数学人教版六年级下册求不规则容器的容积
- 格式:doc
- 大小:51.00 KB
- 文档页数:4
求不规则物体的容积河西镇杨庄小学伍强一、教材分析:教材在学习了圆柱的表面积、体积的计算方法后,安排了这节应用课,要求学生根据条件计算瓶子的容积。
由于瓶子是不完整的圆柱,学生遇到了无法“直接计算容积”的难题。
教学时我借助爱迪生巧求灯泡容积的故事,引导学生将瓶子容积转化成可以直接计算的两个圆柱的容积,从而得到形状不规则的瓶子的容积。
在解决问题的过程中,让学生进一步体会“转化”的思想方法的意义和应用。
二、学情分析:在五年级学习长方体和正方体时,学生通过动手操作计算过不规则物体的体积。
本节课的学习,要引导学生将旧知识迁移到新的问题当中。
学会根据条件,运用转化的方法间接地计算出不规则物体的容积。
三、教学目标:知识与技能:1、熟练运用公式计算不规则物体的体积。
2、能应用圆柱的体积公式解决一些实际问题。
过程与方法:经历圆柱体积公式的运用过程,体验将不规则物体转换成规则物体,从而计算出体积的数学方法。
情感态度与价值观:感受数学问题之间的互相转化的巧妙美,培养学生分析问题、解决问题的能力,渗透转化的数学思想。
教学重点:运用圆柱体积公式解决实际问题。
突破方法:组织学生独立思考、质疑并提问。
教学难点:把不规则的物体转化成规则的圆柱。
突破方法:通过引导讨论、小组交流、归纳总结的方法来突破。
四、教学过程:课前交流(让学生学会换个角度思考问题,活跃思维,激发学习兴趣。
)(一)、自主训练(故事导入,初悟转化)有一次,爱迪生把一只灯泡(还没有制成成品)交给他的助手阿普顿,让他计算出这只灯泡的容积。
阿普顿是普林斯顿大学数学系的毕业生,又去德国深造过,数学知识相当不错,他拿着这只小灯泡,打量了好半天,找来了皮尺,上下左右量了尺寸,画了剖面图,立体图,还列了一大堆算式,一个小时过去了,爱迪生跑来问他算出来的结果,阿普顿汗流浃背的慌忙回答说:“算出了一半。
”爱迪生走进一看,在阿普顿面前好几张白纸上,写满了密密麻麻的算式。
这时爱迪生微笑着说了一句话,阿普顿恍然大悟,连忙跑到实验室去,不到一分钟,就准确的测出了灯泡的容积。
新人教版小学六年级下册数学《求不规则物体的容积》教学设计教案一、教学目标(一)知识与技能用已学的圆柱体积知识解决生活中的实际问题,并渗透转化思想。
(二)过程与方法经历探究不规则物体体积的转化、测量和计算过程,让学生在动手操作中初步建立“转化”的数学思想,体验“等积变形”的转化过程。
(三)情感态度和价值观通过实践,让学生在合作中建立协作精神,并增强学生“用数学”的意识。
二、教学重难点教学重点:利用所学知识合理灵活地分析、解决不规则物体的体积的计算方法。
教学难点:转化前后的沟通。
三、教学准备每组一个矿泉水瓶(课前统一搜集农夫山泉矿泉水瓶,装有适量清水,水高度分别为6、7、8、9厘米),直尺。
四、教学过程(一)复习旧知,做好铺垫1.板书:圆柱的体积。
问:圆柱的体积怎么计算?体积和容积有什么区别?2.揭题:这节课,我们要根据这些体积和容积的知识来解决生活中的实际问题。
(完整板书:用圆柱的体积解决问题。
)【设计意图】通过复习圆柱的体积计算方法以及体积和容积之间的联系和区别,为学习新知做好知识上的准备。
(二)探索实践,体验转化过程1.创设情境,提出问题。
每个小组桌子上有一个没有装满水的矿泉水瓶。
教师:原本这是一瓶装满水的矿泉水,已经喝了一部分,你能根据它来提一个数学问题吗?(随机板书)预设1:瓶子还有多少水?(剩下多少水?)预设2:喝了多少水?(也就是瓶子的空气部分。
)预设3:这个瓶子一共能装多少水?(也就是这个瓶子的容积是多少?)2.你觉得你能轻松解决什么问题?(1)预设1:瓶子有多少水?(怎么解决?)学生:瓶子里剩下的水呈圆柱状,只要量出这个圆柱的底面直径和高就能算出它的体积。
教师:需要用到什么工具?(直尺)你想利用直尺得到哪些数据?(底面直径、水的高度)小结:知道了底面直径和水的高度,要解决这个问题的确轻而易举。
请你准备好直尺,或许等会儿有用哦!(2)预设2:喝了多少水?学生:喝掉部分的形状是不规则,没有办法计算。
第三单元第4课时求不规则物体的容积例7 教学设计教学流程情境导入—引“探究”1.复习提问。
(1)圆柱的体积怎么计算?体积和容积有什么区别?(学生结合给出的条件利用公式法求圆柱的体积)(2)已知圆柱的底面直径和高,如何计算它的体积?如果已知底面周长和高,又如何计算呢?出示几个图形。
导入:这节课我们应用圆柱的体积计算公式解决实际问题。
知识链接—构“联系”提问:还记得我们是怎样测出这个石块的体积的吗?课件展示:利用排水法求不规则物体的体积的方法。
我们用到了转化的方法。
将不规则的石头转化成规则的圆柱来求它的体积。
揭示:这种的转化的思想方法可以帮助我们解决类似的问题。
同学们,我们已经学会了求圆柱体的体积,但生活中不少物体是不规则的,那应该如何来计算它们的体积呢?比如屏幕上的这个瓶子,你会求它的容积吗?说一说。
学习任务一:阅读与理解,分析问题。
【设计意图:通过回顾求不规则物体的体积的方法,让学生能够在解决例7问题时也想到转化的方法,再通过做题复习求圆柱体积方法及计算公式,为新知学习打基础。
让学生通过小组讨论,明确题意与已知条件,分析出解决问题的关键点以及解决问题的方法。
】新知探究—习“方法”1.阅读与理解。
课件出示例7:一个内直径是8cm的瓶子里,水的高度是7cm,把瓶盖拧紧倒置放平,无水部分是圆柱形,高度是18cm。
这个瓶子的容积是多少?(1)读题,明确题意,获得数学信息。
引导学生思考交流,在解决问题的过程中,你发现了什么问题?(通过观察思考会发现:瓶子不是规则的立体图形,无法直接计算容积)(2)组织学生在小组内讨论,找出解决问题的方法。
学生操作讨论后会发现:无论瓶子是正置还是倒置,水的体积、瓶子的容积都不变,那么无水部分的容积也是不变的。
所以可以把正置放平时水的体积(圆柱)加上倒置放平时无水部分(圆柱)的体积,就是瓶子的容积。
即瓶子的容积可以转化成两个圆柱的体积。
(3)课件演示转化的过程。
学习任务二:用转化的方法求圆柱的容积问题【设计意图:通过“理解——分析——回顾”的教学过程,让学生在探讨、交流中体会把不规则图形转化成规则图形的过程,发展学生的思维,提高学生解决问题的能力,注重容积计算方法的推导过程。