必修一 数学 定义域,值域,解析式 求法,例题,习题(含答案)
- 格式:doc
- 大小:873.72 KB
- 文档页数:13
2015-2016高一上学期期末复习知识点与典型例题人教数学必修一 第二部分 函数1、函数的定义域、值域2、判断相同函数3、分段函数4、奇偶性5、单调性1.定义域 值域(最值) 1.函数()()3log 3f x x =++的定义域为____________________ 2.函数22()log (23)f x x x 的定义域是( )(A) [3,1] (B) (3,1) (C) (,3][1,)-∞-+∞ (D) (,3)(1,)-∞-+∞3.2()23,(1,3]f x x x x =-+∈-的值域为____________________ 4.若函数21()2f x x x a =-+的定义域和值域均为[1,](1)b b >,求a 、b 的值.2.函数相等步骤:1、看定义域是否相等; 2、看对应关系(解析式)能否化简到相同1.下列哪组是相同函数?2(1)(),()x f x x g x x ==(2)()()f x x g x ==,2(3)()2lg ,()lg f x x g x x ==(4)(),()f x x g x ==3.分段函数基本思路:分段讨论 (1)求值问题1.24(),(5)(1)4xx f x f f x x ⎧<==⎨-≥⎩已知函数则_______________ 2.设函数211()21x x f x x x⎧+≤⎪=⎨>⎪⎩,则=))3((f f ______________(2)解方程1.2log ,11(),()1,12x x f x f x x x >⎧==⎨-≤⎩已知函数则的解为_________________2.已知⎩⎨⎧>-≤+=)0(2)0(1)(2x x x x x f ,若()10f x =,则x = .(3)解不等式1.21,0(),()1,0x f x f x x x x ⎧>⎪=>⎨⎪≤⎩已知函数则的解集为__________________2.2log ,0(),()023,0x x f x f x x x >⎧=>⎨+≤⎩已知函数则的解集为__________________(4)作图、求取值范围(最值)1.24-x ,0()2,012,0x f x x x x ⎧>⎪==⎨⎪-<⎩已知函数.(1)作()f x 的图象;(2)求2(1)f a +,((3))f f 的值;(3)当43x -≤<,求()f x 的取值集合(5)应用题(列式、求最值)1.为方便旅客出行,某旅游点有50辆自行车供租赁使用,管理这些自行车的费用是每日115元.根据经验,若每辆自行车的日租金不超过6元,则自行车可以全部租出;若超过6元,则每超过1元,租不出去的自行车就增加3辆,为了便于结算,每辆自行车的日租金x(元)只取整数,并且要求出租自行车一日的总收入必须高于这一日的管理费用,用y (元)表示出租自行车的日净收入(即一日中出租自行车的总收入减去管理费用后的所得), (1)求函数f(x)的解析式及其定义域;(2)试问当每辆自行车的日租金定为多少元时,才能使一日的净收入最多?4.函数的单调性(1)根据图像判断函数的单调性——单调递增:图像上升 单调递减:图像下降 1.下列函数中,在区间(0,)+∞上为增函数的是( )A .ln(2)y x =+ B.y =.1()2xy = D .1y x x=+2.下列函数中,在其定义域内为减函数的是( )A .3y x =- B .12y x = C .2y x = D .2log y x =(2)证明函数的单调性步骤——取值、作差12()()f x f x -、变形、定号、下结论 1.已知函数11()(0,0)f x a x a x=->>. (1)求证:()f x 在(0,)+∞上是单调递增函数;(2)若()f x 在1[,2]2上的值域是1[,2]2,求a 的值.(3)利用函数的单调性求参数的范围1.2()2(1)2(2]f x x a x =+-+-∞在,上是减函数,则a 的范围是________2.若函数⎪⎩⎪⎨⎧<-≥-=2,1)21(,2,)2()(x x x a x f x 是R 上的单调递减函数,则实数a 的取值范围为( )A .)2,(-∞B .]813,(-∞ C .)2,0( D .)2,813[3.讨论函数223f(x)x ax =-+在(2,2)-内的单调性(4)利用函数的单调性解不等式1.()f x 是定义在(0,)+∞上的单调递增函数,且满足(32)(1)f x f -<,则实数x 的取值范围是( ) A . (,1)-∞ B . 2(,1)3 C .2(,)3+∞ D . (1,)+∞ 2.2()[1,1](1)(1)f x f m f m m --<-若是定义在上的增函数,且,求的范围(5)奇偶性、单调性的综合1.奇函数f(x)在[1,3]上为增函数,且有最小值7,则它在[-3,-1]上是____函数,有最___值___. 2.212()(11)()125ax b f x f x +=-=+函数是,上的奇函数,且. (1)确定()f x 的解析式;(2)用定义法证明()f x 在(1,1)-上递增;(3)解不等式(1)()0f t f t -+>.3.f(x)是定义在( 0,+∞)上的增函数,且()()()xf f x f y y=-(1)求f (1)的值.(2)若f (6)= 1,解不等式 f ( x +3 )-f (x1) <2 .5.函数的奇偶性(1)根据图像判断函数的奇偶性奇函数:关于原点对称;偶函数:关于y 轴对称 例:判断下列函数的奇偶性① y=x ³ ② y=|x|(2)根据定义判断函数的奇偶性一看定义域是否关于原点对称;二看()f x -与()f x 的关系1.设函数)(x f 和)(x g 分别是R 上的偶函数和奇函数,则下列结论恒成立的是( ) A .)()(x g x f +是偶函数 B .)()(x g x f -是奇函数 C .)()(x g x f +是偶函数 D .)()(x g x f -是奇函数 2.已知函数()log (1)log (1)(01)a a f x x x a a =+-->≠且 (1)求()f x 的定义域;(2)判断()f x 的奇偶性并予以证明。
函数的定义域(1)函数的定义域就是使得这个函数关系式有意义的实数的全体构成的集合(2)求函数定义域的注意事项☉分式分母不为零; ☉偶次根式的被开方数大于等于零;☉零次幂的底数不为零; ☉实际问题对自变量的限制若函数由几个式子构成,求其定义域时要满足每个式子都要有意义(取“交集”)。
(3)抽象复合函数定义域的求法☉已知y=f (x )的定义域是A ,求y=f (g (x ))的定义域,可通过解关于g (x )∈A 的不等式,求出x 的范围☉已知y=f (g (x ))的定义域是A ,求y=f (x )的定义域,可由x ∈A ,求g (x )的取值范围(即y=g (x )的值域)。
例1.函数()1f x x =- 的定义域为 ( ) A. (-∞,4) B. [4,+∞) C. (-∞,4] D. (-∞,1)∪(1,4] 【答案】D 【解析】要使解析式有意义需满足:40{10x x -≥-≠,即x 4≤且1x ≠所以函数()f x =的定义域为(-∞,1)∪(1,4] 故选:D例2.函数y =( )A. {|11}x x x ≥≤-或B. {|11}x x -≤≤C. {1}D. {-1,1}【答案】D 【解析】函数y 可知: 2210{ 10x x -≥-≥,解得: 1x =±.函数y =的定义域为{-1,1}.故选D.例3.已知函数()21y f x =-的定义域为()2,2-,函数()f x 定义域为__________.【答案】[]1,3-【解析】由函数()21y f x =-的的定义域为(−2,2),得: 2113x -≤-≤,故函数f (x )的定义域是[]1,3-.例4.若函数()y f x =的定义域为[]0,2,则函数()()21f xg x x =-的定义域是( )A. [)0,1B. []0,1C. [)(]0,11,4⋃ D. ()0,1 【答案】A函数()y f x =的定义域是[]0,2, 022{10x x ≤≤∴-≠,解不等式组:01x ≤<,故选A.例5.已知函数()1y f x =+的定义域是[]2,3-,则()2y f x =的定义域是( ) A. []1,4- B. []0,16 C. []2,2- D. []1,4【答案】C 【解析】解:由条件知: ()1f x +的定义域是[]2,3-,则1x 14-≤+≤,所以214x -≤≤,得[]x 2,2∈-例6.已知函数y f x =+()1定义域是[]-23,,则y f x =-()21的定义域是( )A .[]052, B. []-14, C. []-55, D. []-37,【答案】A 【解析】523,114,1214,02x x x x -≤≤-≤+≤-≤-≤≤≤例7.函数y =的定义域为___________.【答案】[]3,4-【解析】要使函数有意义,则2120x x +-≥,即2120x x --≤,即34x -≤≤,故函数的定义域为[]3,4-,故答案为[]3,4-.函数值域定义:对于函数y=f (x ),x ∈A 的值相对应的y 值叫函数值,函数值得集合{f (x )|x ∈A }叫做函数的值域。
函数及其表示(一)知识梳理1.映射的概念设B A 、是两个非空集合,如果按照某种对应法则f ,对A 中的任意一个元素x ,在集合B 中都有唯一确定的元素y 与之对应,则称f 是集合A 到集合B 的映射,记作f(x).2.函数的概念(1)函数的定义:设B A 、是两个非空的数集,如果按照某种对应法则f ,对A 中的 任意数 x ,在集合B 中都有 唯一确定 的数y 和它对应,则这样的对应关系叫做从A 到B 的一个函数,通常记为___y=f(x),x ∈A(2)函数的定义域、值域在函数A x x f y ∈=),(中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值, 对于的函数值的集合所有的集合构成值域。
(3)函数的三要素: 定义域 、 值域 和 对应法则3.函数的三种表示法:图象法、列表法、解析法(1).图象法:就是用函数图象表示两个变量之间的关系;(2).列表法:就是列出表格来表示两个变量的函数关系;(3).解析法:就是把两个变量的函数关系,用等式来表示。
4.分段函数在自变量的不同变化范围中,对应法则用不同式子来表示的函数称为分段函数。
(二)考点分析考点1:判断两函数是否为同一个函数如果两个函数的定义域相同,并且对应关系完全一致,称这两个函数相等。
考点2:求函数解析式方法总结:(1)若已知函数的类型(如一次函数、二次函数),则用待定系数法;(2)若已知复合函数)]([x g f 的解析式,则可用换元法或配凑法;(3)若已知抽象函数的表达式,则常用解方程组消参的方法求出)(x f1.2函数及其表示练习题(2)一、选择题1. 判断下列各组中的两个函数是同一函数的为( ) ⑴3)5)(3(1+-+=x x x y ,52-=x y ; ⑵111-+=x x y ,)1)(1(2-+=x x y ;⑶x x f =)(,2)(x x g =;⑷()f x =()F x = ⑸21)52()(-=x x f ,52)(2-=x x f .A. ⑴、⑵B. ⑵、⑶C. ⑷D. ⑶、⑸2. 函数()y f x =的图象与直线1x =的公共点数目是( )A. 1B. 0C. 0或1D. 1或23. 已知集合{}{}421,2,3,,4,7,,3A k B a a a ==+,且*,,a N x A y B ∈∈∈ 使B 中元素31y x =+和A 中的元素x 对应,则,a k 的值分别为( )A. 2,3B. 3,4C. 3,5D. 2,54. 已知22(1)()(12)2(2)x x f x x x x x +≤-⎧⎪=-<<⎨⎪≥⎩,若()3f x =,则x 的值是( )A. 1B. 1或32C. 1,32或 D.5. 为了得到函数(2)y f x =-的图象,可以把函数(12)y f x =-的图象适当平移, 这个平移是( )A. 沿x 轴向右平移1个单位B. 沿x 轴向右平移12个单位 C. 沿x 轴向左平移1个单位 D. 沿x 轴向左平移12个单位 6. 设⎩⎨⎧<+≥-=)10()],6([)10(,2)(x x f f x x x f 则)5(f 的值为( ) A. 10 B. 11 C. 12 D. 13二、填空题1. 设函数.)().0(1),0(121)(a a f x xx x x f >⎪⎪⎩⎪⎪⎨⎧<≥-=若则实数a 的取值范围是 . 2. 函数422--=x x y 的定义域 . 3. 若二次函数2y ax bx c =++的图象与x 轴交于(2,0),(4,0)A B -,且函数的最大值为9,则这个二次函数的表达式是 .4.函数0y =_____________________. 5. 函数1)(2-+=x x x f 的最小值是_________________.三、解答题1.求函数()f x =.2. 求函数12++=x x y 的值域.3. 12,x x 是关于x 的一元二次方程22(1)10x m x m --++=的两个实根,又2212y x x =+,求()y f m =的解析式及此函数的定义域.4. 已知函数2()23(0)f x ax ax b a =-+->在[1,3]有最大值5和最小值2,求a 、b 的值.参考答案(2)一、选择题 1. C 2. C 3. D 4. D∴2()3,12,f x x x x ===-<<而∴ x =5. D 平移前的“1122()2x x -=--”,平移后的“2x -”, 用“x ”代替了“12x -”,即1122x x -+→,左移 6. B [][](5)(11)(9)(15)(13)11f f f f f f f =====.二、 1.(),1-∞- 当10,()1,22a f a a a a ≥=-><-时,这是矛盾的; 当10,(),1a f a a a a<=><-时; 2. {}|2,2x x x ≠-≠且 240x -≠3. (2)(4)y x x =-+- 设(2)(4)y a x x =+-,对称轴1x =, 当1x =时,max 99,1y a a =-==-4. (),0-∞ 10,00x x x x -≠⎧⎪<⎨->⎪⎩ 5. 54- 22155()1()244f x x x x =+-=+-≥-. 三、 1. 解:∵10,10,1x x x +≠+≠≠-,∴定义域为{}|1x x ≠-2. 解: ∵221331(),244x x x ++=++≥∴y ≥,∴值域为)+∞ 3. 解:24(1)4(1)0,30m m m m ∆=--+≥≥≤得或,222121212()2y x x x x x x =+=+-224(1)2(1)4102m m m m =--+=-+∴2()4102,(03)f m m m m m =-+≤≥或.4. 解:对称轴1x =,[]1,3是()f x 的递增区间,max ()(3)5,335f x f a b ==-+=即min ()(1)2,32,f x f a b ==--+=即∴3231,.144a b a b a b -=⎧==⎨--=-⎩得。
已知函数)(x f 对于一切实数y x ,都有x y x y f y x f )12()()(++=-+成立,且0)1(=f 。
(1)求)0(f 的值;(2)求)(x f 的解析式。
方程法——例7、已知:)0(,31)(2≠=⎪⎭⎫ ⎝⎛+x x x f x f ,求)(x f 。
换元法1.已知f(3x+1)=4x+3, 求f(x)的解析式. 2.若xx x f -=1)1(,求)(x f ..配凑法3.已知221)1(xx x x f +=-, 求)(x f 的解析式. 4.若x x x f 2)1(+=+,求)(x f .待定系数法5.设)(x f 是一元二次函数, )(2)(x f x g x ⋅=,且212)()1(x x g x g x ⋅=-++,求)(x f 与)(x g .设二次函数)(x f 满足)2()2(--=-x f x f ,且图象在y 轴上截距为1,在x 轴上截得的线段长为22,求)(x f 的表达式.解方程组法 7.设函数)(x f 是定义(-∞,0)∪(0,+ ∞)在上的函数,且满足关系式x xf x f 4)1(2)(3=+,求)(x f 的解析式.若x xx f x f +=-+1)1()(,求)(x f . (2)若f(x)+f(1-x)=1+x,求f(x).特殊值代入法9.若)()()(y f x f y x f ⋅=+,且2)1(=f ,求值)2004()2005()3()4()2()3()1()2(f f f f f f f f ++++ .1)0(=f ,对于任意实数x 、y ,等式)12()()(+--=-y x y x f y x f 恒成立,求)(x f12.对x ∈R, )(x f 满足)1()(+-=x f x f ,且当x ∈[-1,0]时, x x x f 2)(2+=求当x ∈[9,10]时)(x f 的表达式.1.函数y=2122--+-+x x xx 的定义域是( ) (A ){x -21-≤≤x } (B ){x -21≤≤x } (C ){x x>2} (D ){R x ∈x 1≠}2.函数6542-+--=x x x y 的定义域是(A ){x|x>4} (B)}32|{<<x x (C){x | x<2 或 x>3} (D) }32|{≠≠∈x x R x 且3.函数y=122+-x x 的值域是( )(A )[0,+∞ (B )(0,+∞) (C )(-∞,+∞) (D )[1,+∞ ]4.下列函数中,值域是(0,+∞)的是 (A)132+-=x x y (B) y=2x+1(x>0) (C) y=x 2+x+1 (D)21xy = 5.)12(-x f 的定义域是[)1,0,则)31(x f -的定义域是(A) ]4,2(- (B )⎥⎦⎤ ⎝⎛--21,2 (C )⎥⎦⎤ ⎝⎛61,0 (D )⎥⎦⎤ ⎝⎛32,0 6.若函数y=f(x)的定义域为(0,2),则函数y=f(-2x)的定义域是( )(A )(0,2) (B )(-1,0) (C )(-4,0) (D )(0,4)7.函数y=13+-+x x 的值域是( )(A)(0,2) (B)[-2,0] (C)[-2,2] (D)(-2,2)二.填空题:1.函数y=1122-+-x x 的定义域是___________2.函数y=xx x --224的定义域为 3.函数y= -2x 2-8x-9, x ∈[0,3]的值域是_______.4.设函数y=f(x) 的定义域是[0,2], 则f(x-1)的定义域是_______5.函数2x x y -=的值域是 ;函数)11(2≤≤--=x x x y 的值域是 ;函数21x x y -=的值域是 。
1函数解析式的特殊求法例1 已知f(x)是一次函数, 且f[f(x)]=4x -1, 求f(x)的解析式例2 若x x x f 21(+=+),求f(x)例3 已知x x x f 2)1(+=+,求)1(+x f例4已知:函数)(2x g y x x y =+=与的图象关于点)3,2(-对称,求)(x g 的解析式例5 已知f(x)满足x xf x f 3)1()(2=+,求)(x f2函数值域的特殊求法例1. 求函数]2,1[x ,5x 2x y 2-∈+-=的值域。
例2. 求函数22x 1x x 1y +++=的值域。
例3求函数y=(x+1)/(x+2)的值域例4. 求函数1e 1e y x x +-=的值域。
例1下列各组中的两个函数是否为相同的函数? ①3)5)(3(1+-+=x x x y 52-=x y ②111-+=x x y )1)(1(2-+=x x y③21)52()(-=x x f 52)(2-=x x f2若函数)(x f 的图象经过)1,0(-,那么)4(+x f 的反函数图象经过点(A))1,4(-(B))4,1(-- (C))1,4(-- (D))4,1(-例3已知函数)(x f 对任意的a b R ∈、满足:()()()6,f a b f a f b +=+-0,()6a f a ><当时;(2)12f -=。
(1)求:(2)f 的值;(2)求证:()f x 是R 上的减函数;(3)若(2)(2)3f k f k -<-,求实数k 的取值范围。
例4已知{(,)|,,A x y x n y an b n ===+∈Z },2{(,)|,315,B x y x m y m m ===+∈Z },22{(,)|C x y x y =+≤14},问是否存在实数,a b ,使得(1)A B ≠∅,(2)(,)a b C ∈同时成立.证明题1.已知二次函数2()f x ax bx c =++对于x 1、x 2∈R ,且x 1<x 2时12()()f x f x ≠,求证:方程()f x =121[()()]2f x f x +有不等实根,且必有一根属于区间(x 1,x 2).答案1解:设f(x)=kx+b 则 k(kx+b)+b=4x -1 则⎪⎩⎪⎨⎧-==⇒⎩⎨⎧-=+=3121)1(42b k b k k 或 ⎩⎨⎧=-=12b k ∴312)(-=x x f 或12)(+-=x x f 2换元法:已知复合函数[()]f g x 的表达式时,还可以用换元法求()f x 的解析式。
高一数学函数的定义域与值域试题答案及解析1.函数的值域为()A.[0,3]B.[-1,0]C.[-1,3]D.[0,2]【答案】C.【解析】先将函数方程化为,,再由二次函数的图像知,当时,函数取得最小值且为-1;当时,函数取得最大值且为3.所以函数的值域为[-1,3]. 故应选C.【考点】二次函数的值域.2.函数的定义域为 .【答案】.【解析】∵,∴,∴函数的定义域为.【考点】函数的定义域.3.已知函数的值域是,则实数的取值范围是________________.【答案】【解析】由题意得:函数的值域包含,当时,满足题意;当时,要满足值域包含,需使得即或,综合得:实数的取值范围是.【考点】函数值域4.已知函数.(1)判断函数的奇偶性并证明;(2)当时,求函数的值域.【答案】(1)奇函数,(2).【解析】(1)判断函数奇偶性,从两个方面入手,一要判断定义域,若定义域不关于原点对称,则函数就为非奇非偶函数,二在函数定义域关于原点对称前提下,判断与的关系,如只相等,则为偶函数,如只相反,则为奇函数,如既相等又相反,则既为奇函数又为偶函数,如既不相等又不相反,则为非奇非偶函数,本题定义域为R,研究与的关系时需将负指数化为对应正指数的倒数,(2)研究函数的值域,一要看函数解析式的结构,本题是可化为型,二是结合定义域利用函数单调性求值域.试题解析:(1)∵,, 4分∴是奇函数. 5分(2)令,则. 7分∵,∴,∴,∴,所以的值域是. 10分【考点】函数奇偶性,函数值域.5.函数的定义域为 .【答案】【解析】由,所以函数的定义域为.【考点】函数的定义域.6.下列结论:①函数和是同一函数;②函数的定义域为,则函数的定义域为;③函数的递增区间为;④若函数的最大值为3,那么的最小值就是.其中正确的个数为 ( )A.0个B.1个C.2个D.3个【答案】A【解析】因为函数的定义域为R,的定义域为.所以①不成立. 由函数的定义域为,所以.所以函数要满足.所以函数的定义域为.故②不成立.因为函数的定义域为或所以递增区间为不正确,所以③不成立.因为函数y=与函数y=的图像关于y轴对称,所以④不正确.故选A.【考点】1.函数的概念.2.函数的定义域.3.函数的对称性.7.已知函数,则满足不等式的实数的取值范围为.【答案】【解析】,即。
高一数学函数的定义域与值域试题答案及解析1.函数的定义域为___________.【答案】.【解析】要使有意义,则,即,即函数的定义域为.【考点】函数的定义域.2.已知定义在上的函数是偶函数,且时,。
(1)当时,求解析式;(2)当,求取值的集合;(3)当,函数的值域为,求满足的条件【答案】(1)(2)当,取值的集合为,当,取值的集合为;(3)【解析】(1)设, 利用偶函数,得到函数解析式;(2)分三种情况进行讨论,结合(1)的解析式,判定函数在定义域内的单调性,函数是偶函数,关于y轴对称的性质,判定端点值的大小,从而求出取值集合;(3)由值域确定,,,所以分或进行求解试题解析:解:(1)函数是偶函数,当时,当时(4)(2)当,,为减函数取值的集合为当,,在区间为减函数,在区间为增函数且,取值的集合为当,,在区间为减函数,在区间为增函数且,取值的集合为综上:当,取值的集合为当,取值的集合为当,取值的集合为(6)(3)当,函数的值域为,由的单调性和对称性知,的最小值为,,当时,当时,(4)【考点】1 求分段函数的解析式;2 已知函数的定义域求值域;3 已知值域求定义域3.函数的定义域为 .【答案】【解析】有已知,得因为为增函数所以.【考点】1.函数定义域.2.对数不等式.4.函数的定义域为()A.B.C.D.【答案】D.【解析】由函数的解析式可得,Lgx-1≠0, x>0,即 0<x<10或10<x,故函数定义域为 ,故选D.【考点】函数定义域.5.若函数的定义域为R,则实数可的取值范围是___________.【答案】【解析】由函数的定义域为R在R恒成立,当时,显然成立;当时,得;综上,.【考点】1.函数的定义域;2.二次函数的性质.6.已知定义在上的函数为单调函数,且,则 .【答案】【解析】设,令,则由题意得:,即;再令,则由题意得:,即,,∵函数为上的单调函数,解得:,即.【考点】函数值域,不等式恒成立,等比数列前n项和.7.函数定义域为,则满足不等式的实数m的集合____________【答案】【解析】因为函数定义域为又因为.所以.所以即为.即.所以.故填.本小题的关键点是字母比较多易混淆.【考点】1.函数的定义域.2.不等式的解法.3.待定的数学思想.8.设表示不超过的最大整数,如,若函数,则函数的值域为 .【答案】【解析】因为,所以所以当时,,,,故当时,,,,故当时,,,,故综上可知的值域为.【考点】1.新定义;2.函数的解析式;3.函数的值域.9.函数的值域为 .【答案】【解析】函数,对称轴为,开口向上,则由图像可知函数,即值域为.【考点】二次函数的定义域、对称轴、值域.10.函数的值域是 .【答案】【解析】,令,则,且,当时是增函数,而,所以,即.所以所求函数的值域为.【考点】二次函数的值域.11.如果函数y=b与函数的图象恰好有三个交点,则b= .【答案】【解析】当x≥1时,函数图象的一个端点为,顶点坐标为,当x<1时,函数顶点坐标为,∴当或时,两图象恰有三个交点.【考点】二次函数的性质点评:本题考查了分段的两个二次函数的性质,根据绝对值里式子的符号分类,得到两个二次函数是解题的关键.12.若函数的定义域是[0,4],则函数的定义域是()A.[ 0, 2]B.(0,2)C.(0,2]D.[0,)【答案】C【解析】根据题意,因为函数的定义域是[0,4],可知x [0,4],那么对于g(x)有意义时满足2x [0,4],x ,那么可知得到为(0,2],故选C.【考点】函数的定义域点评:解决的关键是根据函数定义域的理解来得到函数的定义域,属于基础题。
高一数学函数经典练习题(含答案详细)一、求函数的定义域1、求下列函数的定义域:⑴ $y=\frac{x^2-2x-15}{x+3-3}$答案:首先化简得到 $y=\frac{x^2+2x-15}{x}$。
然后根据分式的定义,分母不能为零,即 $x\neq0$。
同时,分子中有$x-5$ 和 $x+3$ 两个因式,因此 $x\leq-3$ 或 $x\geq5$。
综合起来得到定义域为 $\{x|x\leq-3 \text{ 或 } x\geq5 \text{ 或 }x\neq0\}$。
⑵ $y=1-\frac{x-1}{2x+2}$答案:首先化简得到 $y=\frac{x+1}{2x+2}$。
然后根据分式的定义,分母不能为零,即 $x\neq-1$。
同时,分子中有 $x-1$ 和 $x+1$ 两个因式,因此 $x\geq0$。
综合起来得到定义域为 $\{x|x\geq0 \text{ 且 } x\neq-1\}$。
2、设函数 $f(x)$ 的定义域为 $[0,1]$,则函数 $f(x^2)$ 的定义域为 _。
_。
_;函数 $x-2f(x-2)$ 的定义域为答案:对于 $f(x^2)$,$x^2\in[0,1]$,因此 $x\in[-1,1]$。
综合起来得到定义域为 $\{x|-1\leq x\leq1\}$。
对于 $x-2f(x-2)$,$x-2(x-2)\in[0,1]$,即 $2\leq x\leq3$。
因此定义域为 $\{x|2\leq x\leq3\}$。
3、若函数 $f(x+1)$ 的定义域为 $[-2,3]$,则函数 $f(2x-1)$ 的定义域是;函数 $f(\frac{x+2}{x})$ 的定义域为。
答案:对于 $f(2x-1)$,$2x-1\in[-2,3]$,因此 $-1\leqx\leq2$。
综合起来得到定义域为 $\{x|-1\leq x\leq2\}$。
对于 $f(\frac{x+2}{x})$,$x\neq0$ 且 $\frac{x+2}{x}\in[-2,3]$,即 $-2x\leq x+2\leq3x$,解得 $-3\leq x\leq-1$ 或$x\geq2$。
函数值域、定义域、解析式专题一、函数值域的求法 1、直接法:例1:求函数y = 例2:求函数1y =的值域。
2、配方法:例1:求函数242y x x =-++([1,1]x ∈-例2:求 函 数y =例3:求函数y125xx -+的值域。
例2:求函数122+--=x x xx y 的值域.例3:求函数132x y x -=-得值域.4、换元法:例1:求函数2y x =例2: 求 函 数1x x y -+=的 值 域。
5、函数的单调性法:确定函数在定义域(或某个定义域的子集)上的单调性,求出函数的值域。
例1:求函数y x =例2:求函数()x x x f -++=11的值域。
例3:求 函 数1x 1x y --+=的 值 域。
63||5|x x ++-的值域。
结合非负数的性质,可求出相关函数的值域。
例1、(1)求函数216x y -=的值域。
(2)求函数1322+-=x x y 的值域。
二、函数定义域例1:已知函数()f x 的定义域为[]15-,,求(35)f x -的定义域.例2:若()f x 的定义域为[]35-,,求()()(25)x f x f x ϕ=-++的定义域.例3:求下列函数的定义域:① 21)(-=x x f ; ② 23)(+=x x f ; ③ xx x f -++=211)( 例4:求下列函数的定义域:④ 14)(2--=x x f⑤ ②2143)(2-+--=x x x x f⑥ 373132+++-=x x y ④f (的解析式.例2:已知:11)11(2-=+x x f ,求)(x f 。
例3 :已知x x x f 2)1(+=+,求)1(+x f .3、待定系数法例1.已知:f(x) 是二次函数,且f(2)=-3, f(-2)=-7, f(0)=-3,求f(x)。
例2:设)(x f 是一次函数,且34)]([+=x x f f ,求)(x f .4、赋值(式)法例1:已知函数)(x f 对于一切实数y x ,都有x y x y f y x f )12()()(++=-+成立,且0)1(=f 。
二、函数的定义域、值域和解析式1.常见函数的定义域和值域:2.函数的定义域的求法函数的定义域就是使得整个函数关系式有意义的实数的全体构成的集合. (1)求定义域注意事项:★①分式分母不为0; ②偶次根式的被开方数大于等于0;③零次幂底数不为0; ④对数的真数大于0; ⑤tan x 中,{|,}2x x k k ππ≠+∈Z ; ⑥实际问题对自变量的限制;⑦若函数由几个式子构成,定义域要满足各式都有意义(取交集).(2)抽象函数的定义域:①定义域是x的取值范围★②括号内范围等同★3.函数值域的求法对于函数(),y f x x A =∈,与x 的值相对应的y 值叫做函数值.函数值的集合{()|}f x x A ∈叫函数的值域.(1)观察法:从自变量x 的范围出发,推出()y f x =的取值范围.(2)二次函数在区间上的值域:画出简图,找到对称轴和对应取值区间来求值域.(3)换元法:通过对函数解析式进行适当换元,通常把无理函数转化为有理函数,换元后应先确定新元的取值范围.(4)分离常数法:将形如ax by cx d+=+的有理分式转化为“反比例函数”的形式a k y c cx d =++,确定函数值域为{|}ay y c≠.(5)判别式法:把函数转化为关于x 的二次方程,通过方程有实根,判别式0∆≥,从而求得原函数的值域.(6)单调性法:确定函数在定义域(或某个定义域的子集)上的单调性,求出函数的值域.4.求函数解析式(1)配凑法:已知某区间上的解析式,求其他区间上的解析式,将待求变量转化到已知区间上,利用函数满足等量关系间接获得其解析式.(2)换元法:已知(())()f h x g x =求()f x 时,往往可设()h x t =,从中解出x ,带入()g x 进行换元,求出()f t 的解析式,再将t 替换为x 即可,注意新元t 的取值范围.(3)待定系数法:若已知函数类型(如一次函数、二次函数等),根据函数类型设出函数解析式,根据题设条件,列出方程组,解出待定系数即可.(4)解方程组法:已知关于()f x 与1()f x(或()f x -)的表达式,可根据已知条件再构造出另一个方程,构成方程组求出()f x .练习题:答案解析:答案:153()888xf xx=+-29解析:()2()31f x f x x--=-…………①用x-替换x得()2()31f x f x x--=--……②两式联立解得()1f x x=+.答案:A数学浪子整理制作,侵权必究。
A. [-1,3]B. [-3,1]C. [-2,2]D. [-1,1]解∵函数y=f 〔*〕的值域是[-2,2],∴y=f 〔*〕的最大值为2,最小值为-2又∵函数y=f 〔*+1〕的图象是由y=f 〔*〕向左平移1个单位而得∴函数y=f 〔*+1〕最大值是2,最小值是-2所以函数y=f 〔*+1〕的值域仍是[-2,2]应选C2、函数f 〔*〕=*2-2*,则函数f 〔*〕在区间[-2,2]上的最大值为〔 〕 A. 2 B. 4 C. 6 D. 8 解答:二次函数求最值3、一等腰三角形的周长为20,底边长y 是关于腰长*的函数,则其解析式和定义域是〔 〕 A. y =20-2*〔*≤10〕 B.y =20-2*〔*<10〕C.y =20-2*〔4≤*<10〕D.y =20-2*〔5<*<10〕解:Y=20-2* Y>0,即20-2*>0,*<10, 两边之和大于第三边, 2*>Y , 即2*>20-2* 4*>20 *>5。
此题定义域较难,很容易忽略*>5。
∴54、二次函数y =*2-4*+4的定义域为[a ,b ]〔a<b 〕,值域也是[a ,b ],则区间[a ,b ]是〔 〕 A. [0,4] B. [1,4] C. [1,3] D. [3,4]解: a ,由于对称轴为*=2,当*=0或*=4时有最大值y=4,*=2时有最小值y=05、函数y =f 〔*+2〕的定义域是[3,4],则函数y =f 〔*+5〕的定义域是〔 〕 A. [0,1] B. [3,4] C. [5,6] D. [6,7] 解: y =f 〔*+2〕的定义域是[3,4],即 3≤*≤4 则3+2 ≤*+2≤4+2,所以5≤*+2≤6 所以 y=f(*)的定义域为[5,6] 则5≤*+5≤6,则0≤*≤1 所以y =f 〔*+5〕的定义域为[0,1]6、函数22234x y x x +=+的值域是〔 〕 317317317317.[,].,4444317317317317.(,][,).(,)(,)4444A B C D ⎛⎫---+---+ ⎪ ⎪⎝⎭---+---+-∞⋃+∞-∞⋃+∞解:判别式法 7、〔2007〕图中的图像所表示的函数的解析式是〔 〕333.1(02).1(02)2223.1(02).11(02)2A y x x B y x x C y x x D y x x =-≤≤=--≤≤=--≤≤=--≤≤二. 填空题。
高一数学函数的定义域与值域试题答案及解析1.已知函数的定义域为,的定义域为,则A.B.C.D.【答案】D【解析】函数的定义域M=,的定义域为N=;则【考点】函数的定义域2.函数的值域是()A.[0,12]B.[-,12]C.[-,12]D.[,12]【答案】B.【解析】因为函数,所以,当时,;当时,;所以函数的值域为.故应选B.【考点】二次函数的性质.3.已知函数的定义域为,则函数的定义域为()A.(-,-1)B.(-1,-)C.(-5,-3)D.(-2,-)【答案】B.【解析】因为函数的定义域为,即,所以,所以函数的定义域为,所以,即,所以函数的定义域为.故选B.【考点】函数的定义域及其求法.4.已知函数在时取得最大值4.(1)求的最小正周期;(2)求的解析式;(3)若,求的值域.【答案】(1);(2);(3).【解析】(1)直接利用正弦函数的周期公式,求f(x)的最小正周期;(2)利用函数的最值求出A,通过函数经过的特殊点,求出φ,然后求f(x)的解析式;(3)通过,求出相位的范围,利用正弦函数的值域直接求f(x)的值域..试题解析:解:(1),(3)时,的值域为【考点】1.由y=Asin(ωx+φ)的部分图象确定其解析式;2.三角函数的周期性及其求法.5.函数的定义域是 ( )A.B.C.D.【答案】D【解析】要使函数式有意义,则.【考点】本题考查函数的定义域即使函数式有意义的自变量的取值范围.6. (1)求不等式的解集:.(2)求函数的定义域:.【答案】(1);(2).【解析】(1)首先将首项系数化为正数,然后分解因式,进而可求得不等式的解集;(2)首先根据根式要有意义建立不等式,然后通过解分式不等式可求得结果.试题解析:(1)∵,∴,∴,∴或,∴原不等式的解集为.(2)要使函数有意义,须,解得或,∴函数的定义域是.【考点】1.一元二次不等式的解法;2.函数定义域.7.函数的定义域是.【答案】【解析】要是此函数有意义,所以有,所以定义域为【考点】(1)函数定义域的求法,(2)偶次根号下被开方数大于等于0,对数中真数大于08.计算:(2)已知函数,求它的定义域和值域。
高一数学函数的定义域与值域试题答案及解析1.已知函数的定义域为,的定义域为,则A.B.C.D.【答案】D【解析】函数的定义域M=,的定义域为N=;则【考点】函数的定义域2.函数的定义域为()A.B.C.D.【答案】D.【解析】由函数的解析式可得,Lgx-1≠0, x>0,即 0<x<10或10<x,故函数定义域为 ,故选D.【考点】函数定义域.3.已知,函数.(1)当时,画出函数的大致图像;(2)当时,根据图像写出函数的单调减区间,并用定义证明你的结论;(3)试讨论关于x的方程解的个数.【答案】(1)详见解析;(2)详见解析;(3)详见解析.【解析】(1)当a=2时,,作出图象;(2)由(1)写出函数y=f(x)的单调递增区间,再根据单调性定义证明即可;(3)由题意知方程的解得个数等价于函数的图像与直线的交点个数.即函数的图象与直线的交点个数.试题解析:(1)如图所示3分(2)单调递减区间: 4分证明:设任意的5分因为,所以于是,即6分所以函数在上是单调递减函数 7分(3) 由题意知方程的解得个数等价于函数的图像与直线的交点个数.即函数的图象与直线的交点个数又,注意到,当且仅当时,上式等号成立,借助图像知 8分所以,当时,函数的图像与直线有1个交点; 9分当,时,函数的图像与直线有2个交点; 10分当,时,函数的图像与直线有3个交点;12分.【考点】1.绝对值的函数;2.函数的值域;3.函数的零点.4.已知定义在上的函数为单调函数,且,则 .【答案】【解析】设,令,则由题意得:,即;再令,则由题意得:,即,,∵函数为上的单调函数,解得:,即.【考点】函数值域,不等式恒成立,等比数列前n项和.5.已知函数且的图象经过点.(1)求函数的解析式;(2)设,用函数单调性的定义证明:函数在区间上单调递减;(3)解不等式:.【答案】(1),(2)详见解析,(3)或.【解析】(1)求函数的解析式,只需确定的值即可,由函数且的图象经过点,得,再由得,(2)用函数单调性的定义证明单调性,一设上的任意两个值,二作差,三因式分解确定符号,(3)解不等式,一可代入解析式,转化为解对数不等式,需注意不等号方向及真数大于零隐含条件,二利用函数单调性,去“”,注意定义域.试题解析:(1),解得:∵且∴; 3分(2)设、为上的任意两个值,且,则6分,在区间上单调递减. 8分(3)方法(一):由,解得:,即函数的定义域为; 10分先研究函数在上的单调性.可运用函数单调性的定义证明函数在区间上单调递减,证明过程略.或设、为上的任意两个值,且,由(2)得:,即在区间上单调递减. 12分再利用函数的单调性解不等式:且在上为单调减函数., 13分即,解得:. 15分方法(二): 10分由得:或;由得:,13分. 15分【考点】函数解析式,函数单调性定义,解不等式.6.函数的定义域为___ _____.【答案】【解析】开偶次方根即,所以.【考点】函数定义域及指数函数.7.函数的定义域为____________;【答案】.【解析】定义域是使函数式有意义的自变量的取值集合..【考点】函数的定义域.8.函数的定义域是______________.【答案】【解析】求定义域就是使式子各部分都有意义;注意定义域写成区间形式.要使有意义则解得且所以定义域为【考点】函数自变量的取值范围.9.已知函数(1)用定义证明在上单调递增;(2)若是上的奇函数,求的值;(3)若的值域为D,且,求的取值范围.【答案】(1)设且则即在上单调递增;(2);(3).【解析】(1)在定义域内任取,证明,即,所以在上单调递增;(2)因为,是上的奇函数,所以,即,代入表达式即可得;(3)可求得的值域,由可得不等式,所以.试题解析:(1)设且 1分则 3分即 5分在上单调递增 6分(2)是上的奇函数8分即11分(用得必须检验,不检验扣2分)(3)由14分的取值范围是 16分【考点】1、函数单调性的证明;2、奇函数的定义;(3)函数的值域.10.规定,则函数的值域为A.B.C.D.【答案】A【解析】根据题意,,函数在是增函数,,即函数的值域为,故选:A.【考点】二次函数的值域11.规定,则函数的值域为A.B.C.D.【答案】A【解析】根据题意,,函数在是增函数,,即函数的值域为,故选:A.【考点】二次函数的值域12.已知函数是偶函数,那么函数的定义域为()A.B.C.D.【答案】B【解析】由函数是偶函数,可得对称轴,得a= ;即解不等式,解得,故选B.【考点】1、偶函数的性质;2、定义域的求法;3、对数不等式的解法.13.实数是图象连续不断的函数定义域中的三个数,且满足,则在区间的零点个数为()A.2B.奇数C.偶数D.至少是2【答案】D【解析】此题主要考查学生对函数零点存在性定理掌握情况,因为,所以在区间上至少存在一个零点,同理在区间上也至少存在一个零点,又因为、,故正确答案是D.【考点】1.函数定义域;2.函数零点存在性定理.14.函数的值域是__________.【答案】【解析】利用函数单调性求值域设则由在上是增函数,所以值域为【考点】复合函数的值域.15.函数的定义域为()A.(0,2]B.(0,2)C.D.【答案】C【解析】由题意知所以,故的定义域为,故选C.【考点】函数的定义域16.函数的定义域是 ( ).A.[-1,+∞)B.(-∞,0)∪(0,+∞)C.[-1,0)∪(0,+∞)D.R【答案】C【解析】函数的定义域就是使函数式有意义的自变量x的取值范围,本题中要求所以正确答案为C.【考点】函数的定义域.17.函数的定义域为【答案】【解析】要使函数有意义需满足【考点】函数定义域点评:函数定义域是使函数有意义的自变量的取值范围或题目中给定的自变量的范围18.已知函数.(1)求它的定义域,值域;(2)判定它的奇偶性和周期性;(3)判定它的单调区间及每一区间上的单调性.【答案】(1)的定义域为,值域为(2)既不是奇函数也不是偶函数(3)单调增区间为[();单调减区间为(().【解析】解:(1)由得又因为0<,所以的定义域为,值域为定义域关于原点不对称,故既不是奇函数也不是偶函数;,其中是周期函数,且最小正周期是.,,,即,,即,,即单调增区间为[();单调减区间为(().【考点】三角函数的性质点评:解决的关键是熟练的运用正弦函数的性质来得到其周期和单调性,属于基础题。
高一数学函数的定义域与值域试题答案及解析1.的定义域为【答案】【解析】要使函数有意义,则需,解得。
【考点】函数定义域的求法,2.函数的定义域为 .【答案】【解析】本题主要考查函数定义域.由,得:,即:;由,得:,所以.【考点】函数定义域,集合的运算.3.函数的定义域是.【答案】【解析】由定义域的求法知,函数的定义域为,解得.【考点】函数定义域的求法.4.若函数的定义域为R,则实数可的取值范围是___________.【答案】【解析】由函数的定义域为R在R恒成立,当时,显然成立;当时,得;综上,.【考点】1.函数的定义域;2.二次函数的性质.5.已知函数,则的值域为 .【答案】(-2,1).【解析】当x<1时,0<3x<3,故-2<f(x)=1-3x<1,故f(x)的值域为(-2,1).【考点】函数的值域.6.已知函数,那么的定义域是A.B.C.D.【答案】B【解析】由已知得,所以函数,则有,故函数的定义域为.所以正确答案为B.【考点】1.函数解析式;2.函数的定义域.7.若函数的定义域是,则函数的定义域是()A.B.C.D.【答案】C【解析】利用复合函数的定义域求法,的值域是的定义域,因为函数的定义域是,所以得所以函数的定义域是故选C【考点】函数的定义域及其求法.8.函数的定义域是【答案】【解析】函数有意义,则,所以函数的定义域为.【考点】函数的定义域,对数真数大于0,偶次根式大于等于0.9.函数的定义域为.【答案】【解析】函数的定义域是使函数式有意义的自变量的取值集合,本题中即.【考点】函数的定义域.10.函数的值域是__________.【答案】【解析】利用函数单调性求值域设则由在上是增函数,所以值域为【考点】复合函数的值域.11.若,则的定义域为()A.B.C.D.【答案】A【解析】要使函数有意义,则满足解得.【考点】函数的定义域.12.已知函数,且.(1)求的值,并确定函数的定义域;(2)用定义研究函数在范围内的单调性;(3)当时,求出函数的取值范围.【答案】(1),定义域:;(2)上是减函数,上是增函数;(3).【解析】(1)直接代入列出关于的方程即可;(2)要正确理解单调性的定义,明确用定义研究(或证明)函数的单调性的格式过程,设,然后比较和的大小,通常是作差(也可),确定差的正负;(3)由(2)中的单调性,可容易求出函数的取值范围.试题解析:(1),定义域:; 3分(2)令,则,6分故当时,;当时,,∴函数在上单调减,在上单调增; 8分(3)由(2)及函数为奇函数知,函数在为增函数,在为减函数,故当时,, 10分,∴当时,的取值范围是. 12【考点】(1)函数值的意义;(2)函数的单调性的定义;(3)函数的值域.13.函数的定义域是.【答案】【解析】要使函数有意义需满足,解得;所以函数的定义域为【考点】1.函数的定义域;2.指数不等式.14.函数的定义域 .【答案】【解析】由,当时,,得,故定义域为.【考点】函数定义域.15.函数的定义域是_ ____.【答案】【解析】要使函数有意义,需满足,定义域为点评:函数定义域是使函数有意义的自变量的范围或题目中指定的自变量的取值范围16.定义在R上的函数的值域是,又对满足前面要求的任意实数都有不等式恒成立,则实数的最大值为A. 2013B. 1C.D.【答案】A【解析】函数的值域是,,设,是增函数,最小值为恒成立,最大值2013【考点】函数求最值及不等式性质点评:本题主要应用的知识点有:二次函数求最值,均值不等式求最值,利用函数单调性求最值,综合性较强,有一定难度17.函数的值域是__________.【答案】【解析】因为在(0,+)是减函数,所以=-2,故函数的值域是。
高一三角函数定义域、值域习题及答案
三角函数是数学中重要的概念之一,它在解决各种实际问题中发挥着重要的作用。
本文将介绍高一三角函数的定义域、值域,并提供一些题及答案供参考。
一、正弦函数的定义域和值域
正弦函数是三角函数中常见的一种,表示为sin(x)。
它的定义域是所有实数集合R,即无限制。
而它的值域是闭区间[-1, 1],即sin(x)的取值范围在-1到1之间。
例题1:求函数y = sin(x)的定义域和值域。
答案:
定义域:D = R
值域:V = [-1, 1]
二、余弦函数的定义域和值域
余弦函数是另一种常见的三角函数,表示为cos(x)。
它的定义域也是所有实数集合R,无限制。
值域同样是闭区间[-1, 1],即cos(x)的取值范围在-1到1之间。
例题2:求函数y = cos(x)的定义域和值域。
答案:
定义域:D = R
值域:V = [-1, 1]
三、正切函数的定义域和值域
正切函数是三角函数中另一个重要的函数,表示为tan(x)。
它的定义域是除去所有使得tan(x)无定义的点的实数集合。
tan(x)在x = (2n+1)π/2 (n为整数)时无定义,因此其定义域为除去这些点的实数集合。
正切函数的值域是全体实数R。
例题3:求函数y = tan(x)的定义域和值域。
答案:
定义域:D = R - {(2n+1)π/2} (n为整数)
值域:V = R
以上是高一三角函数定义域、值域的基本介绍以及一些习题的答案。
希望对您的学习有所帮助!。
高一数学求函数的解析式、定义域、值域的常用方法一、求函数的解析式的一般方法有:(1)直接法:根据题给条件,合理设置变量,寻找或构造变量之间的等量关系,列出等式,解出y(2)待定系数法:若明确了函数的类型,可以设出其一般形式,然后代值求出参数的值(3)换元法:若给出了复合函数f [g (x )]的表达式,求f (x )的表达式时可以令t =g (x ),以换元法解之(4)构造方程组法:若给出f (x )和f (-x ),或f (x )和f (1/x )的一个方程,则可以x 代换-x (或1/x ),构造出另一个方程,解此方程组,消去f (-x )(或f (1/x ))即可求出f (x )的表达式二、求函数定义域的方法1、函数定义域是函数自变量的取值的集合,一般要求用集合或区间来表示2、常见题型是由解析式求定义域,此时要认清自变量,其次要考查自变量所在位置,位置决定了自变量的范围,最后将求定义域问题化归为解不等式组的问题3、如前所述,实际问题中的函数定义域除了受解析式限制外,还受实际意义限制,如时间变量一般取非负数,等等4、对复合函数y =f [g (x )]的定义域的求解,应先由y =f (u )求出u 的范围,即g (x )的范围,再从中解出x 的范围I 1;再由g (x )求出y =g (x )的定义域I 2,I 1和I 2的交集即为复合函数的定义域5、分段函数的定义域是各个区间的并集6、含有参数的函数的定义域的求解需要对参数进行分类讨论,若参数在不同的范围内定义域不一样,则在叙述结论时分别说明7、求定义域时有时需要对自变量进行分类讨论,但在叙述结论时需要对分类后求得的各个集合求并集,作为该函数的定义域三、求函数值域的方法1、分离变量法2、配方法3、判别式法4、单调性法5、换元法一、求函数解析式1、换元法例1 已知22+1++1=x x x f x x ⎛⎫ ⎪⎝⎭,试求()f x2、构造方程组法例2 (1)已知21()+2()=3+4+5f x f x x x,试求()f x (2)已知2()+2(-)=3+4+5f x f x x x ,试求()f x例3 求下列函数的解析式:(1)已知)(x f 是二次函数,且1)()1(,2)0(-=-+=x x f x f f ,求)(x f(2)已知x x x f 2)1(+=+,求)(x f ,)1(+x f ,)(2x f(3)已知x xx x x f 11)1(22++=+,求)(x f (4)已知3)(2)(3+=-+x x f x f ,求)(x f二、求函数定义域例1 求+3-4x y x 的定义域例2 求下列函数的定义域(1)35)(--=x x x f ; (2)x x x f -+-=11)( 例例4已知(f x ,(g x ,求=(g())y f x 值域 三、求函数的值域与最值1、分离变量法例1 求函数2+3=+1x y x 的值域2、配方法例2 求函数y =2x 2+4x 的值域说明:对于可以化为二次函数的函数的值域也可采用此方法求解,如y =af 2(x )+bf (x )+c3、判别式法例3 求函数2223456x x y x x ++=++的值域4、单调性法例4 求函数23y x-=+,x ∈[4,5]的值域5、换元法例5 求函数=2y x例6 求下列函数的值域: (1){}5,4,3,2,1,12∈+=x x y (2)1+=x y (3)2211xx y +-=(4))25(,322-≤≤-+--=x x x y练习1、函数y =f (x )的值域是[-2,2],则函数y =f (x +1)的值域是2、已知函数f (x )=x 2-2x ,则函数f (x )在区间[-2,2]上的最大值为3、一等腰三角形的周长为20,底边长y 是关于腰长x 的函数,那么其解析式和定义域是4、二次函数y =x 2-4x +4的定义域为[a ,b ](a<b ),值域也是[a ,b ],则区间[a ,b ]是5、函数y =f (x +2)的定义域是[3,4],则函数y =f (x +5)的定义域是6、函数22+2=3+4x y x x的值域是 7、若f (x )=(x +a )3对任意x ∈R 都有f (1+x )=-f (1-x ),则f (2)+f (-2)=8、若函数2()=-2f x x 的值域为1-,-3⎛⎤∞ ⎥⎝⎦,则其定义域为 9、求函数5-+3+4=+2x x y x 的定义域 11、已知2-2+1,2()=-,>2x x x f x x x ⎧≤⎪⎨⎪⎩,若f (a )=3,求a 的值12、已知函数f (x )满足2f (x )-f (-x )=-x 2+4x ,试求f (x )的表达式13、设函数⎩⎨⎧<+≥+-=0,60,64)(2x x x x x x f 求不等式)1()(f x f >的解集 14、函数xax y 213-+=的值域为(,1)(1,)-∞--+∞U ,求实数a 的值为 15、已知函数()y f x =的定义域为(0,1),则2()f x 的定义域是16、已知函数221()1x f x x +=-,则在①()()f x f x -=,②1()()f f x x =-,③()()f x f x -=-,④1()()f x f x-= 中成立的个数是17、如果一元二次函数23y x mx m =+++有两个不同的零点,则m 的取值范围是18、已知函数[](),f x x x x R =-∈,其中[]x 表示不超过x 的最大整数,如[]352,33,222⎡⎤⎡⎤-=--=-=⎢⎥⎢⎥⎣⎦⎣⎦,则()f x 的值域是19、已知函数31(3)()3(3)x x f x x a x -⎧≠-⎪=+⎨⎪=-⎩的定义域与值域相同,则常数a =20、若函数(21)f x -的定义域是[0,1),则函数(13)f x -的定义域是21、已知二次函数2()f x ax bx =+,若12(1)(1)f x f x -=+其中122x x -≠,则12()f x x +的值为22、已知函数2()(1)f x x a x a =+-+,在区间[1,)-+∞上是增函数,则a 的取值范围是23、已知全集U R =,集合{}312A x m x m =-<<,{}13B x x =-<<,若A U C B ,求实数m 的取值范围24、已知一元二次函数()f x 满足(2)(2)()f k f k k R -+=--∈,且该函数的图象与y 轴交于点(0,1),在x 轴上截得的线段长为2225、已知集合{}2|1,A x y x x Z ==-∈,},1|{2A x x y y B ∈+==,则B A I =____26、若方程()[]24330,0,1x x k x -+-=∈没有实数根,求k 的取值范围 27、已知集合{}{}22221,350A x x x B x x ax a =--=-=-+-=,若A B B =I ,求实数a 的取值范围28、函数2()f x x bx c =-++()x R ∈满足(1)(3)f x f x -=-,且方程()0f x =的两个根12,x x 满足1222x x -=,求()f x 解析式29、已知二次函数)(x f y =的图象过点(0,3)-,且方程0)(=x f 的两个根的平方和为10,又对任意的x 都有)1()1(x f x f -=+(1)求二次函数)(x f y =的表达式;(2)求该二次函数在[0,3]上的最大最小值30、求函数212y x x =-的值域 31、已知二次函数)(x f 的二次项系数为a ,且不等式x x f 2)(->的解集为(1,3)(1)若方程0)(=x f 的两根一个大于-3,另一个小于-3,求a 的取值范围(2)若方程06)(=+a x f 有两个相等的实根,求)(x f 的解析式31、已知集合}03)3(|{},03)32(|{222=-+-+==--+=m m x m x x B m x m x x A ,且满足条件:(1)B A ≠;(2).),0(B A m a B A a Y I 及求≠∈32、已知集合2{|0},{||1|1},2x A x B x x x -=<=->+I 则A B 等于 33、若函数2143mx y mx mx -=++的定义域为R ,则实数m 的取值范围是34、已知函数4()42xx f x =+, (1)若01a <<,求()(1)f a f a +-的值(2)求122008()()()200920092009f f f +++L 的值35、已知函数()f x 定义域为区间A ,若其值域也为区间A ,则称区间A 为()f x 的保值区间.一般来说,函数的保值区间有(,],[,],[,)m m n n -∞+∞三种形式(1)求函数2()1f x x x =-+的保值区间(2)函数1()1(0)g x x x =->是否存在形如[,]()a b a b <的保值区间,若存在,求出实数,a b 的值;若不存在,请说明理由。
高一函数定义域、值域、解析式题型一、具体函数的定义域问题1求以下函数的定义域1〔1〕y x1xx ;〔2〕yx12x5x6〔2〕〔3〕假设函数 2f(x)mxmx1的定义域为R,那么实数m的取值X围是〔〕(A)0m4(B)0m4(C)m4(D)0m4二、抽象函数的定义问题〔一〕函数f(x)的定义域,求函数f[g(x)]的定义域2.函数f(x)的定义域为[0,1],求函数 2f(2x)的定义域。
〔二〕函数f[g(x)]的定义域,求函数f(x)的定义域3.函数f(2x1)的定义域为[1,2],求函数f(x)的定义域。
〔三〕函数f[g(x)]的定义域,求函数f[h(x)]的定义域4.函数 2f(x1)的定义域为(2,5),求函数 f1()x的定义域。
5.函数f(x)的定义域为[1,1],且函数F(x)f(x m)f(xm)的定义域存在,XX数m的取值X围。
〔一〕配凑法5. f21x13(1)2xxx,求f(x)的解析式。
〔二〕换元法6.f(12x)2xx,求f(x)的解析式。
〔三〕特殊值法7.对一切x,yR,关系式f(x y)f(x)(2xy1)y且f(0)1,求f(x)。
待定系数法8.f(x)是二次函数,且 2f(x1)f(x1)2x4x4,求f(x)。
〔四〕转化法9.设f(x)是定义在(,)上的函数,对一切xR,均有f(x)f(x2)0,当1x1时,f(x)2x1,求当1x3时,函数f(x)的解析式。
〔五〕消去法11.函数f(x)满足〔六〕分段求解法123f(x)f()xx,求f(x)12.函数f(x)2x1,g(x) x xo2,2,1,x0,求f[g(x)]的解析式(一〕配方法13.求二次函数256(32)yxxx的值域。
〔二〕图象法〔数形结合法〕14.求 4 2yx4(x[2,3])的值域。
3〔三〕别离常数法abx15.求定义域在区间[1,1]上的函数(0)yababx〔四〕换元法的值域。
16.求函数yx12x的值域。
函数的定义域(1)函数的定义域就是使得这个函数关系式有意义的实数的全体构成的集合 (2)求函数定义域的注意事项☉分式分母不为零; ☉偶次根式的被开方数大于等于零; ☉零次幂的底数不为零; ☉实际问题对自变量的限制若函数由几个式子构成,求其定义域时要满足每个式子都要有意义(取“交集”)。
(3)抽象复合函数定义域的求法☉已知y=f (x )的定义域是A ,求y=f (g (x ))的定义域,可通过解关于g (x )∈A 的不等式,求出x 的范围☉已知y=f (g (x ))的定义域是A ,求y=f (x )的定义域,可由x ∈A ,求g (x )的取值范围(即y=g (x )的值域)。
例1.函数()f x =的定义域为 ( ) A. (-∞,4) B. [4,+∞) C. (-∞,4] D. (-∞,1)∪(1,4] 【答案】D 【解析】要使解析式有意义需满足:40{10x x -≥-≠,即x 4≤且1x ≠所以函数()1f x x =- 的定义域为(-∞,1)∪(1,4] 故选:D例2( )A. {|11}x x x ≥≤-或B. {|11}x x -≤≤C. {1}D. {-1,1}【答案】D : 2210{ 10x x -≥-≥,解得: 1x =±.{-1,1}.故选D.例3.已知函数()21y f x =-的定义域为()2,2-,函数()f x 定义域为__________.【答案】[]1,3-【解析】由函数()21y f x =-的的定义域为(−2,2),得: 2113x -≤-≤,故函数f (x )的定义域是[]1,3-.例4.若函数()y f x =的定义域为[]0,2, )A. [)0,1B. []0,1C. [)(]0,11,4⋃ D. ()0,1 【答案】A 函数()y f x =的定义域是[]0,2, 022{ 10x x ≤≤∴-≠,解不等式组:01x ≤<,故选A.例5.已知函数()1y f x =+的定义域是[]2,3-,则()2y f x =的定义域是( )A. []1,4-B. []0,16C. []2,2-D. []1,4【答案】C 【解析】解:由条件知: ()1f x +的定义域是[]2,3-,则1x 14-≤+≤,所以214x -≤≤,得[]x 2,2∈-例6.已知函数y f x =+()1定义域是[]-23,,则y f x =-()21的定义域是( )A B. []-14, C. []-55, D. []-37,【答案】A例7___________.【答案】[]3,4-【解析】要使函数有意义,则2120x x +-≥,即2120x x --≤,即34x -≤≤,故函数的定义域为[]3,4-,故答案为[]3,4-.函数值域定义:对于函数y=f (x ),x ∈A 的值相对应的y 值叫函数值,函数值得集合{f (x )|x ∈A }叫做函数的值域。
(2)求函数值域的常用方法☉观察法:通过解析式的简单变形和观察(数形结合),利用熟知的基本初等函数的值域,求出函数的值域。
☉配方法:若函数是二次函数形式,即可化为y=ax 2+bx+c(a=0)型的函数,则可通过配方再结合二次函数的性质求值域,但要注意给定区间的二次函数最值得求法(可结合图像)。
☉换元法:通过对函数的解析式进行适当换元,可将复杂的函数划归为几个简单的函数,从而利用基本函数的取值范围求函数的值域。
☉分离常数法:此方法主要是针对有理分式,即将有理分数转化为“反比例函数”的形式,便于求值域。
y= 型 y= 值域:{y |y ≠}☉判别式法:它主要适用于分式型二次函数,或可通过换元法转化为二次函数的一些函数求值域问题。
但在用判别式法求值域时因忽视一些“着重点”而容易出错。
☉充分利用函数的单调性,对单调性未知的,应该先判断其单调性。
在通过定义域进行判断其函数取值范围。
注意:值域对基础函数、不等式、开方,绝对值等的要求较高,学生需要注意这些方面的掌握。
例1.函数()24f x x =-的值域为( )A. (),4-∞-B. (],4-∞-C. ()4,-+∞D. [)4,-+∞ 【答案】D ()244f x x =-≥-,故函数的值域为[)4,-+∞,故选D.例2.若函数234y x x =--的定义域为[]0,m ,值域为,则m 的取值范围是( )A .(]0,4BC 【答案】C 【解析】试题分析:函数234y x x =--对称轴为当0x =时0y =,所以结合二次函数图像可知m 的取值范围是例3 )A.{|3}x x ≤B.{|03}x x ≤≤C.{|3}x x ≥D.{|3}x x ≤-【答案】B 【解析】试题分析:由于2099x ≤-+≤,所以 B.例4_________.2,,x R ∈∴。
例5则f (x )的值域为________________ 【答案】{y|y ≠-1}-101,故f (x )的值域为{y|y ≠-1 }。
例6.求函数的值域。
【解析】思路分析:1)题意分析:这是求分式型函数的值域,而且分子、分母是同次幂。
2)解题思路:分离出常数,使问题简化。
解:分离常数,得。
由,得,即有. 所以函数的值域是。
解题后的思考:该方法适用于分式型函数,且分子、分母是同次幂,这时可以通过多项式的除法,分离出常数,使问题简化。
例7 求函数322122+-+-=x x x x y 的值域。
解 原式变形为0)13()12()12(2=-+-+-y x y x y (*)(1)当21=y 时,方程(*)无解; (2)当21≠y 时,∵R x ∈,∴0)13)(12(4)12(2≥----=∆y y y ,解得21103<≤y 。
由(1)、(2)得,此函数的值域为)21,103[例8 求函数1++=x x y 的值域。
解 令1-=x t ,则t ≥0,得12+=t x ,∴4321122+⎪⎭⎫⎝⎛+=++=t t t y ,22211x y x -=+222213211x y x x -==-++211x +≥23031x <+≤12y -<≤[)12-,又 t ≥0,∴143210122=+⎪⎭⎫ ⎝⎛+≥++=t t y , 故原函数的值域为[)+∞∈,1y函数解析式的表达方式☉待定系数法:若已知函数模型(如一次函数、二次函数等),可用待定系数法求解。
☉换元法:已知复合函数f(g(x))的解析式,可用换元法,但此时要注意换元法之后自变量的组织范围。
☉解方程组法:已知函数f (x )满足某个等式,这个等式除f (x )是未知量外,外出现其他未知量,如f (-x ),f (1)等,必须根据已知等式(如用-x 或者1替换x )再构造其他等式组成方程组,通过解方程组求f (x )的解析式。
例1.已知()f x 是一次函数,且3(1)2(2)5f f -=-,2(0)(1)1f f --=,则()f x 的解析式为( ) A .()32f x x =- B .()32f x x =+ C .()23f x x =+ D .()23f x x =-【答案】A 试题分析:设一次函数()f x kx b =+,依题意有()()3225k b k b +-+=-,()21b k b --+=,联立方程组,解得3,2k b ==-,所以()32f x x =-. 考点:待定系数法求解析式. 例2.已知)(x f 是一次函数,且满足,172)1(3+=+x x f 则=)(x fC. 32-xD. 52+x 【答案】A 【解析】因为)(x f 是一次函数,且满足f (x)ax b,3f (x 1)3a(x 1)b 2x 17,=++=++=+则A 例3,则函数()f x 的解析式为( )A.2()f x x = B.()2()11f x x x =+≥ C.()2()221f x x x x =-+≥ D.()2()21f x x x x =-≥【答案】C 【解析】试题分析:设则()21,(1)x t t =-≥代入已知可得()()222(1)112f t t t t t =+-=-+≥函数()f x 的解析式为()2()221f x x x x =-+≥考点:函数的解析式例4.若[()]63,()21,()f g x x g x x f x =+=+且则的解析式为 ( )A .3B .3xC .3(21)x +D .61x +【答案】B 试题:令12)(+==x x g t ,则=t 3,故x x f 3)(=,选B. 练习题1.函数f(x)=2 2的定义域是 ( )A. {x|-1≤x≤2}B. {x|-1≤x<0或0<x≤2}C. {x|-1≤x<0}D. {x|0<x≤2}【答案】C 【解析】由题设可得 22 0 01 0 ,应选答案C 。
2.函数的定义域是 ( ) A .B .C .D .【答案】C 【解析】试题分析:⎩⎨⎧≠≥+001x x ,解得:且}0≠x ,故选C.考点:函数的定义域3.如果函数()y f x =的值域为[],a b ,则()1f x +的值域为( ) A. []1,1a b ++ B. []1,1a b -- C. [],a b D. (),a b 【答案】C 【解析】函数()y f x =的值域为[],a b ,而函数()y 1f x =+是把函数()y f x =向左平移1个单位得到的,纵坐标不变,()1f x +的值域为[],a b .所以C 选项是正确的.4.函数y =x 2-2x 的定义域为{0,1,2,3},那么其值域为 ( )A.{-1,0,3}B.{0,1,2,3}C.{y |-1≤y ≤3}D.{y |0≤y ≤3} 【答案】A 【解析】把x =0,1,2,3分别代入y =x2-2x ,即y =0,-1,3.5.定义在上的函数的值域为,则函数的值域为( )A .;B .;C .;D .无法确定【答案】 B 【解析】函数的图象可以视为函数的图象向右平移一个单位而得到,所以,它们的值域是一样的R ()y f x =[,]a b (1)y f x =-[1,1]a b --[,]a b [1,1]a b ++(1)y f x =-()y f x =6)A. B. C. D.【答案】C【解析】7.已知()2145f x x x -=+-,则()f x 的表达式是( )A. 26x x +B. 287x x ++C. 223x x +-D. 2610x x +-【答案】A 【解析】令1x t -=,1x t ∴=+. ()()()2214156f t t t t t ∴=+++-=+.()26f x x x ∴=+.故A 正确.点睛:在求解析式时,一定要注意自变量的范围,也就是定义域.如已知f =x +1,求函数f (x )的解析式,通过换元的方法可得f (x )=x 2+1,函数f (x )的定义域是[0,+∞),而不是(-∞,+∞).8,则函数()f x 的解析式为( ) 【答案】A 【解析】试题分析:令1x t -=,则1x t =+,故选A.考点:函数的解析式.9.已知2(1)1f x x -=+,则()f x 的表达式为( ) A .2()1f x x =+ B .2()(1)1f x x =++ C .2()(1)1f x x =-+ D .2()f x x =【答案】B 【解析】试题分析:由题意得,设1t x =-,则1x t =+,所以()22(1)122f t t t t =++=++,所以函数的解析式为2()(1)1f x x =++,故选B . 考点:函数的解析式.10f(x)的表达式为 A C D [2,2]-[1,2][0,2]【答案】A考点:换元法求函数解析式11.设函数,则下列关系中正确的是 ( ). A. B. C. D. 【答案】B 【解析】试题分析:函数是开口向上的抛物线,对称轴是2-=x ,离对称轴越远,函数值越大,所以()()()201->>f f f ,故选B.考点:二次函数的单调性12.若一次函数()x f 满足()8923+=+x x f ,则()x f 的解析式是 A.()89+=x x f B.()23+=x x fC.()43--=x x fD.()23+=x x f 或()43--=x x f【答案】B 分析:()()()3298962332232f x x x x f x x +=+=++=++∴=+ 考点:函数求解析式13.函数()(0)f x kx b k =+>,若[0,1],x ∈ [1,1]y ∈-,则函数()y f x =的解析式是( ) A.21y x =- C.21y x =-或21y x =-+ D.21y x =--【答案】A 【解析】试题分析:由函数解析式可知函数为增函数,所以122111b k y x k b b =-=⎧⎧∴∴=-⎨⎨+==-⎩⎩考点:函数求解析式14.函数),12()(,32)(-=+=x g x f x x g 则=+)1(x f ( ) A.12+x B.54+x C.54-x D.14+x【答案】B 【解析】试题分析:()()()14312212+=+-=-=x x x g x f ,()()541141+=++=+x x x f ,故选B.考点:复合函数c x x x f ++=4)(2)2()0()1(-<<f f f )2()0()1(->>f f f )2()1()0(->>f f f )1()2()0(f f f <-<15,则函数()f x 的解析式为( )A.2()f x x = B.()2()11f x x x =+≥ C.()2()221f x x x x =-+≥ D.()2()21f x x x x =-≥【答案】C 【解析】试题分析:设则()21,(1)x t t =-≥代入已知可得()()222(1)112f t t t t t =+-=-+≥函数()f x 的解析式为()2()221f x x x x =-+≥16.若f(x)对于任意实数x 恒有2f(x)-f(-x)=3x +1,则f(x)=( ) A .x -1 B .x +1 C .2x +1 D .3x +3 【答案】B 【解析】∵2f(x)-f(-x)=3x +1,① 将①中x 换为-x ,则有 2f(-x)-f(x)=-3x +1,② ①×2+②得3f(x)=3x +3, ∴f(x)=x +1. 考点:复合函数解析式求法17,则等于( )【答案】D ,所以()()743222+=++=t t t f ,因为所以 考点:函数解析式的求法。