2015年全国高考文科数学试题及答案
- 格式:doc
- 大小:1.06 MB
- 文档页数:13
绝密★启封并使用完毕前2015年普通高等学校招生全国统一考试(全国卷1)文科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至3页,第Ⅱ卷4至6页。
注意事项:1. 答题前,考生务必将自己的准考证号、姓名填写在答题卡上。
考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致。
2. 第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,在选涂其他答案标号。
第Ⅱ卷必须用0.5毫米黑色签字笔书写作答.若在试题卷上作答,答案无效。
3. 考试结束,监考员将试题卷、答题卡一并收回。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)已知集合A={x|x=3n+2,n ∈N},B={6,8,12,14},则集合A ⋂B 中元素的个数为(A )5(B )4(C )3(D )2(2)已知点A (0,1),B (3,2),向量AC u u u r =(-4,-3),则向量BC uuu r=(A )(-7,-4) (B )(7,4) (C )(-1,4) (D )(1,4) (3)已知复数z 满足(z-1)i=i+1,则z=(A )-2-I (B )-2+I (C )2-I (D )2+i(4)如果3个整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数,从1,2,3,4,5中任取3个不同的数,则3个数构成一组勾股数的概率为(A )103 (B )15 (C )110 (D )120(5)已知椭圆E 的中心在坐标原点,离心率为12,E 的右焦点与抛物线C :y ²=8x 的焦点重合,A ,B 是C 的准线与E 的两个焦点,则|AB|= (A )3 (B )6 (C )9 (D )12(6)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺。
绝密★启封并使用完毕前2015年普通高等学校招生全国统一考试文科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至3页,第Ⅱ卷4至6页。
注意事项:1.答题前,考生务必将自己的准考证号、姓名填写在答题卡上。
考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致。
2.第Ⅰ卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,在选涂其他答案标号。
第Ⅱ卷必须用0.5毫米黑色签字笔书写作答.若在试题卷上作答,答案无效。
3.考试结束,监考员将试题卷、答题卡一并收回。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)已知集合A={x|x=3n+2,n∈N},B={6,8,12,14},则集合A⋂B中元素的个数为(A)5 (B)4 (C)3 (D)2(2)已知点A(0,1),B(3,2),向量AC=(-4,-3),则向量BC=(A)(-7,-4)(B)(7,4)(C)(-1,4)(D)(1,4)(3)已知复数z满足(z-1)i=i+1,则z=(A)-2-I (B)-2+I (C)2-I (D)2+i(4)如果3个整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数,从1,2,3,4,5中任取3个不同的数,则3个数构成一组勾股数的概率为(A)103(B)15(C)110(D)120(5)已知椭圆E的中心在坐标原点,离心率为12,E的右焦点与抛物线C:y²=8x的焦点重合,A,B是C的准线与E的两个焦点,则|AB|=(A)3 (B)6 (C)9 (D)12(6)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺。
问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆为一个圆锥的四分之一),米堆底部的弧度为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放斛的米约有A.14斛B.22斛C.36斛D.66斛(7)已知是公差为1的等差数列,则=4,=(A)(B)(C)10 (D)12(8)函数f(x)=的部分图像如图所示,则f(x)的单调递减区间为(A)(k-, k-),k(A)(2k-, 2k-),k(A)(k-, k-),k(A)(2k-, 2k-),k(9)执行右面的程序框图,如果输入的t=0.01,则输出的n=(A)5 (B)6 (C)7 (D)8(10)已知函数,且f(a)=-3,则f(6-a)=(A)-74(B)-54(C)-34(D)-14(11)圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示,若该几何体的表面积为16+20π,则r=(A)1(B) 2(C) 4(D) 8(12)设函数y=f(x)的图像关于直线y=-x对称,且f(-2)+f(-4)=1,则a=(A)-1 (B)1 (C)2 (D)42015年普通高等学校招生全国统一考试文科数学第Ⅱ卷注意事项:第Ⅱ卷共3页,须用黑色墨水签字笔在答题卡上作答。
绝密★启封并使用完毕前2015年普通高等学校招生全国统一考试文科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至3页,第Ⅱ卷4至6页。
注意事项:1.答题前,考生务必将自己的准考证号、姓名填写在答题卡上。
考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致。
2.第Ⅰ卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,在选涂其他答案标号。
第Ⅱ卷必须用0.5毫米黑色签字笔书写作答.若在试题卷上作答,答案无效。
3.考试结束,监考员将试题卷、答题卡一并收回。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)已知集合A={x|x=3n+2,n∈N},B={6,8,12,14},则集合A⋂B中元素的个数为(A)5 (B)4 (C)3 (D)2(2)已知点A(0,1),B(3,2),向量AC=(-4,-3),则向量BC=(A)(-7,-4)(B)(7,4)(C)(-1,4)(D)(1,4)(3)已知复数z满足(z-1)i=i+1,则z=(A)-2-I (B)-2+I (C)2-I (D)2+i(4)如果3个整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数,从1,2,3,4,5中任取3个不同的数,则3个数构成一组勾股数的概率为(A)103(B)15(C)110(D)120(5)已知椭圆E的中心在坐标原点,离心率为12,E的右焦点与抛物线C:y²=8x的焦点重合,A,B是C的准线与E的两个焦点,则|AB|=(A)3 (B)6 (C)9 (D)12(6)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺。
问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆为一个圆锥的四分之一),米堆底部的弧度为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放斛的米约有A.14斛B.22斛C.36斛D.66斛(7)已知是公差为1的等差数列,则=4,= (A)(B)(C)10 (D)12(8)函数f(x)=的部分图像如图所示,则f(x)的单调递减区间为(A)(k-, k-),k(A)(2k-, 2k-),k(A)(k-, k-),k(A)(2k-, 2k-),k(9)执行右面的程序框图,如果输入的t=0.01,则输出的n=(A)5 (B)6 (C)7 (D)8(10)已知函数,且f(a)=-3,则f(6-a)=(A)-74(B)-54(C)-34(D)-14(11)圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示,若该几何体的表面积为16+20π,则r=(A)1(B) 2(C) 4(D) 8(12)设函数y=f(x)的图像关于直线y=-x对称,且f(-2)+f(-4)=1,则a=(A)-1 (B)1 (C)2 (D)42015年普通高等学校招生全国统一考试文科数学 第Ⅱ卷注意事项:第Ⅱ卷共3页,须用黑色墨水签字笔在答题卡上作答。
2015年全国新课标2卷高考文科数学试题及答案2015普通高等学校招生全国统一考试II卷文科数学第一卷一、选择题:本大题共12小题,每小题5分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合 $A=x-1<x<2$,$B=x<x<3$,则 $A\cup B=$A。
$(-1,3)$ B。
$(-1,0)$ C。
$(0,2)$ D。
$(2,3)$2.若 $a$ 是实数,且 $\frac{2+ai}{1+i}=3+i$,则 $a=$A。
$-4$ B。
$-3$ C。
$3$ D。
$4$3.根据下面给出的2004年至2013年我国二氧化碳年排放量(单位:万吨)柱形图,以下结论中不正确的是此处删除明显有问题的段落)4.已知向量 $a=(1,-1)$,$b=(-1,2)$,则 $(2a+b)\cdot a=$A。
$-1$ B。
$0$ C。
$1$ D。
$2$5.设 $S_n$ 是等差数列 $\{a_n\}$ 的前 $n$ 项和。
若$a_1+a_3+a_5=3$,则 $S_5=$A。
$5$ B。
$7$ C。
$9$ D。
$11$6.一个正方体被一个平面截去一部分后,剩余部分的三视图如右图,则截去部分体积与剩余部分体积的比值为A。
$\frac{1}{1111}$ B。
$\frac{1}{8576}$ C。
$\frac{2}{1254}$ D。
$\frac{1}{333}$7.已知三点 $A(1,-1)$,$B(2,3)$,$C(2,3)$,则 $\triangle ABC$ 外接圆的圆心到原点的距离为A。
$\sqrt{5}$ B。
$3$ C。
$2\sqrt{5}$ D。
$3\sqrt{2}$8.右边程序框图的算法思路来源于我国古代数学名著《九章算术》中的“更相减损术”。
执行该程序框图,若输入的$a,b$ 分别为14,18,则输出的 $a$ 为开始输入a,ba>b是a≠b 否输出a是否结束a=a-b b=b-aA。
2015年全国统一高考数学试卷(文科)(新课标Ⅰ)解析版参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合{|32A x x n ==+,}n N ∈,{6B =,8,10,12,14},则集合A B 中元素的个数为( ) A .5B .4C .3D .2【考点】1E :交集及其运算 【专题】5J :集合【分析】根据集合的基本运算进行求解.【解答】解:{|32A x x n ==+,}{2n N ∈=,5,8,11,14,17,}⋯, 则{8AB =,14},故集合AB 中元素的个数为2个,故选:D .【点评】本题主要考查集合的基本运算,比较基础.2.(5分)已知点(0,1)A ,(3,2)B ,向量(4,3)AC =--,则向量(BC = ) A .(7,4)--B .(7,4)C .(1,4)-D .(1,4)【考点】9J :平面向量的坐标运算 【专题】5A :平面向量及应用【分析】顺序求出有向线段AB ,然后由BC AC AB =-求之.【解答】解:由已知点(0,1)A ,(3,2)B ,得到(3,1)AB =,向量(4,3)AC =--, 则向量(7,4)BC AC AB =-=--; 故选:A .【点评】本题考查了有向线段的坐标表示以及向量的三角形法则的运用;注意有向线段的坐标与两个端点的关系,顺序不可颠倒.3.(5分)已知复数z 满足(1)1z i i -=+,则(z = ) A .2i --B .2i -+C .2i -D .2i +【考点】5A :复数的运算 【专题】5N :数系的扩充和复数【分析】由已知等式变形,然后利用复数代数形式的乘除运算化简求得1z -,进一步求得z . 【解答】解:由(1)1z i i -=+,得21(1)11i i i z i i i+-+-===--, 2z i ∴=-.故选:C .【点评】本题考查复数代数形式的乘除运算,是基础的计算题.4.(5分)如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数.从1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率为() A .310B .15C .110D .120【考点】CC :列举法计算基本事件数及事件发生的概率 【专题】5I :概率与统计【分析】一一列举出所有的基本事件,再找到勾股数,根据概率公式计算即可.【解答】解:从1,2,3,4,5中任取3个不同的数,有(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5)(2,3,4),(2,3,5),(2,4,5),(3,4,5)共10种,其中只有(3,4,5)为勾股数, 故这3个数构成一组勾股数的概率为110. 故选:C .【点评】本题考查了古典概型概率的问题,关键是不重不漏的列举出所有的基本事件,属于基础题.5.(5分)已知椭圆E 的中心在坐标原点,离心率为12,E 的右焦点与抛物线2:8C y x =的焦点重合,A ,B 是C 的准线与E 的两个交点,则||(AB = ) A .3B .6C .9D .12【考点】KH :直线与圆锥曲线的综合;KI :圆锥曲线的综合【专题】5D :圆锥曲线的定义、性质与方程【分析】利用椭圆的离心率以及抛物线的焦点坐标,求出椭圆的半长轴,然后求解抛物线的准线方程,求出A ,B 坐标,即可求解所求结果. 【解答】解:椭圆E 的中心在坐标原点,离心率为12,E 的右焦点(,0)c 与抛物线2:8C y x =的焦点(2,0)重合,可得2c =,4a =,212b =,椭圆的标准方程为:2211612x y +=,抛物线的准线方程为:2x =-,由22211612x x y =-⎧⎪⎨+=⎪⎩,解得3y =±,所以(2,3)A -,(2,3)B --.||6AB =.故选:B .【点评】本题考查抛物线以及椭圆的简单性质的应用,考查计算能力.6.(5分)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:”今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?“其意思为:”在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?“已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有( )A .14斛B .22斛C .36斛D .66斛【考点】LF :棱柱、棱锥、棱台的体积 【专题】5F :空间位置关系与距离【分析】根据圆锥的体积公式计算出对应的体积即可. 【解答】解:设圆锥的底面半径为r ,则82r π=,解得16r π=,故米堆的体积为21116320()5439ππ⨯⨯⨯⨯≈,1斛米的体积约为1.62立方,∴3201.62229÷≈, 故选:B .【点评】本题主要考查椎体的体积的计算,比较基础.7.(5分)已知{}n a 是公差为1的等差数列,n S 为{}n a 的前n 项和,若844S S =,则10(a =) A .172B .192C .10D .12【考点】83:等差数列的性质【专题】11:计算题;4O :定义法;54:等差数列与等比数列 【分析】利用等差数列的通项公式及其前n 项和公式即可得出. 【解答】解:{}n a 是公差为1的等差数列,844S S =, 118743814(4)22a a ⨯⨯∴+⨯=⨯+, 解得112a =. 则101199122a =+⨯=. 故选:B .【点评】本题考查了等差数列的通项公式及其前n 项和公式,考查了推理能力与计算能力,属于中档题.8.(5分)函数()cos()f x x ωϕ=+的部分图象如图所示,则()f x 的单调递减区间为( )A .1(4k π-,3)4k π+,k z ∈B .1(24k π-,32)4k π+,k z ∈C .1(4k -,3)4k +,k z ∈ D .1(24k -,32)4k +,k z ∈ 【考点】HA :余弦函数的单调性 【专题】57:三角函数的图象与性质【分析】由周期求出ω,由五点法作图求出ϕ,可得()f x 的解析式,再根据余弦函数的单调性,求得()f x 的减区间.【解答】解:由函数()cos()f x x ωφ=+的部分图象,可得函数的周期为2512()244πω=-=,ωπ∴=,()cos()f x x πφ=+.再根据函数的图象以及五点法作图,可得42ππφ+=,k z ∈,即4πφ=,()cos()4f x x ππ=+. 由224k x k πππππ++剟,求得132244k x k -+剟,故()f x 的单调递减区间为1(24k -,32)4k +,k z ∈,故选:D .【点评】本题主要考查由函数sin()y A x ωϕ=+的部分图象求解析式,由周期求出ω,由五点法作图求出ϕ的值;还考查了余弦函数的单调性,属于基础题.9.(5分)执行如图所示的程序框图,如果输入的0.01t =,则输出的(n = )A .5B .6C .7D .8【考点】EF :程序框图【专题】5K :算法和程序框图【分析】由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量n 的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案. 【解答】解:第一次执行循环体后,12S =,14m =,1n =,不满足退出循环的条件; 再次执行循环体后,14S =,18m =,2n =,不满足退出循环的条件; 再次执行循环体后,18S =,116m =,3n =,不满足退出循环的条件; 再次执行循环体后,116S =,132m =,4n =,不满足退出循环的条件;再次执行循环体后,132S =,164m =,5n =,不满足退出循环的条件; 再次执行循环体后,164S =,1128m =,6n =,不满足退出循环的条件;再次执行循环体后,1128S =,1256m =,7n =,满足退出循环的条件; 故输出的n 值为7, 故选:C .【点评】本题考查的知识点是程序框图,当循环的次数不多,或有规律时,常采用模拟循环的方法解答.10.(5分)已知函数1222,1()(1),1x x f x log x x -⎧-⎪=⎨-+>⎪⎩…,且f (a )3=-,则(6)(f a -= )A .74-B .54-C .34-D .14-【考点】3T :函数的值【专题】11:计算题;51:函数的性质及应用 【分析】利用分段函数,求出a ,再求(6)f a -. 【解答】解:由题意,1a …时,1223α--=-,无解; 1a >时,2log (1)3a -+=-,7α∴=,117(6)(1)224f a f --∴-=-=-=-.故选:A .【点评】本题考查分段函数,考查学生的计算能力,比较基础.11.(5分)圆柱被一个平面截去一部分后与半球(半径为)r 组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为1620π+,则(r = )A .1B .2C .4D .8【考点】!L :由三视图求面积、体积 【专题】5Q :立体几何【分析】通过三视图可知该几何体是一个半球拼接半个圆柱,计算即可. 【解答】解:由几何体三视图中的正视图和俯视图可知, 截圆柱的平面过圆柱的轴线, 该几何体是一个半球拼接半个圆柱,∴其表面积为:22222111142222542222r r r r r r r r r πππππ⨯+⨯+⨯⨯+⨯+⨯=+, 又该几何体的表面积为1620π+, 22541620r r ππ∴+=+,解得2r =,故选:B .【点评】本题考查由三视图求表面积问题,考查空间想象能力,注意解题方法的积累,属于中档题.12.(5分)设函数()y f x =的图象与2x a y +=的图象关于y x =-对称,且(2)(4)1f f -+-=,则(a = ) A .1-B .1C .2D .4【考点】3A :函数的图象与图象的变换【专题】26:开放型;51:函数的性质及应用【分析】先求出与2x a y +=的反函数的解析式,再由题意()f x 的图象与2x a y +=的反函数的图象关于原点对称,继而求出函数()f x 的解析式,问题得以解决. 【解答】解:与2x a y +=的图象关于y x =对称的图象是2x a y +=的反函数, 2log (0)y x a x =->,即2()log g x x a =-,(0)x >.函数()y f x =的图象与2x a y +=的图象关于y x =-对称, 2()()log ()f x g x x a ∴=--=--+,0x <,(2)(4)1f f -+-=, 22log 2log 41a a ∴-+-+=,解得,2a =, 故选:C .【点评】本题考查反函数的概念、互为反函数的函数图象的关系、求反函数的方法等相关知识和方法,属于基础题二、本大题共4小题,每小题5分.13.(5分)在数列{}n a 中,12a =,12n n a a +=,n S 为{}n a 的前n 项和,若126n S =,则n = 6 . 【考点】89:等比数列的前n 项和【专题】11:计算题;54:等差数列与等比数列【分析】由12n n a a +=,结合等比数列的定义可知数列{}n a 是12a =为首项,以2为公比的等比数列,代入等比数列的求和公式即可求解. 【解答】解:12n n a a +=,∴12n na a +=, 12a =,∴数列{}n a 是12a =为首项,以2为公比的等比数列,11(1)2(12)22126112n n n n a q S q +--∴===-=--,12128n +∴=, 17n ∴+=, 6n ∴=.故答案为:6【点评】本题主要考查了等比数列的通项公式及求和公式的简单应用,解题的关键是熟练掌握基本公式.14.(5分)已知函数3()1f x ax x =++的图象在点(1,f (1))处的切线过点(2,7),则a = 1 .【考点】6H :利用导数研究曲线上某点切线方程 【专题】53:导数的综合应用【分析】求出函数的导数,利用切线的方程经过的点求解即可.【解答】解:函数3()1f x ax x =++的导数为:2()31f x ax '=+,f '(1)31a =+,而f (1)2a =+,切线方程为:2(31)(1)y a a x --=+-,因为切线方程经过(2,7), 所以72(31)(21)a a --=+-, 解得1a =. 故答案为:1.【点评】本题考查函数的导数的应用,切线方程的求法,考查计算能力. 15.(5分)若x ,y 满足约束条件20210220x y x y x y +-⎧⎪-+⎨⎪-+⎩………,则3z x y =+的最大值为 4 .【考点】7C :简单线性规划 【专题】59:不等式的解法及应用【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,代入最优解的坐标得答案.【解答】解:由约束条件20210220x y x y x y +-⎧⎪-+⎨⎪-+⎩………作出可行域如图,化目标函数3z x y =+为3y x z =-+,由图可知,当直线3y x z =-+过(1,1)B 时,直线在y 轴上的截距最大, 此时z 有最大值为3114⨯+=. 故答案为:4.【点评】本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.16.(5分)已知F 是双曲线22:18y C x -=的右焦点,P 是C 的左支上一点,(0A ,.当APF ∆周长最小时,该三角形的面积为【考点】KC :双曲线的性质【专题】11:计算题;26:开放型;5D :圆锥曲线的定义、性质与方程【分析】利用双曲线的定义,确定APF ∆周长最小时,P 的坐标,即可求出APF ∆周长最小时,该三角形的面积.【解答】解:由题意,设F '是左焦点,则APF ∆周长|||||||||A F A P P F A F A P P F=++=++'+ ||||2(AF AF A +'+…,P ,F '三点共线时,取等号),直线AF '的方程为13x =-与2218y x -=联立可得2960y +-=,P ∴的纵坐标为APF ∴∆周长最小时,该三角形的面积为116622⨯⨯⨯⨯=.故答案为:【点评】本题考查双曲线的定义,考查三角形面积的计算,确定P 的坐标是关键. 三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)已知a ,b ,c 分别是ABC ∆内角A ,B ,C 的对边,2sin 2sin sin B A C =. (Ⅰ)若a b =,求cos B ;(Ⅱ)设90B =︒,且a ,求ABC ∆的面积. 【考点】HP :正弦定理;HR :余弦定理 【专题】58:解三角形【分析】2()sin 2sin sin I B A C =,由正弦定理可得:22b ac =,再利用余弦定理即可得出. ()II 利用()I 及勾股定理可得c ,再利用三角形面积计算公式即可得出.【解答】解:2()sin 2sin sin I B A C =, 由正弦定理可得:10sin sin sin a b c A B C k===>, 代入可得2()2bk ak ck =, 22b ac ∴=, a b =,2a c ∴=,由余弦定理可得:222222114cos 12422a a a a cb B ac a a +-+-===⨯. ()II 由()I 可得:22b ac =, 90B =︒,且a =2222a c b ac ∴+==,解得a c == 112ABC S ac ∆∴==.【点评】本题考查了正弦定理余弦定理、勾股定理、三角形面积计算公式,考查了推理能力与计算能力,属于中档题.18.(12分)如图,四边形ABCD 为菱形,G 为AC 与BD 的交点,BE ⊥平面ABCD . (Ⅰ)证明:平面AEC ⊥平面BED ;(Ⅱ)若120ABC ∠=︒,AE EC ⊥,三棱锥E ACD -【考点】LE :棱柱、棱锥、棱台的侧面积和表面积;LY :平面与平面垂直 【专题】5F :空间位置关系与距离【分析】(Ⅰ)根据面面垂直的判定定理即可证明:平面AEC ⊥平面BED ; (Ⅱ)根据三棱锥的条件公式,进行计算即可. 【解答】证明:(Ⅰ)四边形ABCD 为菱形, AC BD ∴⊥,BE ⊥平面ABCD ,AC BE ∴⊥,则AC ⊥平面BED , AC ⊂平面AEC ,∴平面AEC ⊥平面BED ;解:(Ⅱ)设AB x =,在菱形ABCD 中,由120ABC ∠=︒,得A G G C==,2xGB GD ==,BE ⊥平面ABCD ,BE BG ∴⊥,则EBG ∆为直角三角形,12EG AC AG ∴===,则BE ==,三棱锥E ACD -的体积311632V AC GD BE =⨯==解得2x =,即2AB =, 120ABC ∠=︒,22212cos 44222()122AC AB BC AB BC ABC ∴=+-=+-⨯⨯⨯-=,即AC ==在三个直角三角形EBA ,EBD ,EBC 中,斜边AE EC ED ==, AE EC ⊥,EAC ∴∆为等腰三角形,则22212AE EC AC +==, 即2212AE =, 26AE ∴=,则AE ,∴从而得AE EC ED ===EAC ∴∆的面积11322S EA EC =⨯=⨯=,在等腰三角形EAD 中,过E 作EF AD ⊥于F ,则AE ,112122AF AD ==⨯=,则EF =EAD ∴∆的面积和ECD ∆的面积均为122S =⨯,故该三棱锥的侧面积为3+【点评】本题主要考查面面垂直的判定,以及三棱锥体积的计算,要求熟练掌握相应的判定定理以及体积公式.19.(12分)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y (单位:)t 和年利润z (单位:千元)的影响,对近8年的年宣传费i x 和年销售量(1i y i =,2,⋯,8)数据作了初步处理,得到下面的散点图及一些统计量的值.表中i w =,8118i i w w ==∑(Ⅰ)根据散点图判断,y a bx =+与y c =+y 关于年宣传费x 的回归方程类型?(给出判断即可,不必说明理由)(Ⅱ)根据(Ⅰ)的判断结果及表中数据,建立y 关于x 的回归方程;(Ⅲ)已知这种产品的年利润z 与x 、y 的关系为0.2z y x =-.根据(Ⅱ)的结果回答下列问题:()i 年宣传费49x =时,年销售量及年利润的预报值是多少? ()ii 年宣传费x 为何值时,年利润的预报值最大?附:对于一组数据1(u 1)v ,2(u 2)..(n v u ⋯ )n v ,其回归线v u αβ=+的斜率和截距的最小二乘估计分别为:121()()ˆ()nii i nii uu v v uu β==--=-∑∑,ˆˆv u αβ=-. 【考点】BK :线性回归方程 【专题】5I :概率与统计【分析】(Ⅰ)根据散点图,即可判断出,(Ⅱ)先建立中间量w ,建立y 关于w 的线性回归方程,根据公式求出w ,问题得以解决;(Ⅲ)()i 年宣传费49x =时,代入到回归方程,计算即可, ()ii 求出预报值得方程,根据函数的性质,即可求出.【解答】解:(Ⅰ)由散点图可以判断,y c =+y 关于年宣传费x 的回归方程类型;(Ⅱ)令w =,先建立y 关于w 的线性回归方程,由于108.8ˆ681.6d==, ˆˆ56368 6.8100.6cy dw =-=-⨯=, 所以y 关于w 的线性回归方程为ˆ100.668yw =+, 因此y 关于x的回归方程为ˆ100.6y=+ (Ⅲ)()i 由(Ⅱ)知,当49x =时,年销售量y的预报值ˆ100.6576.6y=+, 年利润z 的预报值ˆ576.60.24966.32z=⨯-=,()ii 根据(Ⅱ)的结果可知,年利润z 的预报值ˆ0.2(100.620.12z x x =+-=-+,13.66.82==时,即当46.24x =时,年利润的预报值最大. 【点评】本题主要考查了线性回归方程和散点图的问题,准确的计算是本题的关键,属于中档题.20.(12分)已知过点(0,1)A 且斜率为k 的直线l 与圆22:(2)(3)1C x y -+-=交于点M 、N 两点.(1)求k 的取值范围;(2)若12OM ON =,其中O 为坐标原点,求||MN .【考点】9O :平面向量数量积的性质及其运算;9J :直线与圆的位置关系 【专题】26:开放型;5B :直线与圆【分析】(1)由题意可得,直线l 的斜率存在,用点斜式求得直线l 的方程,根据圆心到直线的距离等于半径求得k 的值,可得满足条件的k 的范围.(2)由题意可得,经过点M 、N 、A 的直线方程为1y kx =+,根据直线和圆相交的弦长公式进行求解.【解答】(1)由题意可得,直线l 的斜率存在,设过点(0,1)A 的直线方程:1y kx =+,即:10kx y -+=. 由已知可得圆C 的圆心C 的坐标(2,3),半径1R =.1<,k <<过点(0,1)A 的直线与圆22:(2)(3)1C x y -+-=相交于M ,N 两点.(2)设1(M x ,1)y ;2(N x ,2)y ,由题意可得,经过点M 、N 、A 的直线方程为1y k x =+,代入圆C 的方程22(2)(3)1x y -+-=, 可得22(1)4(1)70k x k x +-++=, 1224(1)1k x x k +∴+=+,12271x x k =+, 212121212(1)(1)()1y y kx kx k x x k x x ∴=++=+++2222274(1)12411111k k k k k k k k +++=++=+++, 由2121221248121k k OM ON x x y y k++=+==+,解得1k =, 故直线l 的方程为1y x =+,即10x y -+=. 圆心C 在直线l 上,MN 长即为圆的直径. 所以||2MN =.【点评】本题主要考查直线和圆的位置关系的应用,以及直线和圆相交的弦长公式的计算,考查学生的计算能力.21.(12分)设函数2()x f x e alnx =-. (Ⅰ)讨论()f x 的导函数()f x '零点的个数; (Ⅱ)证明:当0a >时,2()2f x a aln a+….【考点】53:函数的零点与方程根的关系;63:导数的运算;6E :利用导数研究函数的最值【专题】26:开放型;53:导数的综合应用【分析】(Ⅰ)先求导,在分类讨论,当0a …时,当0a >时,根据零点存在定理,即可求出; (Ⅱ)设导函数()f x '在(0,)+∞上的唯一零点为0x ,根据函数()f x 的单调性得到函数的最小值0()f x ,只要最小值大于22a alna+,问题得以证明. 【解答】解:(Ⅰ)2()x f x e alnx =-的定义域为(0,)+∞, 2()2x af x e x∴'=-. 当0a …时,()0f x '>恒成立,故()f x '没有零点, 当0a >时,2x y e =为单调递增,ay x=-单调递增,()f x ∴'在(0,)+∞单调递增,又f '(a )0>,假设存在b 满足02a b ln <<时,且14b <,f '(b )0<,故当0a >时,导函数()f x '存在唯一的零点,(Ⅱ)由(Ⅰ)知,可设导函数()f x '在(0,)+∞上的唯一零点为0x , 当0(0,)x x ∈时,()0f x '<,当0()x x ∈+∞时,()0f x '>,故()f x 在0(0,)x 单调递减,在0()x +∞单调递增, 所欲当0x x =时,()f x 取得最小值,最小值为0()f x , 由于02020x ae x -=, 所以00022()222a f x ax aln a aln x a a=+++…. 故当0a >时,2()2f x a aln a+….【点评】本题考查了导数和函数单调性的关系和最值的关系,以及函数的零点存在定理,属于中档题.四、请考生在第22、23、24题中任选一题作答,如果多做,则按所做的第一题记分.【选修4-1:几何证明选讲】22.(10分)如图,AB 是O 的直径,AC 是O 的切线,BC 交O 于点E . (Ⅰ)若D 为AC 的中点,证明:DE 是O 的切线;(Ⅱ)若OA =,求ACB ∠的大小.【考点】9N :圆的切线的判定定理的证明 【专题】5B :直线与圆【分析】(Ⅰ)连接AE 和OE ,由三角形和圆的知识易得90OED ∠=︒,可得DE 是O 的切线;(Ⅱ)设1CE =,AE x =,由射影定理可得关于x的方程2x =x 值,可得所求角度.【解答】解:(Ⅰ)连接AE ,由已知得AE BC ⊥,AC AB ⊥, 在RT ABC ∆中,由已知可得DE DC =,DEC DCE ∴∠=∠, 连接OE ,则OBE OEB ∠=∠,又90ACB ABC ∠+∠=︒,90DEC OEB ∴∠+∠=︒, 90OED ∴∠=︒,DE ∴是O 的切线;(Ⅱ)设1CE =,AE x =,由已知得AB =BE 由射影定理可得2AE CE BE =,2x ∴=42120x x +-=,解方程可得x =60ACB ∴∠=︒【点评】本题考查圆的切线的判定,涉及射影定理和三角形的知识,属基础题. 五、【选修4-4:坐标系与参数方程】23.在直角坐标系xOy 中,直线1:2C x =-,圆222:(1)(2)1C x y -+-=,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系.(Ⅰ)求1C ,2C 的极坐标方程; (Ⅱ)若直线3C 的极坐标方程为()4R πθρ=∈,设2C 与3C 的交点为M ,N ,求△2C MN 的面积.【考点】4Q :简单曲线的极坐标方程 【专题】5S :坐标系和参数方程【分析】(Ⅰ)由条件根据cos x ρθ=,sin y ρθ=求得1C ,2C 的极坐标方程.(Ⅱ)把直线3C 的极坐标方程代入240ρ-+=,求得1ρ和2ρ的值,结合圆的半径可得22C M C N ⊥,从而求得△2C MN 的面积2212C M C N 的值. 【解答】解:(Ⅰ)由于cos x ρθ=,sin y ρθ=,1:2C x ∴=- 的极坐标方程为cos 2ρθ=-,故222:(1)(2)1C x y -+-=的极坐标方程为:22(cos 1)(sin 2)1ρθρθ-+-=,化简可得2(2cos 4sin )40ρρθρθ-++=. (Ⅱ)把直线3C 的极坐标方程()4R πθρ=∈代入圆222:(1)(2)1C x y -+-=,可得2(2cos 4sin )40ρρθρθ-++=,求得1ρ=,2ρ=12||||MN ρρ∴=-=2C 的半径为1,22C M C N ∴⊥,△2C MN 的面积为2211111222C M C N ==.【点评】本题主要考查简单曲线的极坐标方程,点的极坐标的定义,属于基础题. 六、【选修4-5:不等式选讲】24.已知函数()|1|2||f x x x a =+--,0a >. (Ⅰ)当1a =时,求不等式()1f x >的解集;(Ⅱ)若()f x 的图象与x 轴围成的三角形面积大于6,求a 的取值范围. 【考点】5R :绝对值不等式的解法 【专题】59:不等式的解法及应用【分析】(Ⅰ)当1a =时,把原不等式去掉绝对值,转化为与之等价的三个不等式组,分别求得每个不等式组的解集,再取并集,即得所求.(Ⅱ)化简函数()f x 的解析式,求得它的图象与x 轴围成的三角形的三个顶点的坐标,从而求得()f x 的图象与x 轴围成的三角形面积;再根据()f x 的图象与x 轴围成的三角形面积大于6,从而求得a 的取值范围. 【解答】解:(Ⅰ)当1a =时,不等式()1f x >,即|1|2|1|1x x +-->, 即112(1)1x x x <-⎧⎨---->⎩①,或1112(1)1x x x -<⎧⎨+-->⎩…②,或112(1)1x x x ⎧⎨+-->⎩…③.解①求得x ∈∅,解②求得213x <<,解③求得12x <…. 综上可得,原不等式的解集为2(3,2).(Ⅱ)函数12,1()|1|2||312,112,x a x f x x x a x a x a x a x a --<-⎧⎪=+--=+--⎨⎪-++>⎩剟, 由此求得()f x 的图象与x 轴的交点A 21(3a -,0), (21,0)B a +,故()f x 的图象与x 轴围成的三角形的第三个顶点(,1)C a a +, 由ABC ∆的面积大于6,可得121[21](1)623a a a -+-+>,求得2a >.故要求的a 的范围为(2,)+∞.【点评】本题主要考查绝对值不等式的解法,体现了转化、分类讨论的数学思想,属于中档题.。
绝密★启封并使用完毕前2015年普通高等学校招生全国统一考试文科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至3页,第Ⅱ卷4至6页。
注意事项:1. 答题前,考生务必将自己的准考证号、姓名填写在答题卡上。
考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致。
2. 第Ⅰ卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,在选涂其他答案标号。
第Ⅱ卷必须用0.5毫米黑色签字笔书写作答.若在试题卷上作答,答案无效。
3. 考试结束,监考员将试题卷、答题卡一并收回。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)已知集合A={x|x=3n+2,n ∈N},B={6,8,12,14},则集合A ⋂B中元素的个数为(A)5 (B)4 (C)3 (D)2(2)已知点A(0,1),B(3,2),向量AC=(-4,-3),则向量BC=(A)(-7,-4)(B)(7,4)(C)(-1,4)(D)(1,4)(3)已知复数z满足(z-1)i=i+1,则z=(A)-2-I (B)-2+I (C)2-I (D)2+i(4)如果3个整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数,从1,2,3,4,5中任取3个不同的数,则3个数构成一组勾股数的概率为(A)103(B)15(C)110(D)120(5)已知椭圆E的中心在坐标原点,离心率为12,E的右焦点与抛物线C:y²=8x的焦点重合,A,B是C的准线与E的两个焦点,则|AB|= (A)3 (B)6 (C)9 (D)12(6)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺。
问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧度为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放斛的米约有A.14斛B.22斛C.36斛D.66斛(7)已知是公差为1的等差数列,则=4,= (A)(B)(C)10 (D)12(8)函数f(x)=的部分图像如图所示,则f(x)的单调递减区间为(A)(k-, k-),k(A)(2k-, 2k-),k(A)(k-, k-),k(A)(2k-, 2k-),k(9)执行右面的程序框图,如果输入的t=0.01,则输出的n=(A)5 (B)6 (C)7 (D)8(10)已知函数,且f(a)=-3,则f(6-a)=(A)-74(B)-54(C)-34(D)-14(11)圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示,若该几何体的表面积为16+20π,则r=(A )1 (B) 2 (C) 4 (D) 8(12)设函数y=f (x )的图像关于直线y=-x 对称,且f (-2)+f (-4)=1,则a= (A )-1 (B )1 (C )2 (D )4第Ⅱ卷注意事项:第Ⅱ卷共3页,须用黑色墨水签字笔在答题卡上作答。
2015年普通高等学校招生全国统一考试(全国Ⅰ卷)文科数学试题解析1. 解析 当3214n +…,得4n ….由32x n =+,当0n =时,2x =;当1n =时,5x =;当2n =时,8x =;当3n =时,11x =;当4n =时,14x =. 所以{}8,14AB =,则集合A B 中含元素个数为2.故选D .2. 解析 BA =()03,12--=()3,1--,()()34,137,4BC BA AC =+=----=--.故选A.3. 解析 由题意可得i 1i i 12i z =++=+,12i2i iz +==-.故选C. 4. 解析 由211=,222224,39,416,525====, 可知只有()3,4,5是一组勾股数.从1,2,3,4,5中任取3个不同的数,其基本事件有:()()()1,2,3,1,2,4,1,2,5,()()()1,3,4,1,3,5,1,4,5, ()()()()2,3,4,2,3,5,2,4,5,3,4,5,共10种.则从1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率110P =.故选C. 5. 解析 28y x =的焦点为()2,0,准线方程为2x =-. 由E 的右焦点与28y x =的焦点重合,可得2c =.又12c a =,得4a =,212b =,所以椭圆E 的方程为2211612x y +=. 当2x =-时,()22211612y -+=,得3y =±,即6AB =.故选B. 6. 解析 由l r α=,得816332lr α===. 21116320354339V ⎛⎫=⨯⨯⨯⨯=⎪⎝⎭. 故堆放的米约有3201.62229÷≈(斛).故选B.7. 解析 解法一:由844S S =,1d =,知()()118814418144122a a --⎡⎤+⨯=+⨯⎢⎥⎣⎦, 解得112a =.所以()10119101122a =+-⨯=.故选B. 解法二:由844S S =,即()()1814442a a a a +=⨯+,可得8142a a a =+. 又公差1d =,所以817a a =+,则427a =,解得472a =. 所以1041962a a =+=.故选B. 8. 解析 由图可知511244T =-=,得2T =,2ππTω==. 画出图中函数()f x 的一条对称轴0x x =,如图所示. 由图可知034x =,则3πcos 14ϕ⎛⎫+=- ⎪⎝⎭, 可得3π2ππ4k ϕ+=+,则()π2π4k k ϕ=+∈Z ,得()πcos π4f x x ⎛⎫=+ ⎪⎝⎭. 由π2ππ2ππ4k x k ++剟,得()f x 的单调递减区间为132244k xk -+剟. 故选D.9. 解析 由程序框图可知, 第一次循环为:1110.0122S =-=>, 11224m ==,011n =+=;第二次循环为:1110.01244S =-=>,18m =,2n =; 第三次循环为:1110.01488S =-=>,116m =,3n =; 第四次循环为:1110.0181616S=-=>,132m =,4n =;第五次循环为:1110.01163232S =-=>,164m =,5n =; 第六次循环为:1110.01326464S =-=>,1128m =,6n =; 第七次循环为:1110.0164128128S =-=…,1256m =,7n =. 此时循环结束,输出7n =.故选C.10. 解析 当1a …时,()1223a f a -=-=-,即121a -=-,无解;当1a >时,()()2log 13f a a =-+=-,即()322log 13log 2a +==, 得18a +=,所以7a =,符合1a >. 综上可知,7a =.则()()()1176671224f a f f ---=-=-=-=-.故选A. 11. 解析 由几何体的视图,还原其立体图形,并调整其摆放姿势,让半圆柱体在下方,半球在上方,如图所示.224π22π2π2r S r r r r r =+++=2245π1620πr r +=+,得2r =.故选B.12. 解析 设(),x y 为()f x 图像上一点,则(),x y 关于y x =-的对称点为(),y x --, 代入2x a y +=,得2y ax -+-=,①对①两边取以2为底的对数,得()2log x y a -=-+,即()2log y x a =---⎡⎤⎣⎦. 又()()241f f -+-=,即()()22log 2log 41a a ----=, 得()121a a ---=,得2a =.故选C. 13. 解析 由12n n a a +=,得12n na a +=,即数列{}n a 是首项为2,公比为2的等比数列. ()()11212126112n n n a q S q--===--,得6n =.14. 解析 由题意可得()12f a =+,()131f a '=+,2r所以切线方程为()()()2311y a a x -+=+-.又过点()2,7,即()()723121a a --=+-,解得1a =. 15. 解析 画出满足不等式组的可行域,如图中阴影部分所示.联立()1122y x y x ⎧=+⎪⎨⎪=-+⎩,得()1,1B . 由图可知当直线3y x =-经过点()1,1B 时,z 取得最大值.max 134z =+=.16. 解析 设双曲线的左焦点为1F ,连接AF ,与双曲线左支交于点P ,连接PF .则此P 点即为使得APF △周长最小时的点P ,如图所示.证明如下:由双曲线的定义知,122PF PF a -==.所以12PF PF =+. 又APF C AF AP PF =++△, 所以12APF C AF AP PF =+++△,所以当点A ,P ,1F 在同一条直线上时,周长取得最小值. 由题意可得1AF所在直线方程为)3y x =+, 同理可得AF的直线方程为)3y x =--.联立)22318y x y x ⎧=+⎪⎨-=⎪⎩,解得(2,P -. 则(),d P AF ==又15AF ==,所以1152PAF S =⨯=△17. 解析 (1)由正弦定理得,22b ac =.又a b =,所以22a ac =,即2a c =.则22222212cos 2422a a a a cb B a ac a ⎛⎫+- ⎪+-⎝⎭===⋅. (2)解法一:因为90B ∠=,所以()2sin 12sin sin 2sin sin 90B A C A A ===-,即2sin cos 1A A =,亦即sin 21A =.又因为在ABC △中,90B ∠=,所以090A <∠<, 则290A ∠=,得45A ∠=.所以ABC △为等腰直角三角形,得a c ==,所以112ABC S ==△. 解法二:由(1)可知22b ac =,①因为90B ∠=,所以222a cb +=,②将②代入①得()20a c -=,则a c ==,所以112ABC S ==△. 18. 解析 (1)因为BE ⊥平面ABCD ,所以BE AC ⊥. 又ABCD 为菱形,所以AC BD ⊥.又因为BD BE B =,BD ,BE ⊂平面BED ,所以AC ⊥平面BED .又AC ⊂平面AEC ,所以平面AEC ⊥平面BED . (2)在菱形ABCD 中,取2AB BC CD AD x ====, 又120ABC ∠=,所以AG GC ==,BG GD x ==. 在AEC △中,90AEC ∠=,所以12EG AC ==, 所以在Rt EBG △中,BE =,所以31122sin120232E ACD V x x x x -=⨯⨯⋅⋅⋅==,解得1x =. 在Rt EBA △,Rt EBC △,Rt EBD △中,可得AE EC ED===所以三棱锥的侧面积1122322S =⨯⨯=+侧19. 解析 (1)由散点图变化情况选择y c =+.。
2015年普通高等学校招生全国统一考试(2全国Ⅱ卷)数学(文)试题一、选择题 ( 本大题 共 12 题, 共计 60 分)1.已知集合A={}{}=<<=<<-B A x x B x x 则,30,21( ) A.( −1,3) B 。
( −1,0 ) C.(0,2) D.(2,3) 2。
若a 实数,且=+=++a i iai则,312( ) A 。
—4 B. -3 C 。
3 D. 43.根据下面给出的2004年至2013年我国二氧化碳年排放量(单位:万吨)柱形图,以下结论中不正确的是( )2700260025002400210020001900)A.逐年比较,2008年减少二氧化碳排放量的效果最显著; B 。
2007年我国治理二氧化碳排放显现成效; C.2006年以来我国二氧化碳排放量呈减少趋势; D 。
2006年以来我国二氧化碳年排放量与年份正相关。
4。
已知向量=•+-=-=a b a b a )则(2),2,1(),1,0(( ) A. -1 B 。
0 C 。
1 D. 25。
设{}项和,的前是等差数列n a S n n 若==++5531,3S a a a 则( )A 。
5B 。
7 C. 9 D. 116.一个正方体被一个平面截去一部分后,剩余部分的三视图如右图,则截去部分体积与剩余部分体积的比值为 ( )A 。
81 B 。
71 C. 61 D. 51 7。
已知三点)32()30(),01(,,,,C B A ,则ABC 外接圆的圆心到原点的距离为( )A 。
35B 。
321C 。
352D 。
348。
右边程序框图的算法思路来源于我国古代数学名著《九章算术》中的“更相减损术”。
执行该程序框图,若输入的a,b分别为14,18,则输出的a为()否否A。
0 B. 2 C。
4 D。
149。
已知等比数列{}=-==24531),1(4,41aaaaaan则满足()A. 2B. 1C.21D.8110.已知A,B是球O的球面上两点,为该球面上动点,CAOB,90︒=∠若三棱锥O-ABC体积的最大值为36,则球O的表面积为()A. 36πB. 64πC。
2015年全国统一高考数学试卷(文科)(新课标Ⅱ)一、选择题:本大题共12小题,每小题5分1.(5分)已知集合A={x|﹣1<x<2},B={x|0<x<3},则A∪B=()A.(﹣1,3)B.(﹣1,0)C.(0,2)D.(2,3)2.(5分)若为a实数,且=3+i,则a=()A.﹣4B.﹣3C.3D.43.(5分)根据如图给出的2004年至2013年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论中不正确的是()A.逐年比较,2008年减少二氧化硫排放量的效果最显著B.2007年我国治理二氧化硫排放显现成效C.2006年以来我国二氧化硫年排放量呈减少趋势D.2006年以来我国二氧化硫年排放量与年份正相关4.(5分)=(1,﹣1),=(﹣1,2)则(2+)=()A.﹣1B.0C.1D.25.(5分)已知S n是等差数列{a n}的前n项和,若a1+a3+a5=3,则S5=()A.5B.7C.9D.116.(5分)一个正方体被一个平面截去一部分后,剩余部分的三视图如图,则截去部分体积与剩余部分体积的比值为()A.B.C.D.7.(5分)已知三点A(1,0),B(0,),C(2,)则△ABC外接圆的圆心到原点的距离为()A.B.C.D.8.(5分)如图程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入a,b分别为14,18,则输出的a=()A.0B.2C.4D.149.(5分)已知等比数列{a n}满足a1=,a3a5=4(a4﹣1),则a2=()A.2B.1C.D.10.(5分)已知A,B是球O的球面上两点,∠AOB=90°,C为该球面上的动点,若三棱锥O﹣ABC体积的最大值为36,则球O的表面积为()A.36πB.64πC.144πD.256π11.(5分)如图,长方形ABCD的边AB=2,BC=1,O是AB的中点,点P沿着边BC,CD与DA运动,记∠BOP=x.将动点P到A,B两点距离之和表示为x的函数f(x),则y=f(x)的图象大致为()A.B.C.D.12.(5分)设函数f(x)=ln(1+|x|)﹣,则使得f(x)>f(2x﹣1)成立的x的取值范围是()A.(﹣∞,)∪(1,+∞)B.(,1)C.()D.(﹣∞,﹣,)二、填空题13.(3分)已知函数f(x)=ax3﹣2x的图象过点(﹣1,4)则a=.14.(3分)若x,y满足约束条件,则z=2x+y的最大值为.15.(3分)已知双曲线过点且渐近线方程为y=±x,则该双曲线的标准方程是.16.(3分)已知曲线y=x+lnx在点(1,1)处的切线与曲线y=ax2+(a+2)x+1相切,则a=.三.解答题17.△ABC中,D是BC上的点,AD平分∠BAC,BD=2DC(Ⅰ)求.(Ⅱ)若∠BAC=60°,求∠B.18.某公司为了解用户对其产品的满意度,从A,B两地区分别随机调查了40个用户,根据用户对产品的满意度评分,得到A地区用户满意度评分的频率分布直方图和B地区用户满意度评分的频数分布表B地区用户满意度评分的频数分布表满意度评分分组[50,60)[60,70)[70,80)[80,90)[90,100)频数2814106(1)做出B地区用户满意度评分的频率分布直方图,并通过直方图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可)(Ⅱ)根据用户满意度评分,将用户的满意度从低到高分为三个不等级:满意度评分低于70分70分到89分不低于90分满意度等级不满意满意非常满意估计哪个地区用户的满意度等级为不满意的概率大?说明理由.19.(12分)如图,长方体ABCD﹣A1B1C1D1中,AB=16,BC=10,AA1=8,点E,F 分别在A1B1,D1C1上,A1E=D1F=4.过E,F的平面α与此长方体的面相交,交线围成一个正方形(Ⅰ)在图中画出这个正方形(不必说出画法和理由)(Ⅱ)求平面α把该长方体分成的两部分体积的比值.20.椭圆C:=1,(a>b>0)的离心率,点(2,)在C上.(1)求椭圆C的方程;(2)直线l不过原点O且不平行于坐标轴,l与C有两个交点A,B,线段AB的中点为M.证明:直线OM的斜率与l的斜率的乘积为定值.21.设函数f(x)=lnx+a(1﹣x).(Ⅰ)讨论:f(x)的单调性;(Ⅱ)当f(x)有最大值,且最大值大于2a﹣2时,求a的取值范围.四、选修4-1:几何证明选讲22.(10分)如图,O为等腰三角形ABC内一点,⊙O与△ABC的底边BC交于M,N两点,与底边上的高AD交于点G,且与AB,AC分别相切于E,F两点.(1)证明:EF∥BC;(2)若AG等于⊙O的半径,且AE=MN=2,求四边形EBCF的面积.五、选修4-4:坐标系与参数方程23.(10分)在直角坐标系xOy中,曲线C1:(t为参数,t≠0),其中0≤α≤π,在以O为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=2sinθ,C3:ρ=2cosθ.(1)求C2与C3交点的直角坐标;(2)若C1与C2相交于点A,C1与C3相交于点B,求|AB|的最大值.六、选修4-5不等式选讲24.(10分)设a,b,c,d均为正数,且a+b=c+d,证明:(1)若ab>cd,则+>+;(2)+>+是|a﹣b|<|c﹣d|的充要条件.2015年全国统一高考数学试卷(文科)(新课标Ⅱ)参考答案与试题解析一、选择题:本大题共12小题,每小题5分1.(5分)已知集合A={x|﹣1<x<2},B={x|0<x<3},则A∪B=()A.(﹣1,3)B.(﹣1,0)C.(0,2)D.(2,3)【考点】1D:并集及其运算.【专题】5J:集合.【分析】根据集合的基本运算进行求解即可.【解答】解:∵A={x|﹣1<x<2},B={x|0<x<3},∴A∪B={x|﹣1<x<3},故选:A.【点评】本题主要考查集合的基本运算,比较基础.2.(5分)若为a实数,且=3+i,则a=()A.﹣4B.﹣3C.3D.4【考点】A1:虚数单位i、复数.【专题】5N:数系的扩充和复数.【分析】根据复数相等的条件进行求解即可.【解答】解:由,得2+ai=(1+i)(3+i)=2+4i,则a=4,故选:D.【点评】本题主要考查复数相等的应用,比较基础.3.(5分)根据如图给出的2004年至2013年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论中不正确的是()A.逐年比较,2008年减少二氧化硫排放量的效果最显著B.2007年我国治理二氧化硫排放显现成效C.2006年以来我国二氧化硫年排放量呈减少趋势D.2006年以来我国二氧化硫年排放量与年份正相关【考点】B8:频率分布直方图.【专题】5I:概率与统计.【分析】A从图中明显看出2008年二氧化硫排放量比2007年的二氧化硫排放量减少的最多,故A正确;B从2007年开始二氧化硫排放量变少,故B正确;C从图中看出,2006年以来我国二氧化硫年排放量越来越少,故C正确;D2006年以来我国二氧化硫年排放量越来越少,与年份负相关,故D错误.【解答】解:A从图中明显看出2008年二氧化硫排放量比2007年的二氧化硫排放量明显减少,且减少的最多,故A正确;B2004﹣2006年二氧化硫排放量越来越多,从2007年开始二氧化硫排放量变少,故B正确;C从图中看出,2006年以来我国二氧化硫年排放量越来越少,故C正确;D2006年以来我国二氧化硫年排放量越来越少,而不是与年份正相关,故D错误.故选:D.【点评】本题考查了学生识图的能力,能够从图中提取出所需要的信息,属于基础题.4.(5分)=(1,﹣1),=(﹣1,2)则(2+)=()A.﹣1B.0C.1D.2【考点】9O:平面向量数量积的性质及其运算.【专题】5A:平面向量及应用.【分析】利用向量的加法和数量积的坐标运算解答本题.【解答】解:因为=(1,﹣1),=(﹣1,2)则(2+)=(1,0)•(1,﹣1)=1;故选:C.【点评】本题考查了向量的加法和数量积的坐标运算;属于基础题目.5.(5分)已知S n是等差数列{a n}的前n项和,若a1+a3+a5=3,则S5=()A.5B.7C.9D.11【考点】85:等差数列的前n项和.【专题】35:转化思想;4A:数学模型法;54:等差数列与等比数列.【分析】由等差数列{a n}的性质,a1+a3+a5=3=3a3,解得a3.再利用等差数列的前n项和公式即可得出.【解答】解:由等差数列{a n}的性质,a1+a3+a5=3=3a3,解得a3=1.则S5==5a3=5.故选:A.【点评】本题考查了等差数列的通项公式及其性质、前n项和公式,考查了推理能力与计算能力,属于中档题.6.(5分)一个正方体被一个平面截去一部分后,剩余部分的三视图如图,则截去部分体积与剩余部分体积的比值为()A.B.C.D.【考点】L!:由三视图求面积、体积.【专题】11:计算题;5F:空间位置关系与距离.【分析】由三视图判断,正方体被切掉的部分为三棱锥,把相关数据代入棱锥的体积公式计算即可.【解答】解:设正方体的棱长为1,由三视图判断,正方体被切掉的部分为三棱锥,∴正方体切掉部分的体积为×1×1×1=,∴剩余部分体积为1﹣=,∴截去部分体积与剩余部分体积的比值为.故选:D.【点评】本题考查了由三视图判断几何体的形状,求几何体的体积.7.(5分)已知三点A(1,0),B(0,),C(2,)则△ABC外接圆的圆心到原点的距离为()A.B.C.D.【考点】J1:圆的标准方程.【专题】5B:直线与圆.【分析】利用外接圆的性质,求出圆心坐标,再根据圆心到原点的距离公式即可求出结论.【解答】解:因为△ABC外接圆的圆心在直线BC垂直平分线上,即直线x=1上,可设圆心P(1,p),由PA=PB得|p|=,得p=圆心坐标为P(1,),所以圆心到原点的距离|OP|===,故选:B.【点评】本题主要考查圆性质及△ABC外接圆的性质,了解性质并灵运用是解决本题的关键.8.(5分)如图程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入a,b分别为14,18,则输出的a=()A.0B.2C.4D.14【考点】EF:程序框图.【专题】27:图表型;5K:算法和程序框图.【分析】模拟执行程序框图,依次写出每次循环得到的a,b的值,当a=b=2时不满足条件a≠b,输出a的值为2.【解答】解:模拟执行程序框图,可得a=14,b=18满足条件a≠b,不满足条件a>b,b=4满足条件a≠b,满足条件a>b,a=10满足条件a≠b,满足条件a>b,a=6满足条件a≠b,满足条件a>b,a=2满足条件a≠b,不满足条件a>b,b=2不满足条件a≠b,输出a的值为2.故选:B.【点评】本题主要考查了循环结构程序框图,属于基础题.9.(5分)已知等比数列{a n}满足a1=,a3a5=4(a4﹣1),则a2=()A.2B.1C.D.【考点】88:等比数列的通项公式.【专题】54:等差数列与等比数列.【分析】利用等比数列的通项公式即可得出.【解答】解:设等比数列{a n}的公比为q,∵,a3a5=4(a4﹣1),∴=4,化为q3=8,解得q=2则a2==.故选:C.【点评】本题考查了等比数列的通项公式,属于基础题.10.(5分)已知A,B是球O的球面上两点,∠AOB=90°,C为该球面上的动点,若三棱锥O﹣ABC体积的最大值为36,则球O的表面积为()A.36πB.64πC.144πD.256π【考点】LG:球的体积和表面积.【专题】11:计算题;5F:空间位置关系与距离.【分析】当点C位于垂直于面AOB的直径端点时,三棱锥O﹣ABC的体积最大,利用三棱锥O﹣ABC体积的最大值为36,求出半径,即可求出球O的表面积.【解答】解:如图所示,当点C位于垂直于面AOB的直径端点时,三棱锥O﹣ABC的体积最大,设球O的半径为R,此时V O﹣ABC=V C﹣AOB===36,故R=6,则球O的表面积为4πR2=144π,故选:C.【点评】本题考查球的半径与表面积,考查体积的计算,确定点C位于垂直于面AOB的直径端点时,三棱锥O﹣ABC的体积最大是关键.11.(5分)如图,长方形ABCD的边AB=2,BC=1,O是AB的中点,点P沿着边BC,CD与DA运动,记∠BOP=x.将动点P到A,B两点距离之和表示为x的函数f(x),则y=f(x)的图象大致为()A.B.C.D.【考点】HC:正切函数的图象.【分析】根据函数图象关系,利用排除法进行求解即可.【解答】解:当0≤x≤时,BP=tanx,AP==,此时f(x)=+tanx,0≤x≤,此时单调递增,当P在CD边上运动时,≤x≤且x≠时,如图所示,tan∠POB=tan(π﹣∠POQ)=tanx=﹣tan∠POQ=﹣=﹣,∴OQ=﹣,∴PD=AO﹣OQ=1+,PC=BO+OQ=1﹣,∴PA+PB=,当x=时,PA+PB=2,当P在AD边上运动时,≤x≤π,PA+PB=﹣tanx,由对称性可知函数f(x)关于x=对称,且f()>f(),且轨迹为非线型,排除A,C,D,故选:B.【点评】本题主要考查函数图象的识别和判断,根据条件先求出0≤x≤时的解析式是解决本题的关键.12.(5分)设函数f(x)=ln(1+|x|)﹣,则使得f(x)>f(2x﹣1)成立的x的取值范围是()A.(﹣∞,)∪(1,+∞)B.(,1)C.()D.(﹣∞,﹣,)【考点】6B:利用导数研究函数的单调性.【专题】33:函数思想;49:综合法;51:函数的性质及应用.【分析】根据函数的奇偶性和单调性之间的关系,将不等式进行转化即可得到结论.【解答】解:∵函数f(x)=ln(1+|x|)﹣为偶函数,且在x≥0时,f(x)=ln(1+x)﹣,导数为f′(x)=+>0,即有函数f(x)在[0,+∞)单调递增,∴f(x)>f(2x﹣1)等价为f(|x|)>f(|2x﹣1|),即|x|>|2x﹣1|,平方得3x2﹣4x+1<0,解得:<x<1,所求x的取值范围是(,1).故选:B.【点评】本题主要考查函数奇偶性和单调性的应用,综合考查函数性质的综合应用,运用偶函数的性质是解题的关键.二、填空题13.(3分)已知函数f(x)=ax3﹣2x的图象过点(﹣1,4)则a=﹣2.【考点】36:函数解析式的求解及常用方法.【专题】11:计算题;51:函数的性质及应用.【分析】f(x)是图象过点(﹣1,4),从而该点坐标满足函数f(x)解析式,从而将点(﹣1,4)带入函数f(x)解析式即可求出a.【解答】解:根据条件得:4=﹣a+2;∴a=﹣2.故答案为:﹣2.【点评】考查函数图象上的点的坐标和函数解析式的关系,考查学生的计算能力,比较基础.14.(3分)若x,y满足约束条件,则z=2x+y的最大值为8.【考点】7C:简单线性规划.【专题】59:不等式的解法及应用.【分析】作出不等式组对应的平面区域,利用目标函数的几何意义,利用数形结合确定z的最大值.【解答】解:作出不等式组对应的平面区域如图:(阴影部分ABC).由z=2x+y得y=﹣2x+z,平移直线y=﹣2x+z,由图象可知当直线y=﹣2x+z经过点A时,直线y=﹣2x+z的截距最大,此时z最大.由,解得,即A(3,2)将A(3,2)的坐标代入目标函数z=2x+y,得z=2×3+2=8.即z=2x+y的最大值为8.故答案为:8.【点评】本题主要考查线性规划的应用,结合目标函数的几何意义,利用数形结合的数学思想是解决此类问题的基本方法.15.(3分)已知双曲线过点且渐近线方程为y=±x,则该双曲线的标准方程是x2﹣y2=1.【考点】KB:双曲线的标准方程.【专题】11:计算题;5D:圆锥曲线的定义、性质与方程.【分析】设双曲线方程为y2﹣x2=λ,代入点,求出λ,即可求出双曲线的标准方程.【解答】解:设双曲线方程为y2﹣x2=λ,代入点,可得3﹣=λ,∴λ=﹣1,∴双曲线的标准方程是x2﹣y2=1.故答案为:x2﹣y2=1.【点评】本题考查双曲线的标准方程,考查学生的计算能力,正确设出双曲线的方程是关键.16.(3分)已知曲线y=x+lnx在点(1,1)处的切线与曲线y=ax2+(a+2)x+1相切,则a=8.【考点】6H:利用导数研究曲线上某点切线方程.【专题】26:开放型;53:导数的综合应用.【分析】求出y=x+lnx的导数,求得切线的斜率,可得切线方程,再由于切线与曲线y=ax2+(a+2)x+1相切,有且只有一切点,进而可联立切线与曲线方程,根据△=0得到a的值.【解答】解:y=x+lnx的导数为y′=1+,曲线y=x+lnx在x=1处的切线斜率为k=2,则曲线y=x+lnx在x=1处的切线方程为y﹣1=2x﹣2,即y=2x﹣1.由于切线与曲线y=ax2+(a+2)x+1相切,故y=ax2+(a+2)x+1可联立y=2x﹣1,得ax2+ax+2=0,又a≠0,两线相切有一切点,所以有△=a2﹣8a=0,解得a=8.故答案为:8.【点评】本题考查导数的运用:求切线方程,主要考查导数的几何意义:函数在某点处的导数即为曲线在该点处的导数,设出切线方程运用两线相切的性质是解题的关键.三.解答题17.△ABC中,D是BC上的点,AD平分∠BAC,BD=2DC(Ⅰ)求.(Ⅱ)若∠BAC=60°,求∠B.【考点】HP:正弦定理.【专题】58:解三角形.【分析】(Ⅰ)由题意画出图形,再由正弦定理结合内角平分线定理得答案;(Ⅱ)由∠C=180°﹣(∠BAC+∠B),两边取正弦后展开两角和的正弦,再结合(Ⅰ)中的结论得答案.【解答】解:(Ⅰ)如图,由正弦定理得:,∵AD平分∠BAC,BD=2DC,∴;(Ⅱ)∵∠C=180°﹣(∠BAC+∠B),∠BAC=60°,∴,由(Ⅰ)知2sin∠B=sin∠C,∴tan∠B=,即∠B=30°.【点评】本题考查了内角平分线的性质,考查了正弦定理的应用,是中档题.18.某公司为了解用户对其产品的满意度,从A,B两地区分别随机调查了40个用户,根据用户对产品的满意度评分,得到A地区用户满意度评分的频率分布直方图和B地区用户满意度评分的频数分布表B地区用户满意度评分的频数分布表满意度评分分组[50,60)[60,70)[70,80)[80,90)[90,100)频数2814106(1)做出B地区用户满意度评分的频率分布直方图,并通过直方图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可)(Ⅱ)根据用户满意度评分,将用户的满意度从低到高分为三个不等级:满意度评分低于70分70分到89分不低于90分满意度等级不满意满意非常满意估计哪个地区用户的满意度等级为不满意的概率大?说明理由.【考点】B8:频率分布直方图;CB:古典概型及其概率计算公式.【专题】5I:概率与统计.【分析】(I)根据分布表的数据,画出频率直方图,求解即可.(II)计算得出C A表示事件:“A地区用户的满意度等级为不满意”,C B表示事件:“B地区用户的满意度等级为不满意”,P(C A),P(C B),即可判断不满意的情况.【解答】解:(Ⅰ)通过两个地区用户满意度评分的频率分布直方图可以看出,B地区用户满意度评分的平均值高于A地区用户满意度评分的平均值,B 地区的用户满意度评分的比较集中,而A地区的用户满意度评分的比较分散.(Ⅱ)A地区用户的满意度等级为不满意的概率大.记C A表示事件:“A地区用户的满意度等级为不满意”,C B表示事件:“B地区用户的满意度等级为不满意”,由直方图得P(C A)=(0.01+0.02+0.03)×10=0.6得P(C B)=(0.005+0.02)×10=0.25∴A地区用户的满意度等级为不满意的概率大.【点评】本题考查了频率直方图,频率表达运用,考查了阅读能力,属于中档题.19.(12分)如图,长方体ABCD﹣A1B1C1D1中,AB=16,BC=10,AA1=8,点E,F 分别在A1B1,D1C1上,A1E=D1F=4.过E,F的平面α与此长方体的面相交,交线围成一个正方形(Ⅰ)在图中画出这个正方形(不必说出画法和理由)(Ⅱ)求平面α把该长方体分成的两部分体积的比值.【考点】LF:棱柱、棱锥、棱台的体积;LJ:平面的基本性质及推论.【专题】15:综合题;5F:空间位置关系与距离.【分析】(Ⅰ)利用平面与平面平行的性质,可在图中画出这个正方形;(Ⅱ)求出MH==6,AH=10,HB=6,即可求平面a把该长方体分成的两部分体积的比值.【解答】解:(Ⅰ)交线围成的正方形EFGH如图所示;(Ⅱ)作EM⊥AB,垂足为M,则AM=A1E=4,EB1=12,EM=AA1=8.因为EFGH为正方形,所以EH=EF=BC=10,于是MH==6,AH=10,HB=6.因为长方体被平面α分成两个高为10的直棱柱,所以其体积的比值为.【点评】本题考查平面与平面平行的性质,考查学生的计算能力,比较基础.20.椭圆C:=1,(a>b>0)的离心率,点(2,)在C上.(1)求椭圆C的方程;(2)直线l不过原点O且不平行于坐标轴,l与C有两个交点A,B,线段AB的中点为M.证明:直线OM的斜率与l的斜率的乘积为定值.【考点】K3:椭圆的标准方程;KH:直线与圆锥曲线的综合.【专题】5D:圆锥曲线的定义、性质与方程.【分析】(1)利用椭圆的离心率,以及椭圆经过的点,求解椭圆的几何量,然后得到椭圆的方程.(2)设直线l:y=kx+b,(k≠0,b≠0),A(x1,y1),B(x2,y2),M(x M,y M),联立直线方程与椭圆方程,通过韦达定理求解K OM,然后推出直线OM的斜率与l的斜率的乘积为定值.【解答】解:(1)椭圆C:=1,(a>b>0)的离心率,点(2,)在C上,可得,,解得a2=8,b2=4,所求椭圆C方程为:.(2)设直线l:y=kx+b,(k≠0,b≠0),A(x1,y1),B(x2,y2),M(x M,y M),把直线y=kx+b代入可得(2k2+1)x2+4kbx+2b2﹣8=0,故x M==,y M=kx M+b=,于是在OM的斜率为:K OM==,即K OM•k=.∴直线OM的斜率与l的斜率的乘积为定值.【点评】本题考查椭圆方程的综合应用,椭圆的方程的求法,考查分析问题解决问题的能力.21.设函数f(x)=lnx+a(1﹣x).(Ⅰ)讨论:f(x)的单调性;(Ⅱ)当f(x)有最大值,且最大值大于2a﹣2时,求a的取值范围.【考点】6B:利用导数研究函数的单调性;6E:利用导数研究函数的最值.【专题】26:开放型;53:导数的综合应用.【分析】(Ⅰ)先求导,再分类讨论,根据导数即可判断函数的单调性;(2)先求出函数的最大值,再构造函数(a)=lna+a﹣1,根据函数的单调性即可求出a的范围.【解答】解:(Ⅰ)f(x)=lnx+a(1﹣x)的定义域为(0,+∞),∴f′(x)=﹣a=,若a≤0,则f′(x)>0,∴函数f(x)在(0,+∞)上单调递增,若a>0,则当x∈(0,)时,f′(x)>0,当x∈(,+∞)时,f′(x)<0,所以f(x)在(0,)上单调递增,在(,+∞)上单调递减,(Ⅱ),由(Ⅰ)知,当a≤0时,f(x)在(0,+∞)上无最大值;当a>0时,f(x)在x=取得最大值,最大值为f()=﹣lna+a﹣1,∵f()>2a﹣2,∴lna+a﹣1<0,令g(a)=lna+a﹣1,∵g(a)在(0,+∞)单调递增,g(1)=0,∴当0<a<1时,g(a)<0,当a>1时,g(a)>0,∴a的取值范围为(0,1).【点评】本题考查了导数与函数的单调性最值的关系,以及参数的取值范围,属于中档题.四、选修4-1:几何证明选讲22.(10分)如图,O为等腰三角形ABC内一点,⊙O与△ABC的底边BC交于M,N两点,与底边上的高AD交于点G,且与AB,AC分别相切于E,F两点.(1)证明:EF∥BC;(2)若AG等于⊙O的半径,且AE=MN=2,求四边形EBCF的面积.【考点】N4:相似三角形的判定.【专题】26:开放型;5F:空间位置关系与距离.【分析】(1)通过AD是∠CAB的角平分线及圆O分别与AB、AC相切于点E、F,利用相似的性质即得结论;(2)通过(1)知AD是EF的垂直平分线,连结OE、OM,则OE⊥AE,利用S△ABC﹣S△AEF计算即可.【解答】(1)证明:∵△ABC为等腰三角形,AD⊥BC,∴AD是∠CAB的角平分线,又∵圆O分别与AB、AC相切于点E、F,∴AE=AF,∴AD⊥EF,∴EF∥BC;(2)解:由(1)知AE=AF,AD⊥EF,∴AD是EF的垂直平分线,又∵EF为圆O的弦,∴O在AD上,连结OE、OM,则OE⊥AE,由AG等于圆O的半径可得AO=2OE,∴∠OAE=30°,∴△ABC与△AEF都是等边三角形,∵AE=2,∴AO=4,OE=2,∵OM=OE=2,DM=MN=,∴OD=1,∴AD=5,AB=,∴四边形EBCF的面积为×﹣××=.【点评】本题考查空间中线与线之间的位置关系,考查四边形面积的计算,注意解题方法的积累,属于中档题.五、选修4-4:坐标系与参数方程23.(10分)在直角坐标系xOy中,曲线C1:(t为参数,t≠0),其中0≤α≤π,在以O为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=2sinθ,C3:ρ=2cosθ.(1)求C2与C3交点的直角坐标;(2)若C1与C2相交于点A,C1与C3相交于点B,求|AB|的最大值.【考点】Q4:简单曲线的极坐标方程;QH:参数方程化成普通方程.【专题】5S:坐标系和参数方程.【分析】(I)由曲线C2:ρ=2sinθ,化为ρ2=2ρsinθ,把代入可得直角坐标方程.同理由C3:ρ=2cosθ.可得直角坐标方程,联立解出可得C2与C3交点的直角坐标.(2)由曲线C1的参数方程,消去参数t,化为普通方程:y=xtanα,其中0≤α≤π,α≠;α=时,为x=0(y≠0).其极坐标方程为:θ=α(ρ∈R,ρ≠0),利用|AB|=即可得出.【解答】解:(I)由曲线C2:ρ=2sinθ,化为ρ2=2ρsinθ,∴x2+y2=2y.同理由C3:ρ=2cosθ.可得直角坐标方程:,联立,解得,,∴C2与C3交点的直角坐标为(0,0),.(2)曲线C1:(t为参数,t≠0),化为普通方程:y=xtanα,其中0≤α≤π,α≠;α=时,为x=0(y≠0).其极坐标方程为:θ=α(ρ∈R,ρ≠0),∵A,B都在C1上,∴A(2sinα,α),B.∴|AB|==4,当时,|AB|取得最大值4.【点评】本题考查了极坐标方程化为直角坐标方程、参数方程化为普通方程、曲线的交点、两点之间的距离公式、三角函数的单调性,考查了推理能力与计算能力,属于中档题.六、选修4-5不等式选讲24.(10分)设a,b,c,d均为正数,且a+b=c+d,证明:(1)若ab>cd,则+>+;(2)+>+是|a﹣b|<|c﹣d|的充要条件.【考点】29:充分条件、必要条件、充要条件;R6:不等式的证明.【专题】59:不等式的解法及应用;5L:简易逻辑.【分析】(1)运用不等式的性质,结合条件a,b,c,d均为正数,且a+b=c+d,ab>cd,即可得证;(2)从两方面证,①若+>+,证得|a﹣b|<|c﹣d|,②若|a﹣b|<|c﹣d|,证得+>+,注意运用不等式的性质,即可得证.【解答】证明:(1)由于(+)2=a+b+2,(+)2=c+d+2,由a,b,c,d均为正数,且a+b=c+d,ab>cd,则>,即有(+)2>(+)2,则+>+;(2)①若+>+,则(+)2>(+)2,即为a+b+2>c+d+2,由a+b=c+d,则ab>cd,于是(a﹣b)2=(a+b)2﹣4ab,(c﹣d)2=(c+d)2﹣4cd,即有(a﹣b)2<(c﹣d)2,即为|a﹣b|<|c﹣d|;②若|a﹣b|<|c﹣d|,则(a﹣b)2<(c﹣d)2,即有(a+b)2﹣4ab<(c+d)2﹣4cd,由a+b=c+d,则ab>cd,则有(+)2>(+)2.综上可得,+>+是|a﹣b|<|c﹣d|的充要条件.【点评】本题考查不等式的证明,主要考查不等式的性质的运用,同时考查充要条件的判断,属于基础题.。
2015年普通高等学校招生全国统一考试文科数学注意事项:1. 答题前,考生务必将自己的准考证号、姓名填写在答题卡上。
考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致。
2. 第Ⅰ卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,在选涂其他答案标号。
第Ⅱ卷必须用0.5毫米黑色签字笔书写作答.若在试题卷上作答,答案无效。
3. 考试结束,监考员将试题卷、答题卡一并收回。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)已知集合A={x|x=3n+2,n ∈N},B={6,8,12,14},则集合A ⋂B中元素的个数为(A)5 (B)4 (C)3 (D)2(2)已知点A(0,1),B(3,2),向量AC=(-4,-3),则向量BC=(A)(-7,-4)(B)(7,4)(C)(-1,4)(D)(1,4)(3)已知复数z满足(z-1)i=i+1,则z=(A)-2-I (B)-2+I (C)2-I (D)2+i(4)如果3个整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数,从1,2,3,4,5中任取3个不同的数,则3个数构成一组勾股数的概率为(A)103(B)15(C)110(D)120(5)已知椭圆E的中心在坐标原点,离心率为12,E的右焦点与抛物线C:y²=8x的焦点重合,A,B是C的准线与E的两个焦点,则|AB|= (A)3 (B)6 (C)9 (D)12。
绝密★启封并使用完毕前2015年普通高等学校招生全国统一考试(全国卷1)文科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至3页,第Ⅱ卷4至6页.注意事项:1。
答题前,考生务必将自己的准考证号、姓名填写在答题卡上.考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致。
2. 第Ⅰ卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,在选涂其他答案标号。
第Ⅱ卷必须用0。
5毫米黑色签字笔书写作答.若在试题卷上作答,答案无效。
3. 考试结束,监考员将试题卷、答题卡一并收回。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)已知集合A={x|x=3n+2,n ∈N},B={6,8,12,14},则集合A ⋂B中元素的个数为(A)5 (B)4 (C)3 (D)2(2)已知点A(0,1),B(3,2),向量AC=(—4,—3),则向量BC=(A)(—7,—4) (B)(7,4)(C)(—1,4) (D)(1,4)(3)已知复数z满足(z—1)i=i+1,则z=(A)—2—I (B)-2+I (C)2-I (D)2+i(4)如果3个整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数,从1,2,3,4,5中任取3个不同的数,则3个数构成一组勾股数的概率为(A)103(B)15(C)110(D)120(5)已知椭圆E的中心在坐标原点,离心率为12,E的右焦点与抛物线C:y²=8x的焦点重合,A,B是C的准线与E的两个焦点,则|AB|=(A)3 (B)6 (C)9 (D)12(6)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺。
问:积及为米几何?"其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧度为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放斛的米约有A.14斛B.22斛 C。
36斛 D。
66斛(7)已知是公差为1的等差数列,则=4,=(A)(B)(C)10 (D)12(8)函数f(x)=的部分图像如图所示,则f(x)的单调递减区间为(A)(k—, k-),k(A)(2k—, 2k—),k(A)(k-, k-),k(A)(2k-, 2k—),k(9)执行右面的程序框图,如果输入的t=0。
01,则输出的n=(A)5 (B)6 (C)7 (D)8(10)已知函数,且f(a)=—3,则f(6—a)=(A)-74(B)-54(C)-34(D)—14(11)圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示,若该几何体的表面积为16+20π,则r=(A )1 (B) 2 (C) 4 (D ) 8(12)设函数y=f(x )的图像关于直线y=—x 对称,且f (-2)+f (-4)=1,则a= (A )-1 (B )1 (C)2 (D)4第Ⅱ卷注意事项:第Ⅱ卷共3页,须用黑色墨水签字笔在答题卡上作答。
若在试卷上作答,答案无效。
本卷包括必考题和选考题两部分。
第13题~第21题为必考题,每个试题考生都必须作答.第22题~ 第24题为选考题,考生根据要求做答。
二.填空题:本大题共4小题,每小题5分(13)在数列{a n }中, a 1=2,a n+1=2a n , S n 为{a n }的前n 项和。
若-S n =126,则n=。
(14)已知函数f (x)=ax 3+x+1的图像在点(1,f(1))处的切线过点(2,7),则a= .(15)x ,y 满足约束条件,则z=3x+y 的最大值为.(16)已知F 是双曲线C:x 2—82y =1的右焦点,P 是C 的左支上一点,A (0,66).当△APF 周长最小是,该三角形的面积为三。
解答题:解答应写出文字说明,证明过程或演算步骤(17)(本小题满分12分)已知a ,b ,c 分别为△ABC 内角A ,B ,C 的对边,sin 2B=2sinAsinC (Ⅰ)若a=b ,求cosB ;(Ⅱ)设B=90°,且a=2,求△ABC 的面积(18)(本小题满分12分)如图,四边形ABCD 为菱形,G 为AC 与BD 的交点,BE ⊥平面ABCD.(Ⅰ)证明:平面AEC ⊥平面BED ;(Ⅱ)若∠ABC=120°,AE ⊥EC ,三棱锥-ACD 的体积为36,求该三棱锥的侧面积 (19)(本小题满分12分)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y (单位:t )和年利润z(单位:千元)的影响,对近8年的年宣传费和年销售量(i=1,2, (8)数据作了初步处理,得到下面的散点图及一些统计量的值。
x y w821()ii x x =-∑821()ii w w =-∑81()()iii x x y y =--∑ 81()()iii w w y y =--∑46.6 563 6.8 289。
8 1.6 1469 108。
8表中w 1 x 1, ,w =1881i w =∑1(Ⅰ)根据散点图判断,y a bx =+与y c x =+哪一个适宜作为年销售量y 关于年宣传费x 的回归方程类型?(给出判断即可,不必说明理由)(Ⅱ)根据(Ⅰ)的判断结果及表中数据,建立y 关于x 的回归方程;(Ⅲ)以知这种产品的年利率z 与x 、y 的关系为z=0.2y-x 。
根据(Ⅱ)的结果回答下列问题:(i ) 年宣传费x=49时,年销售量及年利润的预报值是多少? (ii )年宣传费x 为何值时,年利率的预报值最大?附:对于一组数据(u 1 v 1),(u 2 v 2)…….. (u n v n ),其回归线v=αβ+u 的斜率和截距的最小二乘估计分别为:(20)(本小题满分12分)已知过点A(0,1)且斜率为k 的直线l 与圆C (x-2)2+(y-3)2=1交于M,N 两点。
(1) 求K 的取值范围;(2) 若OM ·ON =12,其中0为坐标原点,求︱MN ︱。
(21).(本小题满分12分) 设函数x 。
(Ⅰ)讨论()f x 的导函数'()f x 零点的个数; (Ⅱ)证明:当0a >时,2()2lnf x a a a≥+。
请考生在第22、23、24题中任选一题作答,如果多做,则安所做的第一题计分。
作答时请写清题号。
(22)(本小题满分10分)选修4-1:几何证明选讲如图,AB 是⊙O 的直径,AC 是⊙O 的切线,BC 交⊙O 于点E 。
(Ⅰ)若D 为AC 的中点,证明:DE 是⊙O 的切线; (Ⅱ)若CA=3CE ,求∠ACB 的大小。
(23)(本小题满分10分)选修4-4;坐标系与参数方程在直角坐标系xOy 中。
直线1C :2x =-,圆2C :()()22121x y -+-=,以坐标原点为极点, x 轴的正半轴为极轴建立极坐标系。
(I ) 求1C ,2C 的极坐标方程; (II ) 若直线3C 的极坐标方程为()4R πθρ=∈,设2C 与3C 的交点为M ,N ,求2C MN 的面积(24)(本小题满分10分)选修4—5:不等式选讲 已知函数()|1|2||,0f x x x a a =+-->。
(Ⅰ)当1a =时,求不等式()1f x >的解集;(Ⅱ)若()f x 的图像与x 轴围成的三角形面积大于6,求a 的取值范围参考答案一.选择题(1)D (2)A (3)C (4)C (5)B (6)B (7)B (8)D(9)C(10)A(11)B(12)C二.填空题(13)6(14)1(15)4(16)三.解答题 (17)解:(Ⅰ)由题设及正弦定理可得22b ac =又a b =,可得2,2b c a c ==由余弦定理可得2221cos 24a cb B ac +-==…………………………………6分 (Ⅱ)由(Ⅰ)知22b ac =因为90B =,由勾股定理得222a cb +=故222a c ac +=,得c a ==所以ABC 的面积为1…………………………………………………………12分(18)解:(Ⅰ)因为四边形ABCD 为菱形,所以AC BD ⊥因为BE ⊥平面ABCD ,所以AC BE ⊥,故AC ⊥平面BED又AC ⊂平面AEC ,所以平面AEC ⊥平面BED …………………………5分(Ⅱ)设AB x =,在菱形ABCD 中,由120ABC ∠=,可得,2xAG GC x GB GD ====因为AE EC ⊥,所以在Rt AEC 中,可得EG x =由BE ⊥平面ABCD ,知EBG为直角三角形,可得BE x =由已知得,三棱锥E ACD -的体积31163224E ACD V AC GD BE x -=⨯== 故2x =…………………………………………………………………………9分 从而可得AE EC ED ===所以EAC 的面积为3,EAD 的面积与ECD 故三棱锥E ACD -的侧面积为3+12分(19)解:(Ⅰ)由散点图可以判断,y c=+适宜作为年销售量y 关于年宣传费x 的回归方程类型………………2分(Ⅱ)令w =y 关于w 的线性回归方程,由于8^1821()()108.8681.6()iii ii w w y y d w w ==--===-∑∑ ^^56368 6.8100.6c y d w =-=-⨯=所以y关于w 的线性回归方程为^100.668y w =+,因此y 关于x 的线性回归方程^100.6y =+6分(Ⅲ)(ⅰ)由(Ⅱ)知,当49x =时,年销售量y 的预报值^100.6576.6y =+=年利润z 的预报值^576.60.24966.32z =⨯-=…………………………………9分(ⅱ)根据(Ⅱ)的结果知,年利润z 的预报值^0.2(100.620.12z x x =+-=-+13.66.82==,即46.24x=时,^z取得最大值,故年宣传费为46.24千元时,年利润的预报值最大……………12分(20)解:(Ⅰ)由题设,可知直线l的方程为1y kx=+因为l与C1<k<<所以k的取值范围为……………………………………5分(Ⅱ)设1122(,),(,)M x y N x y将1y kx=+代入方程22(2)(3)1x y-+-=,整理得22(1)4(1)70k x k x+-++=所以1212224(1)7,11kx x x xk k++==++…………………………………………7分1212OM ON x x y y=+21212(1)()1k x x k x x=++++24(1)81k kk+=++由题设可得24(1)8121k kk++=+,解得1k=,所以l的方程为1y x=+故圆心C在l上,所以||2MN=…………………………………………………12分(21)解:(Ⅰ)()f x的定义域为(0,)+∞,2()2(0)xaf x e xx'=->当0a≤时,()0f x'>,()f x'没有零点;当0a>时,因为2xe单调递增,ax-单调递增,所以()f x'在(0,)+∞单调递增,又()0f a'>,当b 满足04a b <<且14b <时,()0f b '<,故当0a >时,()f x '存在唯一零点………6分 (Ⅱ)由(Ⅰ),可设()f x '在(0,)+∞的唯一零点为0x ,当0(0,)x x ∈时,()0f x '<;当0(,)x x ∈+∞时,()0f x '>故()f x 在0(0,)x 单调递减,在0(,)x +∞单调递增,所以当0x x =时,()f x 取得最小值,最小值为0()f x由于02020x a e x -=,所以00022()2ln 2ln 2a f x ax a a a x a a=++≥+ 故当0a >时,2()2lnf x a a a≥+……………………………………………12分 (22)解: (Ⅰ)连结AE ,由已知得,,AE BC AC AB ⊥⊥在Rt AEC 中,由已知得,DE DC =,故DEC DCE ∠=∠连结OE ,则OBE OEB ∠=∠又90ACB ABC ∠+∠=,所以90DEC OEB ∠+∠=,故90OED ∠=,DE 是O 的切线……………………………………5分(Ⅱ)设1,CE AE x ==,由已知得223,12AB BE x ==-由射影定理可得,2AE CE BE =,所以2212x x =-,即42120x x +-=可得3x =,所以60ACB ∠=……………………………10分 (23)解:(Ⅰ)因为cos ,sin x y ρθρθ==,所以1C 的极坐标方程为cos 2ρθ=-,2C 的极坐标方程为22cos 4sin 40ρρθρθ--+=……………………………5分(Ⅱ)将4πθ=代入22cos 4sin 40ρρθρθ--+=,得23240ρρ-+=,解得1222,2ρρ==,故122ρρ-=,即||2MN =由于2C 的半径为1,所以2C MN 的面积为12………………………10分 (24)解: (Ⅰ)当1a =时,()1f x >化为|1|2|1|10x x +--->当1x ≤-时,不等式化为40x ->,无解;当11x -<<时,不等式化为320x ->,解得213x <<; 当1x ≥时,不等式化为20x -+>,解得12x ≤<所以()1f x >的解集为2{|2}3x x <<…………………5分 (Ⅱ)由题设可得,12,1,()312,1,12,.x a x f x x a x a x a x a --<-⎧⎪=+--≤≤⎨⎪-++>⎩所以函数()f x 的图像与x 轴围成的三角形的三个顶点分别为21(,0)3a A -,(21,0)B a +,(,1)C a a +,ABC 的面积为22(1)3a + 由题设得22(1)63a +>,故2a > 所以a 的取值范围为(2,)+∞………………………………10分。