第11章 简谐运动
- 格式:pptx
- 大小:3.54 MB
- 文档页数:94
第3讲简谐运动的回复力和能量[目标定位] 1.知道回复力的概念,了解它的来源.2.理解从力的角度来定义的简谐运动.3.理解简谐运动中位移、回复力、加速度、速度、能量等各物理量的变化规律.4.知道简谐运动中机械能守恒,能量大小与振幅有关.会用能量守恒的观点分析水平弹簧振子中动能、势能、总能量的变化规律.一、简谐运动的回复力1.简谐运动的动力学定义:如果质点所受的力与它偏离平衡位置位移的大小成正比,并且总是指向平衡位置,质点的运动就是简谐运动.2.回复力:由于力的方向总是指向平衡位置,它的作用总是要把物体拉回到平衡位置,所以通常把这个力称为回复力.3.简谐运动的回复力与位移的关系:F=-kx,式中k是比例系数.想一想回复力是不是除重力、弹力、摩擦力等之外的一种新型的力?它有什么特点?答案不是.回复力是指将振动的物体拉回到平衡位置的力,是按照力的作用效果来命名的,不是一种新型的力,所以分析物体的受力时,不分析回复力.回复力可以由某一个力提供(如弹力),也可能是几个力的合力,还可能是某一个力的分力,归纳起来,回复力一定等于物体沿振动方向所受的合力.二、简谐运动的能量1.如果摩擦力等阻力造成的损耗可以忽略,在弹簧振子运动的任意位置,系统的动能与势能之和都是一定的.2.简谐运动是一种理想化的模型.想一想弹簧振子在振动过程中动能与势能相互转化,振子的位移x、回复力F、加速度a、速度v四个物理量中有哪几个与动能的变化步调一致?答案只有速度v.一、简谐运动的回复力1.对回复力的理解(1)回复力是指将振动物体拉回到平衡位置的力,它可以是物体所受的合外力,也可以是一个力或某一个力的分力,而不是一种新的性质力.(2)简谐运动的回复力:F=-kx.①k是比例系数,并非弹簧的劲度系数(水平弹簧振子中k为弹簧的劲度系数),其值由振动系统决定,与振幅无关.②“-”号表示回复力的方向与偏离平衡位置的位移的方向相反.③x是指物体对平衡位置的位移,不一定是弹簧的伸长量或压缩量.④回复力的作用总是把物体拉向平衡位置.2.简谐运动的加速度据牛顿第二定律,a=Fm=-km x,表明简谐运动的加速度大小也与位移大小成正比,加速度方向与位移方向相反.说明:k是比例系数,不能与弹簧的劲度系数相混淆.3.判断振动为简谐运动的方法(1)运动学方法:找出物体的位移与时间的关系,若遵从正弦函数的规律,即它的振动图象(xt 图象)是一条正弦曲线,就可判定此振动为简谐运动.(2)动力学方法:若回复力F与位移x间的关系满足F=-kx,则物体做简谐运动,否则就不是简谐运动.例1如图1所示,弹簧振子在光滑水平杆上的A、B之间做往复运动,下列说法正确的是()图1A.弹簧振子运动过程中受重力、支持力和弹簧弹力的作用B.弹簧振子运动过程中受重力、支持力、弹簧弹力和回复的力作用C.振子由A向O运动过程中,回复力逐渐增大D.振子由O向B运动过程中,回复力的方向指向平衡位置解析回复力是根据效果命名的力,不是做简谐运动的物体受到的具体的力,它是由物体受到的具体的力所提供的,在此情景中弹簧的弹力充当回复力,故A正确,B错误;回复力与位移的大小成正比,由A向O运动过程中位移的大小在减小,故此过程回复力逐渐减小,C错误;回复力总是指向平衡位置,故D正确.答案AD例2如图2所示,将一劲度系数为k,原长为L0的轻弹簧的一端固定在倾角为θ的光滑斜面的顶端,另一端连接一质量为m的小球.将小球沿斜面拉下一段距离后松手.证明:小球的运动是简谐运动.图2证明设小球在弹簧长度为L1时在平衡位置O,弹簧原长为L0,选沿斜面向上为正方向,则由平衡条件得k(L1-L0)-mg sin θ=0.当小球振动经过O点以上距O点为x处时,受力为F合=k(L1-L0-x)-mg sin θ,整理得F合=-kx,当小球振动经过O点以下位置时,同理可证,因此小球的运动是简谐运动.二、简谐运动的能量1.不考虑阻力,弹簧振子振动过程中只有弹力做功,在任意时刻的动能与势能之和不变,即机械能守恒.2.简谐运动的机械能由振幅决定对同一振动系统来说,振幅越大,振动的能量越大.如果没有能量损耗,振幅保持不变,它将永不停息地振动下去,因此简谐运动又称等幅振动.例3如图3所示,一弹簧振子在A、B间做简谐运动,平衡位置为O,已知振子的质量为M.图3(1)简谐运动的能量取决于________,物体振动时动能和________能相互转化,总机械能________.(2)振子在振动过程中,下列说法中正确的是()A.振子在平衡位置,动能最大,势能最小B.振子在最大位移处,势能最大,动能最小C.振子在向平衡位置运动时,由于振子振幅减小,故总机械能减小D.在任意时刻,动能与势能之和保持不变(3)若振子运动到B处时将一质量为m的物体放到M的上面,且m和M无相对滑动而一起运动,下列说法正确的是()A.振幅不变B.振幅减小C.最大动能不变D.最大动能减小解析(1)简谐运动的能量取决于振幅,物体振动时动能和弹性势能相互转化,总机械能守恒.(2)振子在平衡位置两侧往复运动,在最大位移处速度为零,动能为零,此时弹簧的形变最大,势能最大,所以B正确;在任意时刻只有弹簧的弹力做功,所以机械能守恒,D正确;到平衡位置处速度达到最大,动能最大,势能最小,所以A正确;振幅的大小与振子的位置无关,所以C错误.(3)振子运动到B点时速度恰为零,此时放上m,系统的总能量即为此时弹簧储存的弹性势能,由于简谐运动中机械能守恒,所以振幅保持不变,因此选项A正确,B错误;由于机械能守恒,最大动能不变,所以选项C正确,D错误.答案(1)振幅弹性势守恒(2)ABD(3)AC三、简谐运动中各物理量的变化情况如图4所示的弹簧振子图4例4如图5图5A.在第1 s内,质点速度逐渐增大B.在第1 s内,质点加速度逐渐增大C.在第1 s内,质点的回复力逐渐增大D.在第4 s内质点的动能逐渐增大E.在第4 s内质点的势能逐渐增大F.在第4 s内质点的机械能逐渐增大解析在第1 s内,质点由平衡位置向正向最大位移处运动,速度减小,位移增大,回复力和加速度都增大;在第4 s内,质点由负向最大位移处向平衡位置运动,速度增大,位移减小,动能增大,势能减小,但机械能守恒.答案BCD简谐运动的回复力1.如图6所示,弹簧振子B上放一个物块A,在A与B一起做简谐运动的过程中,下列关于A受力的说法中正确的是()图6A.物块A受重力、支持力及弹簧对它的恒定的弹力B.物块A受重力、支持力及弹簧对它的大小和方向都随时间变化的弹力C.物块A受重力、支持力及B对它的恒定的摩擦力D.物块A受重力、支持力及B对它的大小和方向都随时间变化的摩擦力解析物块A受到重力、支持力和摩擦力的作用.摩擦力提供A做简谐运动所需的回复力,其大小和方向都随时间变化,D选项正确.答案 D简谐运动的能量2.沿水平方向振动的弹簧振子在做简谐运动的过程中,下列说法正确的是()A.在平衡位置,它的机械能最大B.在最大位移处,它的弹性势能最大C.从平衡位置向最大位移处运动过程中,它的弹性势能减小D.从最大位移处向平衡位置运动的过程中,它的机械能减小解析弹簧振子在振动过程中机械能守恒,故A、D错误;位移越大,弹簧的形变量越大,弹性势能越大,故B正确,C错误.答案 B3.如图7所示,一轻弹簧一端固定,另一端连接一物块构成弹簧振子,该物块是由a、b 两个小物块粘在一起组成的.物块在光滑水平桌面上左右振动.振幅为A0,周期为T0.当物块向右通过平衡位置时,a、b之间的粘胶脱开;以后小物块a振动的振幅和周期分别为A 和T,则:A______A0(填“>”、“<”或“=”),T______T0(填“>”、“<”或“=”).图7解析物块通过平衡位置时弹性势能为零,动能最大.向右通过平衡位置,a由于受到弹簧弹力做减速运动,b做匀速运动.小物块a与弹簧组成的系统机械能小于原来系统的机械能,所以小物块a的振幅减小,A<A0,由于振子质量减小可知加速度增大,周期减小,T<T0. 答案<<简谐运动中各量的变化情况4.弹簧振子在光滑的水平面上做简谐运动,在振子向着平衡位置运动的过程中() A.振子所受的回复力逐渐增大B.振子离开平衡位置的位移逐渐增大C.振子的速度逐渐增大D.振子的加速度逐渐增大解析在振子向着平衡位置运动的过程中,振子所受的回复力逐渐减小,振子离开平衡位置的位移逐渐减小,振子的速度逐渐增大,振子的加速度逐渐减小,选项C正确.答案 C(时间:60分钟)题组一简谐运动的回复力1.对简谐运动的回复力公式F=-kx的理解,正确的是()A.k只表示弹簧的劲度系数B.式中的负号表示回复力总是负值C.位移x是相对平衡位置的位移D.回复力只随位移变化,不随时间变化解析位移x是相对平衡位置的位移;F=-kx中的负号表示回复力总是与振动物体的位移方向相反.答案 C2.物体做简谐运动时,下列叙述正确的是( ) A .平衡位置就是回复力为零的位置 B .处于平衡位置的物体,一定处于平衡状态 C .物体到达平衡位置,合力一定为零 D .物体到达平衡位置,回复力一定为零解析 平衡位置是回复力等于零的位置,但物体所受合力不一定为零,A 、D 对. 答案 AD3.对于弹簧振子的回复力和位移的关系,下列图中正确的是( )解析 由简谐运动的回复力公式F =-kx 可知,C 正确. 答案 C4.弹簧振子的质量是2 kg ,当它运动到平衡位置左侧2 cm 处时,受到的回复力是4 N ,当它运动到平衡位置右侧4 cm 处时,它的加速度是( ) A .2 m /s 2,向右 B .2 m/s 2,向左 C .4 m /s 2,向右D .4 m/s 2,向左解析 由振动的对称性知右侧4 cm 处回复力为8 N ,由a =-kx m =-Fm 知a =4 m/s 2,方向向左. 答案 D5.如图1所示,质量为m 的物体A 放置在质量为M 的物体B 上,B 与弹簧相连,它们一起在光滑水平面上做简谐运动,振动过程中A 、B 之间无相对运动,设弹簧的劲度系数为k ,当物体离开平衡位置的位移为x 时,A 、B 间摩擦力的大小等于( )图1A .0B .kx C.m M kx D.mM +mkx解析 当物体离开平衡位置的位移为x 时,弹簧弹力的大小为kx ,以整体为研究对象,此时A 与B 具有相同的加速度,根据牛顿第二定律得kx =(m +M )a ,故a =kxM +m.以A 为研究对象,使A 产生加速度的力即为B 对A 的静摩擦力F ,由牛顿第二定律可得F =ma =mM +m kx .故正确答案为D. 答案 D题组二 简谐运动的能量6.关于振幅,以下说法中正确的是( ) A .物体振动的振幅越大,振动越强烈B .一个确定的振动系统,振幅越大,振动系统的能量越大C .振幅越大,物体振动的位移越大D .振幅越大,物体振动的加速度越大解析 振动物体的振动剧烈程度表现为振幅的大小,对一个确定的振动系统,振幅越大,振动越剧烈,振动能量也就越大,A 、B 项正确.在物体振动过程中振幅是最大位移的大小,而偏离平衡位置的位移是不断变化的,因此C 项错.物体振动的加速度是不断变化的,故D 项错. 答案 AB7.振动的物体都具有周期性,若简谐运动的弹簧振子的周期为T ,那么它的动能、势能变化的周期为( )A .2TB .T C.T 2 D.T 4解析 振动中动能、势能相互转化,总机械能不变,动能和势能为标量,没有方向.C 正确. 答案 C8.如图2为一水平弹簧振子的振动图象,由图可知( )图2A .在t 1时刻,振子的动能最大,所受的弹力最大B .在t 2时刻,振子的动能最大,所受的弹力最小C .在t 3时刻,振子的动能最大,所受的弹力最小D .在t 4时刻,振子的动能最大,所受的弹力最大解析 t 2和t 4是在平衡位置处,t 1和t 3是在最大位移处,根据弹簧振子振动的特征,弹簧振子在平衡位置时的速度最大,加速度为零,即弹力为零;在最大位移处,速度为零,加速度最大,即弹力为最大,所以B项正确.答案 B9.如图3所示为某个弹簧振子做简谐运动的振动图象,由图象可知()图3A.在0.1 s时,由于位移为零,所以振动能量为零B.在0.2 s时,振子具有最大势能C.在0.35 s时,振子具有的能量尚未达到最大值D.在0.4 s时,振子的动能最大解析弹簧振子做简谐运动,振动能量不变,选项A错;在0.2 's时位移最大,振子具有最大势能,选项B对;弹簧振子的振动能量不变,在0.35 s时振子具有的能量与其他时刻相同,选项C错;在0.4 s时振子的位移最大,动能为零,选项D错.答案 B题组三简谐运动的综合应用10.一弹簧振子振动过程中的某段时间内其加速度数值越来越大,则在这段时间内() A.振子的速度逐渐增大B.振子的位移逐渐增大C.振子正在向平衡位置运动D.振子的速度方向与加速度方向一致解析振子由平衡位置向最大位移处运动过程中,振子的位移越来越大,加速度逐渐增大,速度方向与加速度方向相反,振子做减速运动,速度越来越小,故A、D错误,B正确;振子向平衡位置运动的过程中,位移减小,回复力变小,加速度变小,故C错误.答案 B11.甲、乙两弹簧振子,振动图象如图4所示,则可知()图4A .两弹簧振子完全相同B .两弹簧振子所受回复力最大值之比F 甲∶F 乙=2∶1C .振子甲速度为零时,振子乙速度最大D .两弹簧振子的振动频率之比f 甲∶f 乙=2∶1解析 由题图可知f 甲∶f 乙=1∶2,因此两振子不相同,A 、D 错误;由题图可知C 正确;因F 甲=k 甲A 甲,F 乙=k 乙A 乙,由于k 甲和k 乙关系未知,因此无法判断F 甲与F 乙的比值,所以B 错误. 答案 C12.一质点做简谐运动,其位移和时间关系如图5所示.图5(1)求t =0.25×10-2 s 时的位移;(2)在t =1.5×10-2 s 到2×10-2 s 的振动过程中,质点的位移、回复力、速度、动能、势能如何变化?(3)在t =0到8.5×10-2 s 时间内,质点的路程、位移各多大?解析 (1)由题图可知A =2 cm ,T =2×10-2 s ,振动方程为x =A sin ⎝⎛⎭⎫ωt -π2=-A cos ωt =-2cos2π2×10-2t cm =-2cos 100πt cm当t =0.25×10-2 s 时,x =-2cos π4 cm =- 2 cm.(2)由题图可知在1.5×10-2~2×10-2 s 内,质点的位 移变大,回复力变大,速度变小,动能变小,势能变大.(3)从t =0至8.5×10-2 s 时间内为174个周期,质点的路程为s =17A =34 cm ,质点0时刻在负的最大位移处,8.5×10-2 s 时刻质点在平衡位置,故位移为2 cm. 答案 (1)- 2 cm (2)变大 变大 变小 变小 变大 (3)34 cm 2 cm。
简谐运动一、弹簧振子及其位移—时间图象┄┄┄┄┄┄┄┄①1.弹簧振子(1)平衡位置:振子原来静止时的位置。
(2)机械振动:振子在平衡位置附近的往复运动,是一种机械振动,简称振动。
(3)振子模型:如图所示,如果小球与杆之间的摩擦可以忽略,且弹簧的质量与小球相比也可以忽略,则该装置为弹簧振子。
(4)振动特点:振动是一种往复运动,具有周期性和往复性。
2.弹簧振子的位移—时间图象(1)建立坐标系:以小球的平衡位置为坐标原点,沿振动方向建立坐标轴。
规定小球在平衡位置右边时,位移为正,在平衡位置左边时,位移为负。
(2)绘制图象:用频闪照相的方法来显示振子在不同时刻的位置,以横坐标轴代表时间t,纵坐标轴代表位移x,绘制出的图象就是xt图象,是一条正弦函数曲线。
(3)图象的物理意义:反映了振动物体相对平衡位置的位移随时间的变化规律。
[注意] 对振动位移的理解1.振动位移的大小为平衡位置到振子所在位置的距离,方向由平衡位置指向振子所在位置。
2.xt图象中,时间轴上方位移为正、时间轴下方位移为负,位移大小为图线到时间轴的距离。
①[判一判]1.平衡位置即速度为零时的位置(×)2.振子的位移-5 cm小于1 cm(×)3.弹簧振子运动的轨迹是一条正弦(或余弦)曲线(×)4.振子运动的路程越大发生的位移也越大(×)二、简谐运动及其图象的应用┄┄┄┄┄┄┄┄②1.简谐运动的定义:如果质点的位移与时间的关系遵从正弦函数的规律,即它的振动图象(xt图象)是一条正弦曲线,这样的振动叫做简谐运动。
2.简谐运动的特点:简谐运动是最简单、最基本的振动,其振动过程关于平衡位置对称,是一种往复运动。
3.图象的应用:医院里的心电图仪、地震仪中绘制地震曲线的装置。
[说明]1.只要质点的位移随时间按正(余)弦规律变化,这个质点的运动就是简谐运动。
2.简谐运动的图象不是振动质点的轨迹。
第十一章 机械振动一、基本要求1.掌握简谐振动的基本特征,学会由牛顿定律建立一维简谐振动的微分方程,并判断其是否谐振动。
2. 掌握描述简谐运动的运动方程,理解振动位移,振)cos(0ϕω+=t A x 幅,初位相,位相,圆频率,频率,周期的物理意义。
能根据给出的初始条件求振幅和初位相。
3. 掌握旋转矢量法。
4. 理解同方向、同频率两个简谐振动的合成规律,以及合振动振幅极大和极小的条件。
二、基本内容1. 振动 物体在某一平衡位置附近的往复运动叫做机械振动。
如果物体振动的位置满足,则该物体的运动称为周期性运动。
否则称为非周)()(T t x t x +=期运动。
但是一切复杂的非周期性的运动,都可以分解成许多不同频率的简谐振动(周期性运动)的叠加。
振动不仅限于机械运动中的振动过程,分子热运动,电磁运动,晶体中原子的运动等虽属不同运动形式,各自遵循不同的运动规律,但是就其中的振动过程讲,都具有共同的物理特征。
一个物理量,例如电量、电流、电压等围绕平衡值随时间作周期性(或准周期性)的变化,也是一种振动。
2. 简谐振动 简谐振动是一种周期性的振动过程。
它可以是机械振动中的位移、速度、加速度,也可以是电流、电量、电压等其它物理量。
简谐振动是最简单,最基本的周期性运动,它是组成复杂运动的基本要素,所以简谐运动的研究是本章一个重点。
(1)简谐振动表达式反映了作简谐振动的物体位移随时间)cos(0ϕω+=t A x 的变化遵循余弦规律,这也是简谐振动的定义,即判断一个物体是否作简谐振动的运动学根据。
但是简谐振动表达式更多地用来揭示描述一个简谐运动必须涉及到的物理量、、(或称描述简谐运动的三个参量),显然三个参量A ω0ϕ确定后,任一时刻作简谐振动的物体的位移、速度、加速度都可以由对应地t 得到。
2cos()sin(00πϕωωϕωω++=+-=t A t A v )cos()cos(0202πϕωωϕωω±+=+-=t A t A a (2)简谐运动的动力学特征为:物体受到的力的大小总是与物体对其平衡位置的位移成正比、而方向相反,即,它是判定一个系统的运动过程kx F -=是否作简谐运动的动力学根据,只要受力分析满足动力学特征的,毫无疑问地系统的运动是简谐运动。