
160()12i
D X =
且121000,,,X X X 相互独立,由中心极限定理得:1000
1i i X =∑近似服从25600000(120000,)12N ,所以所求概率为:1000
1122000120000118000120000
(118000122000)()()25600000256000001212
(1.369)( 1.369)12( 1.369)0.829i
i P X =--<<≈Φ-Φ=Φ-Φ-=-Φ-=∑
(1)1()02x
E X x e dx θθ-+∞-∞
==⎰
, 2221()2.2x
E X x e dx θ
θθ
-+∞-∞==⎰
22112n
i i X n θ==∑,2
1
1ˆ2θ==∑n i i X n , 或222
11ˆ()()22θθ
--===
⇒=n n D X E X S S n n
(2)225
()()2(1)2(1)L θθθθθθ=-=-,ln ()ln 25ln ln(1)L θθθ=++-
ln 515ˆ0,16
d L d θθθθ=-==-
(1)
2222222
11
(()()()()()
E T E X E S D X E X D X n n n n
σσμμ=-=+-=+-=)
(2)1
~(0,)X N n
,22~(0,1),()~(1)1
1
X
X N n
n
χ则 22(1)~(1)n S n χ--,222()D X n =
,2
2()1
D S n =-,2X 与S 独立, 22221
222(()()=1(1)D T D X D S n n n n n
=+
+=--)。