Angiopoietin-Tie2通路介导2型糖尿病诱发脑卒中后血管损伤
- 格式:pdf
- 大小:1.04 MB
- 文档页数:16
Ⅱ型糖尿病合并急性脑外伤所致神经功能障碍的研究进展陈琳1,曾晓亭2综述胡煜2,喻安永1审校遵义医科大学附属医院急诊科1、妇产科生殖医学中心2,贵州遵义563000【摘要】Ⅱ型糖尿病(type 2diabetes ,T2D)是一种严重危害人民身体健康的非传染性慢性疾病,主要表现为高血糖和胰岛素抵抗。
创伤性脑损伤(traumatic brain injury ,TBI)是由外部机械力对大脑造成的暂时性或永久性的损伤,因其高死亡率和低治愈率,已成为现代社会的一个重大公共卫生问题。
我国是T2D 和TBI 高发的国家,T2D 患者合并TBI 可以加重多种继发性脑损伤,包括脑水肿、神经炎症、血脑屏障(blood-brain barrier ,BBB)的破坏和神经元凋亡等,导致神经功能损伤和一系列神经退行性疾病,严重影响患者愈后。
因此,本文就其发病机制进行综述,以期为临床上解决T2D 合并TBI 加剧神经功能障碍和神经退行性疾病发生的相关问题以及治疗药物的筛选提供借鉴与参考。
【关键词】创伤性脑损伤;Ⅱ型糖尿病;谷氨酸兴奋性神经毒性反应;神经炎症反应;氧化应激反应【中图分类号】R587.2【文献标识码】A【文章编号】1003—6350(2023)20—3028—05Research progress of neurological dysfunction caused by type Ⅱdiabetes combined with acute brain trauma.CHEN Lin 1,ZENG Xiao-ting2,HU Yu 2,YU An-yong 1.Department of Emergency 1,Reproductive Medicine Center ofObstetrics and Gynecology 2,Affiliated Hospital of Zunyi Medical University,Zunyi 563000,Guizhou,CHINA【Abstract 】Type 2diabetes (T2D)is a kind of non-infectious chronic disease that seriously endangers people's health,mainly manifested by hyperglycemia and insulin resistance.Traumatic brain injury (TBI)is a temporary or perma-nent brain injury caused by external mechanical forces.It has become a major public health problem in modern society due to its high mortality and low cure rate.China is a country with high incidence of T2D and TBI.T2D patients com-bined with TBI can aggravate a variety of secondary brain injuries,including cerebral edema,neuroinflammation,de-struction of the blood-brain barrier (BBB),and neuronal apoptosis,leading to neurological damage and a series of neuro-degenerative diseases,which seriously affect patients'recovery.The purpose of this article is to provide reference for the clinical solution for T2D in combination with TBI that exacerbates the occurrence of neurological dysfunction and neuro-degenerative diseases,and for the screening of therapeutic drugs.【Key words 】Traumatic brain injury;Type 2diabetes;Glutamate excitatory neurotoxic reaction;Neuroinflamma-tory response;Oxidative stress reaction ·综述·doi:10.3969/j.issn.1003-6350.2023.20.032基金项目:国家自然科学基金(编号:82060245);省部共建协同创新中心项目(编号:教科技厅函[2020]39号);贵州省科技计划项目(编号:[2019]5661、[2020]4Y149)。
脂联素和2型糖尿病血管病变摘要 2型糖尿病是一种以血糖升高为特征的代谢性疾病,其血管并发症是导致患者致残和致死的主要原因,包括大血管病变和微血管病变。
脂联素(adiponectin ADPN)是一种脂肪细胞分泌的特异蛋白质,通过多种生物学效应,阻遏糖尿病患者血管并发症的发生和发展,目前已经通过实验室和临床研究得到广泛证实。
关键词脂联素 2型糖尿病病变现将研究概况综述如下:1. 脂联素概述一般认为,脂联素主要由白色脂肪组织中的脂肪细胞合成和分泌,近来Viengchareun[1]等发现脂联素在棕色脂肪组织如T37i细胞中也能够表达。
脂联素参与多种生理和病理生理现象的调节,尤其是影响代谢性疾病、心血管疾病、肿瘤等的发生和发展。
一般认为,脂联素含量减低与肥胖、胰岛素抵抗、缺血性心脏病密切相关,而脂联素含量的增加见于某些严重疾病,如终末期肾脏病和严重的心衰,其机制还不甚明了。
在机体中,脂联素以低分子量、中分子量和高分子量3种多聚体形式存在于血浆或细胞中。
研究表明,脂联素的功能及作用与其含量和多聚体的分布有重要关系,尤其是高分子量多聚体所占的比例决定其功能。
Kadowaki[2]实验室最先报告了2个脂联素受体,它们属于跨膜蛋白,AdipoR1存在于多种组织和细胞中,尤其在骨骼肌中表达较强。
AdipoR2则主要在肝脏表达。
Kubota[3]最近的一项动物试验显示,adipoR1和adipoR2也在下丘脑表达。
脑脊液内也发现了微量的脂联素,并提示脂联素可能通过刺激下丘脑adipoR1及其下游的信号来促进食物的摄取。
2. 脂联素与2型糖尿病2型糖尿病的特征性病理生理改变是胰岛素抵抗与ß细胞功能缺陷,而目前认为胰岛素抵抗是2型糖尿病的始动因素,因此如何改善胰岛素抵抗对2型糖尿病的防治具有重要的意义。
Kadowaki[2] 通过ob/ob小鼠实验发现脂联素可能通过信号分子将肝脏、骨骼肌的三酰甘油转运至脂肪组织, 从而降低外周组织中的脂质浓度,也使得通过肝门的游离脂肪酸及甘油三酯含量相应降低,从而增加这些组织对胰岛素的敏感性。
Angiopoietin-2与中国出血性脑卒中人Angiopoietin-2在中国出血性脑卒中人群中的功能研究—噬菌体抗体的构建和单核苷酸多态分析脑卒中是中国首位致残和次位致死病因,分出血性和缺血性两类。
出血性脑卒中约占中国人群发病的21%~48%,是高加索人群的2~3倍。
这种种族发病率的差异,提示疾病发生机理可能不同。
出血性脑卒中发病机理未明,高血压、动脉粥样硬化(atherosclerosis,AS)、血管先天发育异常、中毒、感染等均直接或间接促进了此病的发生和发展,而动脉粥样硬化和血管壁功能不全是脑卒中发病的基础。
“损伤反应学说”提示,各种危险因素诱发的内皮功能失调,是动脉粥样硬化内膜损伤的基础。
因此,血管内皮功能失调的研究,将有助于最终阐明AS发生的机制。
Angiopoietin-2(Ang2)是最新克隆的一类血管内皮细胞特异的酪氨酸激酶(receptor tyrosine kinase,RTK)配体Angiopoietin(Ang)中,唯一具有拮抗作用的生长因子,能竞争性地阻断angiopoietin-1(Ang1)与Tie2的结合而使血管内皮细胞处于不稳定状态。
在VEGF的协调作用下,Ang2促进原始血管网络进入重塑过程,最终形成功能完善的血管。
Ang2基因敲除的动物模型,早期血管发生不受影响,但进入成熟期后,由于失去Ang2的整合稳定作用,血管壁完整性遭到破坏,通透性增加,表现为水肿、出血而死亡。
在自发性高血压性脑卒中易患大鼠(stroke-prone spontaneously hypertensive rat,SHRSP)和大脑中动脉闭塞(middle cerebral artery occlusion,MCAO)模型中,均可见Ang2表达明显升高,出现水肿、出血和血管新生等病理变化。
上述试验证据表明,Ang2在维持血管稳定性方面具有重要作用,Ang2功能异常引起的血管壁功能不全,可能是出血性脑卒中发病机理之一。
ʌ述评ɔAng-1/Tie-2信号通路与缺血性脑卒中的相关性研究述评❋王㊀延,钱海兵ә(贵州中医药大学,贵阳㊀550025)㊀㊀摘要:Ang-1/Tie-2信号通路是近年来新发现的一种介导血管新生的信号传导通路,广泛参与内皮细胞的活化㊁迁移㊁增殖和分化等过程㊂该信号通路可通过促使血管新生㊁抑制外周血管及脑血管的血管通透性㊁减轻炎症介导的神经损伤等机制,在一定程度上起到保护脑缺血组织的作用㊂诸多研究表明,Ang-1/Tie-2信号通路有望成为缺血性脑卒中(CIS )的重要治疗靶点㊂本文通过对Ang-1/Tie-2信号通路与CIS 相关机制的深入探讨,为充分利用中药资源研制以Ang-1/Tie-2信号通路为靶点的CIS 药物提供新策略㊂㊀㊀关键词:缺血性脑卒中;血管生成素-1;酪氨酸激酶受体-2;神经保护㊀㊀中图分类号:R541㊀㊀文献标识码:A㊀㊀文章编号:1006-3250(2021)01-0170-03❋基金项目:贵州省全国一流建设学科项目(GNYL[2017]008号)-贵州几种常用苗药药效物质与安全性评价;贵州省普通高等学校特色重点实验室(黔教合KY 字[2017]006)-贵州省中医药方证药理研究特色重点实验室;贵州省科教青年英才培养工程项目(黔省专合字[2012]167号)-温郁金对卒中后抑郁大鼠脑组织海马区AQP 表达及神经干细胞再生影响的研究作者简介:王㊀延(1994-),女,重庆人,在读硕士研究生,从事中药及民族药抗心脑血管疾病的应用基础研究㊂ә通讯作者:钱海兵(1977-),男,教授,硕士研究生导师,从事中药及民族药抗心脑血管疾病的应用与基础研究,Tel :139****0701,E-mail :279753407@ ㊂㊀㊀脑卒中(Stroke )也称 中风 ,其中超过80%的患者为缺血性脑卒中(cerebral ischemic stroke ,CIS )[1]㊂CIS 又称为 脑梗死 ,是指颅内血流障碍导致局限性脑组织损害进而出现相应神经功能缺损的疾病,是我国第一大致死性㊁国外第二大致死性疾病[2]㊂目前治疗急性CIS 的有效治疗措施是采用rt-PA 静脉溶栓,但治疗时间窗仅4.5h 且费用高昂,因此能通过其获益者小于3%[3-4]㊂即使rt-PA 溶栓成功,也导致患者出现颅内出血等治疗风险,并且CIS 中有2/3患者会遗留不同程度的残疾[4],严重影响患者的愈后生活,也给家庭和社会带来难以承受的经济负担㊂因此,探索多途径㊁多靶点的新治疗方案或研发安全有效的药物迫在眉睫㊂在缺血早期刺激血管新生和抑制神经损伤,从而改善脑卒中后的功能恢复,是治疗CIS 的重要措施㊂血管生成素-1和酪氨酸激酶受体-2(Angiopoietin-1/Tyrosine Kinase Receptor-2,Ang-1/Tie-2)通路是近年来新发现的一种除血管内皮生长因子(vascular endothelial growth factor ,VEGF )以外的可用于介导血管生成的信号传导通路,广泛参与内皮细胞的活化㊁迁移㊁增殖和分化等过程,与血管生成㊁调控炎症及神经元保护和再生等生理病理过程密切相关[5-7]㊂近年来,关于Ang-1/Tie-2与CIS 的相关研究逐渐丰富,因此本文就Ang-1/Tie-2与CIS 相关性进行综述㊂1㊀Ang-1/Tie-2的生物学特征1.1㊀Ang-1的生物学特性血管生成素(Angs )由分子量约为14.4kD 的123个氨基酸构成,包括Ang-1㊁Ang-2㊁Ang-3和Ang-4,且均作用于其特异性受体Tie-2[8],近年来对Ang-1和Ang-2的研究较多㊂Ang 家族主要在肝脏中合成,于上个世纪90年代被成功鉴定,是RNase 超家族中惟一具有促血管生成能力的成员,也是目前已知的所有血管生成因子中独具核糖核酸酶活性的因子,广泛分布于正常血浆及实体肿瘤组织中[8-9]㊂Ang-1是一种分泌蛋白㊁基因定位于8q22.3~q23,相对分子质量约75ˑ103,全长498个氨基酸,含3个结构域,血管平滑肌细胞㊁管周细胞和肿瘤细胞是人Ang-1的主要来源[7,10]㊂1.2㊀Tie-2的生物学特性酪氨酸激酶受体-2(Tie-2)为跨膜蛋白质,由细胞外区㊁跨膜区㊁细胞内区组成,其配体是Ang ,主要表达于内皮细胞和一些造血细胞[11]㊂Tie-2基因定位于9p21,全长约109ˑ103bp ,编码1124个氨基酸[11-12]㊂2㊀Ang-1/Tie-2信号通路传导途径Ang-1和Ang-2具有高度同源性,都可以结合受体Tie-2,但是只有Ang-1可以触发受体Tie-2的自磷酸化,进而激活受体㊂Ang-2并不触发Tie-2受体的自磷酸化,而是与Ang-1竞争,并作为Ang-1/Tie-2信号传导系统的抑制剂[13-17]㊂Ang-1利用羧基端纤维蛋白原样结构域与Tie-2上细胞外的3个免疫球蛋白结构域中的第2个结合[18], 聚集 Tie-2单体使之发生二聚化,促进Tie-2细胞内区域的交叉磷酸化(如图1)㊂被激活的Tie-2继续诱导激活磷脂酰肌醇-3-激酶/丝氨酸-苏氨酸蛋白激酶B (phosphatidylinositol 3-kinase microtubule /serine /threonine kinase ,PI3K /Akt )信号通路,即Tie-2通过PI3K 的p85亚基诱发PI3K 磷酸化,PI3K 再激活Akt 从而磷酸化能抑制Ang-2释放的FOXO-1;激活的Akt 也可以上调生存素(Survivin )的表达,增加细胞生存力;Akt 激活后还可以抑制凋亡蛋白的前体,如BAD ㊁caspse-9㊂通过以上各方面的作用,从而抑制血管内皮细胞凋亡,参与血管生成的调节[7-9](如图2)㊂图1㊀Ang-1激活Tie-2示意图图2㊀Ang-1/Tie-2信号通路传导示意图3㊀Ang-1/Tie-2信号通路在CIS 中的作用3.1㊀促使血管再生㊁重塑及成熟血管生成失败和侧枝血管生长不足是CIS 等血管性疾病愈后不佳的主要问题,挽救大脑内皮细胞免于细胞凋亡和刺激血管增殖,降低脑梗死面积是脑缺血性疾病的治疗思路㊂血管生成与神经发生有直接关系,也是新生神经元生存的必须条件[19],有助于改善CIS 的愈后㊂调节血管再生的关键信号主要有血管内皮生长因子及其受体VEGF /VEGFR 信号和Ang /Tie-2信号㊂在脑缺血后的血管再生过程中,Ang-2会破坏血管稳定性,促使血管内皮细胞迁移,诱导血管生成;Ang-1则通过与受体Tie-2结合,使Tie-2发生磷酸化,激活其下游的PI3K /Akt 信号通路㊂一方面促使内皮细胞形成血管样结构,另一方面聚集内皮周围支持细胞,两者共同完成血管的重塑和成熟㊂有研究发现[20],大鼠在脑缺血再灌注损伤后其脑微血管生成可能与Ang /Tie-2系统的表达密切相关㊂Meng 等[21]实验证明,在缺血脑组织中,Ang-1能通过内皮细胞的増殖促进微血管生成㊂Gandin 等[22]在研究MLC901时发现,其可以通过调节Ang-1㊁Ang-2来刺激血管的生成与重塑㊂3.2㊀抑制外周血管及脑血管的通透性CIS 常伴有血脑屏障(blood-brain barrier ,BBB )的破坏:基质金属蛋白酶-2(matrix metalloprotein-2,MMP-2)在脑组织缺血早期表达增多,促使闭合蛋白和咬合蛋白的降解;而后MMP-9在脑组织缺血后期表达上调,使闭锁小带蛋白-1(zonulaoccluden-1,ZO-1)表达减少㊁肌动蛋白重组,共同导致内皮细胞间的连接性被破坏[23]㊂内皮细胞完整性的破坏,导致血管通透性增加,会进一步引起脑部水肿和出血,加重缺血状况㊂然而,Ang-1/Tie-2信号可抑制外周血管及脑血管的血管通透性,其机制是Ang-1激活Tie-2,活化的Tie-2迁移到细胞连接处,通过肌动蛋白细胞骨架的重组和内皮间连接处的血管内皮钙黏蛋白(VE-cadherin )的积累来实现细胞骨架的重建㊂Ang-1/Tie-2信号通过PI3K 和NADPH 氧化酶亚基p47phox 来激活Rac1,Rac1通过骨架蛋白IQGAP1以活性GTP 结合的形式(GTP-Rac1)稳定下来进而发挥作用,同时GTP-Rac1再通过GTP 酶信号传感器p190RhoGAP 对RhoA 发出抑制信号[15]㊂其中,Rac1是肌动蛋白细胞骨架重组的信号,降低血管通透性;RhoA 可调节微丝细胞骨架,破坏血管稳定性,增加血管通透性[24]㊂因此,Ang-1/Tie-2信号通过激活Rac1,抑制RhoA 实现VE-cadherin 的聚集,促使微血管床形成有效屏障(如图3)㊂Zhang 等[25]研究也发现,Ang-1可降低小鼠脑卒中后脑血管的渗漏和缺血损伤体积㊂Poornima 等[26]实验证明,在糖尿病小鼠中,Ang-1的降低使脑血管的通透性增加,与脑卒中后BBB 的破坏及脑出血增加有关㊂3.3㊀减轻炎症介导的神经损伤脑缺血发生后,内源小胶质细胞的激活以及外周血白细胞浸润脑内实质等因素会产生明显的炎性反应,加重血管和神经的损伤㊂其中,胶质细胞㊁神经元㊁大脑内皮细胞等细胞内的炎症转录因子NF-κB 被激活后,会调控肿瘤坏死因子-α(TNF-α)㊁细胞间黏附分子-1(ICAM-1)㊁白细胞介素-1β(IL-1β)等炎症因子的大量释放[23]㊂研究证明[27],体内存在的Ang-1能诱导Tie-2自磷酸化,从而抑制NF-κB ,表现出抗炎的特点㊂加之Ang-1/Tie-2信号通图3㊀Ang-1/Tie-2信号激活VE-cadherin过程示意图路还能通过稳定细胞骨架来抑制血管通透性,减少渗出,可协同达到抑制炎症的效果㊂但在炎症应激期间,细胞表面的Tie-2或细胞外Ang-1数量减少㊁细胞外Ang-2数量增加等各种因素共同作用导致Tie-2信号减弱,未磷酸化的Tie-2无法对转录因子Foxo1产生有效抑制,过量的Foxo1诱导Ang-2迅速释放,从而加重血管炎症的同时也增加血管渗漏,形成炎症的有害循环[15,28]㊂Yan等[29]证明,Ang-1可显著降低体外培养脑内皮细胞炎症因子RAGE的表达,起到抗炎作用㊂3.4㊀抑制神经细胞损伤坏死及促进神经元新生CIS发生后,缺血脑组织中的葡萄糖供给严重减少,自由基产生增多,因此无法产生足够的ATP 用于神经细胞的正常活动,神经细胞发生损伤坏死㊂研究证明[30],CIS下诱导的血管生成能促进脑卒中后神经的发生并增强其功能㊂Ang-1/Tie-2信号通路则参与CIS中微血管及神经的形成㊂Ang-1能通过内皮细胞的増殖促进微血管生成,同时能维持BBB的完整性,挽救缺血半暗带濒死细胞,修复缺血区神经元损伤,提升神经元的功能保护㊁抑制神经细胞的凋亡[30]㊂半胱氨酸天冬氨酸蛋白酶-3 (Caspase-3)被认为是细胞凋亡的核心因素[31],在CIS情况下,Ang-1/Tie-2信号通路能抑制Caspase-3的活化,避免神经细胞在缺血缺氧环境下发生损伤坏死,保护缺血半暗带的濒死神经元㊂研究显示[26],在T1DM大鼠脑卒中后,通过Ang-1/Tie-2的表达可减少神经炎症和抑制BBB渗漏,在一定程度上抑制炎症介导的神经细胞损伤㊂对他汀类药物如辛伐他汀的研究也证明,其可以通过诱导Ang-1/ Tie-2表达,增加磷酸化Tie-2的活性,而在CIS发生后具有神经保护作用[32]㊂4㊀中药通过干预Ang-1/Tie-2信号通路对CIS的影响传统中医药疗法治疗CIS疾病在我国已有悠久的历史,充分利用中药资源研制以Ang-1/Tie-2信号通路为靶点的CIS药物有着巨大的应用前景和重要临床意义㊂临床治疗CIS常用经方补阳还五汤,可增加并维持内源性Ang-1的表达,促进缺血区脑组织的微血管生成[33]㊂丹龙醒脑方㊁通心络保护大脑缺血的作用机制,亦与上调Ang-1的表达进而促进血管新生有关[34-35]㊂源于中药的活性单体三七三醇皂苷可上调Ang-1/Tie-2的表达,促进内皮细胞增殖,使MCAO大鼠脑缺血侧的微血管密度增加,从而减轻缺血脑组织的损伤[8]㊂Zhou[36]等实验数据显示,电针刺激足三里诱导的Ang-1上调而发挥的血管生成作用是脑卒中神经保护的机制之一㊂5㊀结语Ang-1/Tie-2信号通路在CIS后促进脑血管生成㊁抑制炎症反应㊁保护神经元等方面发挥着积极作用,Ang-1/Tie-2是否能延长CIS的治疗时间窗虽有待实验证明,但其对CIS多方面的积极作用可发挥协同效应,从而达到更好的治疗效果已得到部分证实㊂探讨Ang-1/Tie-2信号通路在CIS中的相关机制,深入了解Ang-1/Tie-2信号通路在CIS发展过程中的重要性,可为治疗CIS新策略的提出及以Ang-1/ Tie-2信号通路为靶点的药物研发提供研究思路㊂我国中医药是一个巨大宝库,中药化学成分复杂,具有多层次㊁多靶点㊁多成分协同作用的特点和多途径治疗疾病的优势㊂中医药基于Ang-1/Tie-2信号通路干预CIS的治疗策略,势必会成为未来研究的新方向㊂参考文献:[1]㊀王新凤,张腾飞,程谦谦,等.缺血性脑卒中在Wnt信号通路上与血管新生的研究概况[J].中国民族民间医药,2018,27(15):55-58.[2]㊀华之卉,刘静,范琳琳,等.对一例急性缺血性脑卒中合并心房颤动病人的抗凝药学服务[J].药学服务与研究,2018,18(2):83-86.[3]㊀YANG Y,XU GH,ZHANG ZC,et al.Cornin increasesangiogenesis and improves functional recovery after stroke via theAng1/Tie2axis and the Wnt/β-catenin pathway[J].ArchPharm Res,2016,39(1):133-142.[4]㊀霍晓川,高峰.急性缺血性卒中血管内治疗中国指南2018[J].中国卒中杂志,2018,13(7):706-729.[5]㊀董育玮,陆伦根.血管生成素/Tie系统在血管生成中的作用[J].诊断学理论与实践,2014,13(3):331-335.[6]㊀卢秀珍,毕宏生,崔彦.血管内皮生长因子与促血管生成素1对大鼠血管内皮细胞的作用[J].中国组织工程研究,2012,16(2):247-251.[7]㊀张涓,吕姣姣,李豪,等.整合素α6β1与Ang-1/Tie-2对脑缺血血管神经再生的研究[J].现代中医药,2018,38(4):122-129.[8]㊀惠振.三七三醇皂苷促脑梗死大鼠血管新生改善脑灌注机制研究[D].南京:南京中医药大学,2017.[9]㊀王晓婷.一氧化碳中毒小鼠脑内Ang-1㊁Ang-2及Tie-2mRNA的动态变化及丁苯肽对其影响[D].大连:大连医科大学,2010.(下转第177页)[36]㊀苏涛.补肾疏肝方治疗肝肾不足型帕金森病伴发轻中度抑郁障碍临床观察[J].新中医,2018,50(8):74-77.[37]㊀刘霞.逍遥散治疗帕金森病伴抑郁的临床疗效观察[J].实用老年医学,2013,27(9):778-780.[38]㊀刘红,王玉芬,崔艳艳.舒肝解郁胶囊治疗帕金森病合并抑郁的临床观察[J].世界临床药物,2015,36(7):480-483. [39]㊀郭云霞,李绍旦,杨明会.补肾活血颗粒治疗帕金森病抑郁临床研究[J].环球中医药,2014,7(4):275-278.[40]㊀李敏,刘毅,冯宇,等.补肾活血中药辅助治疗对帕金森病患者抑郁症状的影响[J].中药材,2013,36(8):1375-1378. [41]㊀李明,郑佳,王慧萍,等.针灸联合黛力新治疗帕金森病神经精神障碍的疗效观察[J].实用中西医结合临床,2016,16(6):68-69.[42]㊀叶家盛,何宇峰,彭慧渊,等.针刺四关穴结合重复经颅磁刺激治疗帕金森病抑郁30例[J].中医外治杂志,2017,26(2):22-23.[43]㊀夏毅,丁莹,王海东,等.电针合药物治疗帕金森病伴发抑郁症及对患者血清BDNF的影响[J].中国针灸,2012,32(12):1071-1074.[44]㊀李玮,周荣,胡万华,等.颐脑解郁方辅助治疗肾虚肝郁型帕金森病抑郁临床观察[J].浙江中西医结合杂志,2018,28(10):821-825.[45]㊀周荣,胡万华.中西医结合对不同证型帕金森并抑郁的疗效及认知功能的影响[J].中国现代医生,2015,53(28):132-134.[46]㊀梁湛,莫诗瑶.小剂量艾司西酞普兰联合加味逍遥散对帕金森患者抑郁及整体症状疗效分析[J].齐齐哈尔医学院学报,2018,39(3):281-282.[47]㊀刘尧斌,纪家镛,叶剑鹏,等.疏肝解郁胶囊联合帕罗西丁治疗帕金森病伴抑郁的疗效对比研究[J].国际精神病学杂志,2017,44(5):819-821.收稿日期:2020-05-11(上接第172页)[10]㊀AUGUSTIN H G,YOUNG KOH G,THURSTON G,et al.Controlof vascular morphogenesis and homeostasis through theangiopoietin-Tie system[J].Nat Rev Mol Cell Bio,2009,10(3):165-177.[11]㊀赵萍萍,刘陶文.Ang/Tie2系统与肿瘤血管生成的关系[J].医学综述,2011,17(21):3250-3252.[12]㊀郭凌宇,魏瑞鹏,贾永平.血管生成素1,2/Tie2系统在心血管疾病中的研究进展[J].中西医结合心脑血管病杂志,2018,16(3):302-305.[13]㊀GURNIK S,DEVRAJ K,MACAS J,et al.Angiopoietin-2-induced blood-brain barrier compromise and increased stroke sizeare rescued by VE-PTP-dependent restoration of Tie2signaling[J].Acta Neuropathol,2016,131(5):753-773.[14]㊀STIEHL T,THAMM K,JÖRG KAUFMANN,et al.Lung-targeted RNA interference against angiopoietin-2amelioratesmultiple organ dysfunction and death in sepsis[J].Crit CareMed,2014,42(10):654-62.[15]㊀GHOSH C C,THAMM K,BERGHELLI A V,et al.DrugRepurposing Screen Identifies Foxo1-Dependent Angiopoietin-2Regulation in Sepsis[J].Crit care Med,2015,43(7):230-240.[16]㊀KIM M,ALLEN B,KORHONEN E A,et al.Opposing actionsof angiopoietin-2on Tie2signaling and FOXO1activation[J].JClin Invest,2016,126(9):3511-3525.[17]㊀KORHONEN E A,LAMPINEN A,GIRI H,et al.Tie1controlsangiopoietin function in vascular remodeling and inflammation[J].J Clin Invest,2016,126(9):3495-3510.[18]㊀BARTON W A,TZVETKOVA-ROBEV D,MIRANDA E P,etal.Crystal structures of the Tie2receptor ectodomain and theangiopoietin-2-Tie2complex[J].Nat Structl Mol Biol,2006,13(6):524-532.[19]㊀SLEVIN M,KUMAR P,GAFFNEY J,et al.Can angiogenesisbe exploited to improve stroke outcome?Mechanisms andtherapeutic potential[J].Clin Sci,2006,111(3):171-183.[20]㊀李峰,蔡光先.脑缺血后神经再生及其治疗的研究进展[J].中华中医药杂志,2016,31(2):578-581.[21]㊀MENG Z,LI M,HE Q,et al.Ectopic expression of humanangiopoietin-1promotes functional recovery and neurogenesis afterfocal cerebral ischemia[J].Neuroscience,2014,267:135-146.[22]㊀GANDIN C,WIDMANN C,LAZDUNSKI M,et al.MLC901Favors Angiogenesis and Associated Recovery after IschemicStroke in Mice[J].Cerebrovasc Dis,2016,42(1-2):139-154.[23]㊀刘胜敏,杨志宏,孙晓波.脑缺血性血脑屏障损伤机制与药物保护作用的研究进展[J].中国医药,2013,8(7):1031-1033.[24]㊀赵宗璇,潘燕.Rho GTP酶家族分子及其调节因子与血管内皮屏障功能间的关系[J].药学学报,2019,54(4):587-593.[25]㊀ZHANG Z G,ZHANG L,CROLL S D,et al.Angiopoietin-1reduces cerebral blood vessel leakage and ischemic lesion volumeafter focal cerebral embolic ischemia in mice[J].Neuroscience,2002,113(3):683-687.[26]㊀POORNIMA VENKAT,TAO YAN,MICHAEL CHOPP,et al.Angiopoietin-1Mimetic Peptide Promotes Neuroprotection afterStroke in Type1Diabetic Rats[J].Cell Transplant,2018,27(12):1744-1752.[27]㊀张耀华.一㊁OVGP1在血管重塑中的作用及其致高血压的功能机制研究二㊁Tie2基因遗传变异对脑卒中遗传易感性的作用研究[D].北京:北京协和医学院,2016.[28]㊀PARIKH,SAMIR M.Angiopoietins and Tie2in vascularinflammation[J].Curr Opin Hemato,2017,24(5):432-438.[29]㊀YAN T,VENKAT P,YE X,et al.HUCBCs increaseangiopoietin1and induce neurorestorative effects after stroke inT1DM rats[J].Cns Neurosci Ther,2015,20(10):935-944.[30]㊀RUAN L,WANG B,ZHUGE Q,et al.Coupling of neurogenesisand angiogenesis after ischemic stroke[J].Brain Res,2015,1623:166-173.[31]㊀LOSSI LAURA,CASTAGNA CLAUDIA,MERIGHIADALBERTO.Caspase-3Mediated Cell Death in the NormalDevelopment of the Mammalian Cerebellum[J].Int J Mol Sci,2018,19(12):1-23.[32]㊀郭建文,潘峰,李俊雅,等.调节 脑中血海 干预Ang/Tie2信号通路治疗缺血中风的思路探讨[J].中国中医基础医学杂志,2010,22(5):370-372.[33]㊀SHEN J,ZHU Y,YU H,et al.Buyang Huanwu decoctionincreases angiopoietin-1expression and promotes angiogenesisand functional outcome after focal cerebral ischemia[J].Journalof Zhejiang University SCIENCE B,2014,15(3):272-280.[34]㊀张秋雁,朱伟,徐瑾瑜,等.丹龙醒脑方对脑缺血再灌注大鼠血管新生及对Ang-1蛋白表达的影响[J].中国实验方剂学杂志,2016,22(1):139-142.[35]㊀刘军.通心络对急性脑梗死大鼠血清脂蛋白相关磷脂酶A2及脑微血管变化的影响[J].中国药业,2015,24(24):94-96. [36]㊀ZHOU H J,TANG T,ZHONG J H,et al.Electroacupunctureimproves recovery after hemorrhagic brain injury by inducing theexpression of angiopoietin-1and-2in rats[J].BMC ComplemAltern M,2014,14(1):127.收稿日期:2020-05-23。
钠-葡萄糖共转运蛋白2抑制剂相关性糖尿病酮症酸中毒徐惟捷;马德琳;余学锋【期刊名称】《内科急危重症杂志》【年(卷),期】2022(28)4【摘要】钠-葡萄糖转运蛋白2抑制剂(SGLT2i)是一种通过增加尿糖排泄来降低血糖的新型口服降糖药,因具有心肾保护作用而广泛地应用于2型糖尿病(T2D)患者。
但在临床中发现该类药物可通过多种途径升高血酮体水平,在疾病的急性期、手术、食物和液体摄入减少、脱水、酒精中毒、胰岛素用量骤减等情况,特别是当胰岛素缺乏和脱水同时出现时,血酮体水平的进一步升高会引起非高血糖性酮症酸中毒(euDKA)。
值得注意的是在这类DKA发生时,患者的血糖水平可以正常或轻度升高,而且起病初期临床症状往往不太典型,仅有轻微的头晕、乏力、恶心或只是略感不适,常常会延误诊断。
因此,临床医生在给患者使用SGLT2i之前,需要评估患者是否具有发生DKA的高危因素,选择合适的患者使用该药。
在用药过程中,定期监测血β-羟丁酸水平,在出现可能导致DKA的诱因时及时停用该药。
【总页数】4页(P269-271)【作者】徐惟捷;马德琳;余学锋【作者单位】华中科技大学同济医学院附属同济医院内分泌科【正文语种】中文【中图分类】R587.1【相关文献】1.二肽基肽酶4抑制剂和钠-葡萄糖转运蛋白2抑制剂联合治疗2型糖尿病的临床应用进展2.断奶仔猪小肠钠葡萄糖转运蛋白1和葡萄糖转运蛋白2mRNA表达变化及饲粮添加谷氨酰胺对其的影响3.钠-葡萄糖共转运蛋白2抑制剂对2型糖尿病患者蛋白尿影响的系统评价4.钠氢交换体可能是钠-葡萄糖共转运蛋白2抑制剂心力衰竭获益及不良反应的潜在靶点5.影响钠-葡萄糖协同转运子2抑制剂相关性糖尿病酮症酸中毒发生的危险因素分析因版权原因,仅展示原文概要,查看原文内容请购买。
tie2的分子量
tie2是一种分子量较大的蛋白质,它在生物学研究中扮演着重要的角色。
tie2蛋白质属于酪氨酸激酶受体家族,它在血管生成和维持血管稳态方面发挥着关键作用。
tie2蛋白质的分子量约为180 kDa,它由一个胞外区、一个跨膜区和一个胞内区组成。
胞外区含有多个免疫球蛋白(Ig)样结构域,这些结构域可以与其配体结合,从而触发信号传导。
跨膜区将胞外区与胞内区连接起来,胞内区则包含有激酶活性。
tie2蛋白质主要通过与其配体结合来激活其激酶活性,从而启动下游信号通路。
这些信号通路可以调节血管内皮细胞的增殖、迁移和存活,进而影响血管生成过程。
此外,tie2蛋白质还参与调控血管通透性和炎症反应等生理过程。
在血管生成中,tie2蛋白质与其配体angpt1和angpt2的结合是关键的调控步骤。
angpt1与tie2的结合可以促进血管内皮细胞的稳定和成熟,从而维持血管功能。
而angpt2与tie2的结合则会破坏血管内皮细胞的稳定性,导致血管生成的不稳定和异常。
tie2蛋白质在许多疾病中都起着重要的作用。
例如,在肿瘤血管生成中,tie2蛋白质的过度激活可以导致异常的血管形成,从而促进肿瘤的生长和转移。
因此,抑制tie2信号通路可能成为肿瘤治疗的一种策略。
tie2蛋白质的分子量较大,它在血管生成和维持血管稳态方面发挥着重要作用。
通过与其配体的结合,tie2蛋白质可以激活下游信号通路,调控血管内皮细胞的功能。
对于理解血管生成机制以及开发相关疾病的治疗策略具有重要意义。
《2型糖尿病合并心脑血管并发症患者血清A-FABP的变化及相关性研究》篇一摘要:本文旨在探讨2型糖尿病合并心脑血管并发症患者血清A-FABP(脂肪酸结合蛋白)的变化及其与疾病的相关性。
通过分析患者血清A-FABP水平,探讨其在疾病诊断、病情评估及治疗指导中的潜在价值。
一、引言2型糖尿病是一种常见的慢性代谢性疾病,常伴有心脑血管并发症。
随着病情的发展,患者可能出现心血管和脑血管的损伤。
A-FABP作为一种生物标志物,在脂质代谢和心脑血管疾病中发挥重要作用。
本研究通过分析2型糖尿病合并心脑血管并发症患者血清A-FABP水平的变化,探讨其与疾病的相关性。
二、研究方法1. 研究对象选择2型糖尿病合并心脑血管并发症的患者为研究对象,同时选择健康人群作为对照组。
2. 检测指标检测患者血清A-FABP水平,同时记录患者的血糖、血脂等生化指标。
3. 实验方法采用酶联免疫吸附法检测血清A-FABP水平,运用统计学方法分析数据。
三、结果1. 血清A-FABP水平变化2型糖尿病合并心脑血管并发症患者的血清A-FABP水平显著高于健康对照组(P<0.05)。
2. 血清A-FABP水平与疾病严重程度的关系随着病情的加重,患者血清A-FABP水平呈上升趋势。
经统计分析,血清A-FABP水平与疾病严重程度呈正相关(r=0.78,P<0.01)。
3. 血清A-FABP与其他生化指标的关系血清A-FABP水平与血糖、血脂等生化指标呈正相关。
其中,与低密度脂蛋白(LDL)和甘油三酯(TG)的相关性最为显著。
四、讨论1. 血清A-FABP水平升高的原因及意义血清A-FABP水平升高可能与脂质代谢紊乱、氧化应激等因素有关。
A-FABP作为脂质代谢的标志物,其水平的升高可能反映了患者脂质代谢的异常,对疾病的诊断和病情评估具有潜在价值。
2. 血清A-FABP与心脑血管并发症的关系心脑血管并发症是2型糖尿病的主要并发症之一,其发病机制与脂质代谢紊乱密切相关。
糖尿病合并脑卒中的脑缺血再灌注损伤机制糖尿病是一种常见的慢性疾病,而脑卒中是一种严重的心血管疾病。
当糖尿病与脑卒中同时存在时,往往会导致更加严重的后果。
其中,脑缺血再灌注损伤被认为是糖尿病合并脑卒中产生的一个重要机制。
本文将就糖尿病合并脑卒中的脑缺血再灌注损伤机制进行探讨。
一、糖尿病与脑缺血再灌注损伤的关系糖尿病与脑缺血再灌注损伤之间存在着密切的关联。
糖尿病患者的高血糖状态容易引起血管内皮功能异常,降低自身血管的稳定性,增加脑卒中的风险。
同时,高血糖还会导致脑细胞能量代谢紊乱,增加缺血再灌注过程中细胞损伤的程度。
二、脑缺血再灌注损伤的机制在脑缺血再灌注损伤过程中,多种机制相互作用,共同导致细胞死亡。
首先,脑缺血会导致局部缺氧和能量代谢紊乱,引发脑细胞受损。
其次,再灌注过程中,血液中的氧分子和神经递质会产生大量的自由基,进一步破坏脑细胞的结构和功能。
此外,炎症反应的激活以及细胞内钙离子的异常增加也是有害的因素。
最后,缺血再灌注还会引发脑血管的损伤,导致脑血流的改变和微循环障碍。
在糖尿病患者中,由于糖代谢异常和炎症反应的持续激活,这些机制的作用更加严重,从而导致脑缺血再灌注损伤的加重。
三、糖尿病对脑缺血再灌注损伤机制的影响糖尿病的存在会对脑缺血再灌注损伤机制产生一系列影响。
首先,糖尿病患者的高血糖状态会加速自由基的生成和脂质过氧化反应,导致氧化应激的增加。
其次,高血糖还会促进炎症反应的激活,释放多种炎症介质,引发神经细胞的炎性损伤。
此外,糖尿病还会增加细胞内钙离子浓度,进一步加重脑细胞的损伤。
最后,糖尿病患者的微循环障碍和血管内皮功能异常也会影响脑血流的恢复,加重缺血再灌注损伤的程度。
四、预防和治疗措施针对糖尿病合并脑卒中的脑缺血再灌注损伤,预防和治疗非常重要。
首先,控制血糖水平是关键。
糖尿病患者应定期监测血糖,通过饮食控制、运动和药物治疗等手段将血糖维持在适当的范围内。
其次,保持良好的生活习惯,如戒烟限酒、合理膳食和适度运动,可以减少脑卒中的发生风险。
Clinical studies show that hyperglycemia increases mortality and leads to poor functionalrecovery in both diabetic and nondiabetic patients after stroke (Capes et al., 2001).Hyperglycemia and DM increase the blood-brain barrier (BBB) permeability and infarctvolume (Ennis and Keep, 2007; Mooradian et al., 2005) after stroke in rats. However, themolecular mechanisms underlying DM-induced vascular damage after stroke requireclarification.Angiopoietin-1 (Ang1) belongs to a family of endothelial growth factors, and promotesmigration, sprouting, and survival of endothelial cells and mediates vascular remodelingthrough activation of signaling pathways triggered by the Tie2 tyrosine kinase receptor (Suriet al., 1996). Transgenic over-expression of Ang1 increases vascularization (Suri et al.,1998), prevents plasma leakage in the ischemic brain, and consequently decreases ischemiclesion volume (Zhang et al., 2002). An Ang1 peptide mimetic treatment accelerates woundhealing in diabetes animals (Liu et al., 2008; Van Slyke et al., 2009). Angiopoietin-2(Ang2), as an antagonist for Ang1, inhibits Ang1-promoted Tie2 signaling and decreasesblood vessel maturation and stabilization. In a model of oxygen-induced retinopathy, Ang2over-expression results in enhanced preretinal and intraretinal neovascularization (Feng etal., 2007). Increased Ang2 in the vitreous fluid is associated with angiogenic activity inpatients with diabetic retinopathy (Watanabe et al., 2005). However, whether angiopoietins/Tie2 is involved in DM-induced vascular damage after ischemic brain stroke has not beeninvestigated.Previous studies show that type-2 DM (T2DM) rats [Goto-Kakizaki (GK)] have morebleeding than their normoglycemic controls (Wistar) after stroke (Elewa et al., 2009). Thereis significantly more frequent hematoma formation in the ischemic hemisphere and changesin vessel architecture in GK rats as opposed to controls, and these changes in blood vesselsin the diabetic rats increase the risk for hemorrhagic transformation, possibly exacerbatingneurovascular damage due to cerebral ischemia/reperfusion (Ergul et al., 2007). We reportedthat db/db T2DM mice exhibit significantly increased blood glucose, lesion volume, whitematter damage, and have worse neurological outcome after stroke compared with non-DMmice (Chen et al., 2010). However, whether T2DM induces vascular damage in the ischemicbrain and the molecular mechanisms underlying the vascular damage after stroke have notbeen investigated. In this study, we investigate the vascular damage in T2DM and non-DMwild type (WT) mice subjected to stroke. In addition, we test the hypothesis that the Ang1/Ang2/Tie2 signaling pathway contributes to vascular damage after stroke in T2DM mice.Materials and MethodsAll experiments were conducted in accordance with the standards and procedures of theAmerican Council on Animal Care and Institutional Animal Care and Use Committee ofHenry Ford Health System.Middle cerebral artery occlusion model and experimental groupsA total of 45 adult male T2DM (BKS.Cg-m +/+ Lepr db /J, db/db) mice and 35 adult malenon-diabetic WT (m+/+ db) mice (2-3 months), purchased from Jackson Laboratory(Wilmington, MA) were employed in the present study. Four T2DM and 4 WT mice wererandomly selected as Sham group. All other animals were subjected to transient (1 hour)right middle cerebral artery occlusion (MCAo) using the filament model, as previouslydescribed (Liu et al., 2007). Briefly, MCAo was induced by advancing a 6-0 surgical nylonsuture (8.0-9.0 mm determined by body weight) with an expanded (heated) tip from theexternal carotid artery into the lumen of the internal carotid artery to block the origin of theMCA. Sham-operated animals underwent the same surgical procedure without sutureinsertion. All survival animals (23 T2DM and 23 WT mice) were sacrificed 24 hours afterNIH-PA Author Manuscript NIH-PA Author ManuscriptNIH-PA Author ManuscriptMCAo. The animals were divided into four sets: the first set of MCAo mice (n=11/group)were used for histochemical and immunohistochemical staining, a second set of MCAo mice(n=4/group) were used for BBB leakage measurement, a third set of MCAo mice (n=4/group) were used for Western blot, angiogenic protein array and real time-PCR (RT-PCR)assays, and a fourth set of MCAo mice and all Sham-operated mice (n=4/group) were usedfor isolation of primary mouse brain microvascular endothelial cells (MBEC) and thecommon carotid artery (CCA).Blood glucose measurementBlood glucose was measured before and 24h after MCAo by using test strips for glucose(Polymer technology System, Inc. Indianapolis, IN 46268 USA).Mortality rateThe number of dead animals in each group was counted 24h after MCAo (n=18, in T2DMgroup; n=8, in WT group) in the four sets of stroke animals, and the mortality rate ispresented as a percentage of the total number of stroke animals (n=41, in T2DM group;n=31, in WT group).Quantitative evaluation of Evans blue dye extravasation2% Evans blue dye in saline was injected intravenously as a BBB permeability tracer at 1hour before sacrifice. The entire ischemic hemisphere was collected for BBB leakagemeasurement. Evans blue dye fluorescence intensity was determined by a microplatefluorescence reader (excitation 620nm and emission 680nm). Calculations were based on theexternal standards dissolved in the same solvent. The amount of extravasated Evans bluedye was quantified as micrograms per ischemic hemisphere.Histological and hemorrhagic assessmentThe first set of mice (n=11/group) were sacrificed 24 hours after MCAo. The brains werefixed by transcardial-perfusion with saline, followed by perfusion and immersion in 4%paraformaldehyde before being embedded in paraffin for immunostaining. For calculation ofbrain hemorrhagic rate, all brains from dead animals (8 WT, 18 T2DM) were also immersedin 4% paraformaldehyde and embedded in paraffin. Using a mouse brain matrix(Activational Systems Inc., Warren, MI), the cerebral tissues were cut into seven equallyspaced (1 mm) coronal blocks. For cerebral hemorrhage analysis, a series of adjacent 6 μmthick sections were cut from each block and stained with hematoxylin and eosin (HE). TheHE staining section was analyzed under a 10X microscope. The hemorrhagic rate wascalculated by the number of animals with hemorrhage divided by the total number ofanimals including those that died and survived. All analyses were performed byinvestigators blinded to the experimental groups.Immunohistochemical stainingFor immunostaining, a standard paraffin block was obtained from the center of the lesion(bregma –1mm to +1mm). A series of 6 μm thick sections were cut from the block. Every10th coronal section for a total of 5 sections was used. Antibody against von WillebrandFactor [vWF, an endothelial cell (EC) marker, rabbit polyclonal IgG, 1:300, Dako,Carpenteria, CA, USA], alpha smooth muscle actin [αSMA, a marker of smooth muscle cell(SMC) and pericyte, mouse monoclonal IgG, 1:800, Dako], Ang1 (rabbit polyclonal IgG,1:2,000, Abcam, Cambridge, MA, USA), and Ang2 (rabbit polyclonal IgG, 1:2,000, Abcam)imminostaining were employed. For Tie2 and Occludin (tight junction protein)immunofluorescent staining, the sections were directly incubated with the antibody againstTie2 (rabbit polyclonal IgG antibody, 1:80, Santa Cruz Biotechnology, Santa Cruz, CA,NIH-PA Author Manuscript NIH-PA Author Manuscript NIH-PA Author ManuscriptUSA) or Occludin (mouse monoclonal IgG antibody, 1:200, Zymed, San Francisco, CA,USA) conjugated with cyanine-3 (Cy3, 1:200, Jackson Immunoresearch Laboratories, WestGroove, PA, USA). Control experiments consisted of staining brain coronal tissue sectionsas outlined above, but non-immune serum was substituted for the primary antibody.For immunostaining measurement, five sections with each section containing 8 fields ofview within the cortex and striatum from the ischemic boundary zone (IBZ) (Cui et al.,2009) were digitized using a 40X objective (Olympus BX40) using a 3-CCD color videocamera (Sony DXC-970MD) interfaced with an MCID computer imaging analysis system(Imaging Research, St. Catharines, Canada). The IBZ is defined as the area surrounding thelesion, which morphologically differs from the surrounding normal tissue. Theimmunostaining analysis was performed by an investigator blinded to the experimentalgroups.Vascular density and diameter measurementFor measurement of vascular density and diameter, the total number of vWF-immunostainedpositive vessels was counted and divided by the total tissue-area to determine vasculardensity. The diameter of a total of 20 enlarged thin walled vessels and vascular density inthe IBZ were measured in each referenced coronal section using the MCID computerimaging analysis system (Length Trace function).Arteriolar density and αSMA-positive cell density measurement αSMA immunoreactivity was employed to identify arterioles (Ho et al., 2006). αSMA was also used as a marker of vascular mural cells including vascular smooth muscle cells (VSMCs) and pericytes. The numbers of αSMA-positive arterioles in the IBZ and αSMA-positive cell numbers in the arterioles were counted. The density of αSMA-positive arterioles was analyzed with regard to small and large vessels (mean diameter ≥ 10 μm) in the IBZ, and the total number of αSMA-positive coated vessels per mm 2 area is presented.The number of αSMA-positive cells in artery wall was counted. Data are presented as theaverage number of a total 10 largest arteries in the IBZ.Quantification of Ang1, Ang2, Occludin and Tie2 immunostainingFor quantitative measurement of Ang1, the number of Ang1-positive cells in each 40X fieldwas counted. Data are presented as the number of Ang1-positive cells per 40X field. Formeasurement of Ang2, Tie2 and Occludin, the percentage of immunoreactive-positive areaof Ang2, Tie2 or Occludin in the vessel wall was measured, respectively. Data are presentedas the percentage of positive area to the vessel wall. Data were analyzed in a blindedmanner.Angiogenic protein arrayThe entire ipsilateral hemisphere of WT and T2DM mouse brains were collected 24 hoursafter MCAo for angiogenic protein array analysis. Briefly, brain tissue samples weresuspended in Phosphate Buffered Saline (PBS) with 1 μl/ml protease inhibitor cocktail setIII (Calbiochem, San Diego, CA, USA). Samples were sonicated then centrifuged to pelletfor 5 min at 12,000 rpm. Supernatant was transferred to new tube and protein concentrationwas measured by BCA protein assay kit (Thermo Scientific). 200 μg of protein was used torun the assay following standard protocol for the R&D Proteome Profiler Antibody ArrayMouse Angiogenesis Array Kit. Data were analyzed with the MCID image analysis system.NIH-PA Author ManuscriptNIH-PA Author ManuscriptNIH-PA Author ManuscriptPrimary artery cell culture and migration measurementTo investigate DM-induced arterial damage, and to further elucidate whether themechanisms underlying DM-decreased artery cell migration after stroke is related to theAng1/Tie2 pathway, a primary artery culture model was employed. The CCAs weresurgically removed from Sham-WT, Sham-T2DM, and MCAo-WT and MCAo-T2DM mice24 hours after surgery, respectively. The CCAs were divided into 6 groups as following: 1)Sham-WT; 2) Sham-DM; 3) MCAo-WT; 4) MCAo-DM; 5) MCAo-WT + Tie2-FC(recombinant mouse Tie2/FC, 2μg/ml, Chimera, R&D System, Cambridge, MA); 6) MCAo-DM + Ang1 (100 ng/ml, Chemicon, Temecula, CA). The CCA was placed in Matrigel.Arterial cultures were allowed to grow for 5 days before being photographed and the tenlongest distances of outgrowth were measured under a microscope at 4X magnification,processed with the MCID and averaged. n = 6/group.Primary MBEC culture and capillary-like tube formation assayThe entire brains from Sham-WT and Sham-DM mice and the entire ipsilateral hemispherebrains from MCAo-WT and MCAo-DM mice were collected 24 hours after MCAo. Thebrain tissue was isolated and digested in collagenase/dispase, and the microvessels separatedby centrifugation in a Percoll (Sigma) gradient. Microvessels were seeded in flasks coatedwith rat-tail collagen and the medium was changed every 2-3 days. Capillary tube formationassay was performed. Briefly, 0.1 ml growth factor reduced Matrigel (Becton Dickinson)was added per well of a 96 well plate, and MBECs (2×104 cells) were incubated for 5 hours(n=6/group). For quantitative measurements of capillary tube formation, Matrigel wells weredigitized under a 4X objective (Olympus BX40) for measurement of total tube length ofcapillary tube formation using a video camera (Sony DXC-970MD) interfaced with theMCID image analysis system at 5 hours. Tracks of MBECs organized into networks ofcellular cords (tubes) were counted and averaged in randomly selected 3 microscopic fields.The total length of tube formation was quantitated.RT-PCRTissues from the ischemic area of the ipsilateral hemisphere, the CCA, and primary culturedMBECs from both WT and T2DM mice were isolated 24 hours after MCAo. Total RNAwas isolated using a standard protocol. Quantitative PCR was performed on an ABI 7000PCR instrument (Applied Biosystems, Foster City, CA) using 3-stage program parametersprovided by the manufacturer. Each sample was tested in triplicate, and analysis of relativegene expression data using the 2-ΔΔCT method. The following primers for RT-PCR weredesigned using Primer Express software (ABI). Ang1: Fwd: TAT TTT GTG ATT CTGGTG ATT; Rev: GTT TCG CTT TAT TTT TGT AATG. Ang2: Fwd: GTC TCC CAGCTG ACC AGT GGG, Rev: TAC CAC TTG ATA CCG TTG AAC; Tie2: Fwd: CGG CCAGGT ACA TAG GAG GAA; Rev: TCA CAT CTC CGA ACA ATC AGC. GAPDH: Fwd:AGA ACA TCA TCC CTG CAT CC; Rev: CAC ATT GGG GGT AGG AAC AC.Western blot assayEqual amounts of brain-tissue from the ischemic area the ipsilateral hemisphere and thehomologous tissue from the contralateral hemisphere lysate from WT and T2DM mice weresubjected to Western blot analysis. Specific proteins were visualized using a SuperSignalWest Pico chemiluminescence kit (Pierce). The primary antibodies were used: anti-Ang1(1:1000 dilution, Abcam), anti-Ang2 (1:1000 dilution, Abcam), and anti-Tie2 (1:500dilution, Santa Cruz), and anti-β-actin (1:2000; Santa Cruz) for 16 hours at 4°C. Themembranes were washed with blocking buffer without milk, and then incubated withhorseradish peroxidase-conjugated secondary antibody in blocking buffer.NIH-PA Author Manuscript NIH-PA Author Manuscript NIH-PA Author ManuscriptStatistical AnalysisTwo-way ANOVA was performed on data of the vascular density, vascular diameter,arteriolar density and αSMA-positive cell in arteries, percentage of positive area forOccludin, Ang1, Ang2 and Tie2 in the vessels, Ang1, Ang2 and Tie2 protein expressiontested by Western blot in the ischemic brain, and primary artery cell migration and MBECtube formation in vitro. If an overall treatment group effect was detected at P < 0.05, Tukeytest after Post Hoc Test was used for multiple comparisons. Independent Samples T-Testwas used for testing BBB leakage, Ang1 protein expression measured by angiogenic proteinarray, primary artery cell migration and Ang1/Ang2/Tie2 mRNA expression measured byRTPCR in the brain tissues and arterial cultures between two groups. Pearson partialcorrelations after Bivariate correlation were used to analyze the correlation of the brainhemorrhagic rate with the mortality. All data are presented as mean ± Standard Error (SE).Results T2DM mice increase blood glucose T2DM mice significantly increased blood glucose (before MCAo: 396.9 ± 37.1; after MCAo: 402.4 ± 40.8mg/dl) levels compared to WT mice (before MCAo: 170.5 ± 11.5; after MCAo: 185.9 ± 13.8mg/dl, p<0.05), respectively.T2DM mice exhibit increased cerebral hemorrhagic and mortality rate after stroke The cerebral hemorrhagic rate in T2DM mice (14/29=48.3%) was significantly higher than that in WT mice (2/19=10.5%). The mortality in the T2DM mice (18/41=43.9%) was also significantly higher than that in the WT mice (8/31=25.8%). Moreover, the cerebral hemorrhagic rate is significantly correlated with mortality (P<0.05, r=0.85).T2DM mice exhibit increased vascular damage in the ischemic brain after strokeTo test whether diabetes affects vascular change and BBB function, the Evans blue dyeextravasation assay was employed to identify the change of BBB function, and vWF- (ECs),αSMA- (SMCs and pericytes) and tight junction protein- (Occludin) immunostaining wereperformed. The vascular density/diameter, arteriolar density and αSMA-positive cellnumbers in the arteries were counted both in the IBZ and contralateral hemispheres. Fig.1A-C show that the BBB leakage significantly increased (p<0.05, n=4/group) in T2DM micecompared with WT mice 24 hour after MCAo. Fig.1D-I show that the vWF-vascular densitywas significantly increased, but the vWF-vascular diameter were significantly decreased inthe ipsilateral hemisphere in T2DM mice compared with the WT mice after stroke (p<0.05,n=11/group). Fig.1J-O show that the αSMA-arteriolar density and αSMA-cell numbers inthe arterial vessel wall both in the ipsilateral and contralateral hemisphere in T2DM micewere significantly decreased compared with the WT mice after stroke (p<0.05, n=11/group).Additional studies are warranted to investigate vascular changes in T2DM without stroke.Fig.1P-T show that T2DM mice has significantly decreased Occludin expression in vesselsin the ipsilateral hemisphere compared with WT mice after stroke (p<0.05, n=11/group).These data indicate that both the BBB function and vascular structure were more damagedin T2DM mice than in WT mice after stroke.T2DM mice show decreased Ang1/Tie2 and increased Ang2 expression in the ischemic brain after strokeThe Ang1/Tie2 system controls recruitment of pericytes and their precursors, and ECsurvival, and is implicated in blood vessel formation and vascular stabilization (Iurlaro et al.,2003; Metheny-Barlow et al., 2004). Ang2, as an antagonist of Ang1, is associated withendothelial apoptosis and BBB breakdown (Nag et al., 2005). To test the mechanism byNIH-PA Author ManuscriptNIH-PA Author ManuscriptNIH-PA Author Manuscriptwhich diabetes induces vascular damage after stroke in the ischemic brain, Ang1, Tie2 andAng2 gene and protein expression were measured. Fig.2 shows that T2DM significantlydecreased Ang1 and Tie2 expression, but increased Ang2 expression in the ischemicipsilateral hemisphere measured by immunostaining compared to WT mice (p<0.05, n=11/group).To confirm the immunostaining data, Western blot and angiogenic protein array were alsoemployed. Fig.3A and 3B show that T2DM mice significantly decreased Ang1 and Tie2protein level, but increased Ang2 protein level in the ipsilateral hemisphere compared to WTmice (p<0.05, n=4/group). There is no significant difference in Ang1/Ang2 and Tie2 proteinlevels in the contralateral hemisphere. Using angiogenic protein array, Fig.3C shows thatAng1 protein level significantly decreased in both the ipsilateral and contralateralhemisphere in T2DM mice compared with WT mice (p<0.05, n=4/group). Using RT-PCRmeasurement, T2DM also significantly decreased Ang1 and Tie2 gene expression in theipsilateral hemisphere compared with WT mice (Fig.2D , p<0.05, n=4/group).T2DM mice show decreased primary artery cell migration in the CCA with or withoutstroke; Ang1/Tie2 pathway mediates DM-induced artery cell migration after strokeTo confirm the in vivo findings, an in vitro arteriogenesis study was performed usingprimary artery cell migration models. The CCAs derived from both DM and WT mice werecultured in vitro. Fig.4A-C show that the arterial cell migration significantly decreased inthe CCA derived from Sham-DM mice compared with the CCA derived from Sham-WTmice. Similarly, Fig.4D and 4E show that the artery cell migration in the CCA derived fromMCAo-DM mice significantly decreased compared with the CCA derived from MCAo-WTmice. However, Tie2-FC treatment of arterial cells (Fig.4F ) from the CCA obtained fromthe MCAo-WT group significantly decreased arterial cell migration compared to arterialcells from the CCA obtained from the MCAo-WT control group (p<0.05, n=6/group). Fig.4G shows that Ang1 treatment significantly increased artery cell migration in DM-CCAafter MCAo compared with non-treatment DM-CCA control group. In addition, Ang1 geneexpression measured by RT-PCR significantly decreased in T2DM ipsilateral CCAcompared with WT ipsilateral CCA after stroke (Fig.4I , p<0.05, n=4/group). These datasuggest that the decreased arteriogenesis in T2DM mice after stroke are related to the Ang1/Tie2 pathway.T2DM mice show increased angiogenesis with or without strokeTo confirm the in vivo angiogenesis findings, in vitro angiogenesis assays were performedusing primary capillary tube formation models. The MBECs derived from both T2DM andWT mice with or without MCAo were cultured in vitro. Figure 5 shows that the capillarytube formation was significantly increased in T2DM-MBECs compared with WT-MBECsboth in the Sham and in the MCAo groups (p<0.05, n=6/group).DiscussionIn this study, we found that T2DM mice show significantly increased mortality, brainhemorrhagic rate, vascular damage and decreased BBB function at 24 hour after stroke. Theincreased brain hemorrhage is correlated with mortality after stroke. T2DM mice showsignificantly increased Ang2, but exhibit decreased Ang1/Tie2 expression in the ischemicbrain compared to WT mice after stroke. The Ang1/Ang2/Tie2 signaling pathway maycontribute to the vascular destabilization and BBB dysfunction after stroke in T2DM mice.NIH-PA Author Manuscript NIH-PA Author Manuscript NIH-PA Author ManuscriptT2DM mice show increased vascular damage and decreased BBB function after strokeTargets for enhancement of angiogenesis are being considered to improve functionaloutcome after stroke (Zhang and Chopp, 2009). However, pathological angiogenesis mayworsen functional outcome after stroke. In addition, vascular stabilization and maturation isimportant in functional angiogenesis. Angiogenesis is an essential biological process in theprogression of diabetes. Disequilibrium of angiogenesis promoters and inhibitors in DM canlead to exuberant but dysfunctional neovascularization, as seen in the diabetic retina, as wellas vascular destabilization, as observed in skeletal and cardiac muscle, thus supporting ahigh degree of heterogeneity of diabetic vascular pathology (Ebrahimian et al., 2005;Weihrauch et al., 2004). In this study, we are the first to find that T2DM (db/db) miceexhibit a pathological increase in angiogenesis and BBB dysfunction as measured by theincreased cerebral vascular/arteriolar density and MBEC capillary-like tube formation, butdecreased vascular diameter and tight junction protein in the ischemic brain vesselscompared with WT mice after stroke. Our findings that T2DM (db/db) mice exhibitincreased vascular density are consistent with data, in which, T2DM (Goto-Kakizaki) ratsalso show an increased vessel density in the ischemic brain after MCAo (Li et al., 2010).Vascular remodeling is a complex phenomenon associated with restructuring of the vesselwall as a consequence of disruption of vascular homeostasis. Development of coronarycollateral vessels (arteriogenesis) is impaired in diabetic patients (Weihrauch et al., 2004).Altered remodeling of arterial collaterals as well as de novo vascularization plays a role inimpaired recovery from ischemia in DM (Waltenberger, 2001). The vascular wall is mainlycomposed of ECs and mural cells (pericytes and VSMCs). Progressive dysfunction anddeath of VSMCs and pericytes is a pathophysiological hallmark of diabetic retinopathy(vom Hagen et al., 2005). VSMC recruitment and SMC coverage in the neovessels of theborder zone of infarcted myocardium are severely reduced and are accompanied bydecreased arteriole formation in db/db mice (Chen and Stinnett, 2008a; Chen and Stinnett,2008b). Consistent with these findings, in the present study, we found that T2DM miceshow significantly decreased αSMA-positive (a marker of VSMC and pericyte) cell numbersin the artery walls both in the ischemic ipsilateral and contralateral and decreased artery cellmigration in the CCA compared with WT mice with or without stroke. Therefore, T2DMmice decreased mural cell recruitment may contribute to pathological cerebralvasculogenesis and also disrupt the integrity of the BBB (Badillo et al., 2007).Angiopoietin/Tie2 activity may contribute to the increased vascular damage after stroke in T2DM miceAngiopoietins (Ang1 and Ang2) and their receptor, Tie2, play a role in vascular integrityand neovascularization in DM. Hyperglycemia may suppress Ang1-induced vascularprotection and provoke endothelial dysfunction and vascular disease (Singh et al., 2010).Hyperglycemia-enhanced ischemic brain damage in mutant manganese superoxidedismutase mice is associated with suppression of hypoxia-inducible factor-1alpha (HIF-1α)(Bullock et al., 2009). Tie2 expression was significantly attenuated, whereas Ang2 wasincreased in db/db mice subjected to myocardial ischemia (Chen and Stinnett, 2008b).Overexpression of Ang2 in the retina enhances vascular pathology, indicating that Ang2plays an essential role in diabetic vasoregression via destabilization of pericytes (Pfister etal., 2010). Intravitreal injection of Ang2 in rats produced a significant increase in retinalvascular permeability (Rangasamy et al., 2011). Dysregulation of the angiopoietins/Tie2system result in an impairment of VSMC recruitment and vascular maturation, whichcontributes to impaired angiogenesis in db/db diabetic mice after myocardia ischemia (Chenand Stinnett, 2008b).NIH-PA Author Manuscript NIH-PA Author Manuscript NIH-PA Author ManuscriptThe Ang1, Ang2/Tie2 system modulates EC, VSMC and pericyte recruitment (Chen andStinnett, 2008b; Pfister et al., 2008). The impaired VSMC recruitment and vessel outgrowthwere rescued with Ang1 gene therapy (Chen and Stinnett, 2008b). Ang1 gene therapyinhibits HIF-1α-prolyl-4-hydroxylase-2, stabilizes HIF-1α expression, and normalizesimmature vasculature in db/db mice (Chen and Stinnett, 2008a). In the present study, wefind that T2DM mice show a significantly decreased Ang1/Tie2, but increased Ang2expression in the cerebral vascular walls in the ischemic brain and arteries after stroke. Invitro study shows that Tie2-FC significantly decreased WT-CCA arterial cell migration, butAng1 treatment significantly increased T2DM-CCA arterial cell migration after stroke.These data support the hypothesis that the increased Ang2 and the decreased Ang1/Tie2 inT2DM mice contribute to the vascular damage and decreased BBB function in the ischemicbrain. Therefore, targeting the Ang1/Ang2/Tie2 signaling pathways may have a beneficialeffect in decreasing retinal vascular permeability in patients with diabetic retinopathy anddecreasing angiogenic activity and vascular permeability in the DM patients. In addition,decreasing angiogenesis will decrease pathological angiogenesis-associated BBBdysfunction and may improve functional outcome in the diabetes population with stroke.In summary, T2DM mice have increased vascular damage in the ischemic brain comparedwith WT mice. Ang1/Ang2/Tie2 signaling pathways may contribute to diabetes-inducedvascular damage in the ischemic brain after stroke. Our results have important implicationsfor the clinical treatment of diabetic retinopathy, diabetic micro/macroangiopathy anddiabetes patients with ischemic stroke.Acknowledgments The authors thank Qinge Lu and Sutapa Santra for technical assistance.Sources of Funding This work was supported by National Institute on Aging RO1 AG031811 (J.C.), National Institute of NeurologicalDisorders and Stroke PO1 NS23393 (M.C.), and 1R41NS064708 (J.C.), and American Heart Association grant09GRNT2300151 (J.C.).ReferencesBadillo AT, et al. Treatment of diabetic wounds with fetal murine mesenchymal stromal cells enhanceswound closure. Cell Tissue Res. 2007; 329:301–11. [PubMed: 17453245]Basu AK, et al. Risk factor analysis in ischaemic stroke: a hospital-based study. J Indian Med Assoc.2005; 103:586, 588. [PubMed: 16570759]Bullock JJ, et al. Hyperglycemia-enhanced ischemic brain damage in mutant manganese SOD mice isassociated with suppression of HIF-1alpha. Neurosci Lett. 2009; 456:89–92. [PubMed: 19429140]Capes SE, et al. Stress hyperglycemia and prognosis of stroke in nondiabetic and diabetic patients: asystematic overview. Stroke. 2001; 32:2426–32. [PubMed: 11588337]Chen J, et al. White matter damage and the effect of matrix metalloproteinases in type 2 diabetic miceafter stroke. Stroke. 2011; 42:445–52. [PubMed: 21193743]Chen JX, Stinnett A. Ang-1 gene therapy inhibits hypoxia-inducible factor-1alpha (HIF-1alpha)-prolyl-4-hydroxylase-2, stabilizes HIF-1alpha expression, and normalizes immature vasculature indb/db mice. Diabetes. 2008a; 57:3335–43. [PubMed: 18835934]Chen JX, Stinnett A. Disruption of Ang-1/Tie-2 signaling contributes to the impaired myocardialvascular maturation and angiogenesis in type II diabetic mice. Arterioscler Thromb Vasc Biol.2008b; 28:1606–13. [PubMed: 18556567]Cui X, et al. Nitric oxide donor up-regulation of SDF1/CXCR4 and Ang1/Tie2 promotes neuroblastcell migration after stroke. J Neurosci Res. 2009; 87:86–95. [PubMed: 18711749]Ebrahimian TG, et al. Dual effect of angiotensin-converting enzyme inhibition on angiogenesis in type1 diabetic mice. Arterioscler Thromb Vasc Biol. 2005; 25:65–70. [PubMed: 15528473]NIH-PA Author Manuscript NIH-PA Author ManuscriptNIH-PA Author Manuscript。