2015年高考文科数学真题答案全国卷1
- 格式:docx
- 大小:191.29 KB
- 文档页数:10
2015年⾼考⽂科数学全国卷1及答案解析数学试卷第1页(共15页)数学试卷第2页(共15页)数学试卷第3页(共15页)绝密★启⽤前2015年普通⾼等学校招⽣全国统⼀考试(全国新课标卷1)数学(⽂科)使⽤地区:河南、⼭西、河北、江西本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(⾮选择题)两部分.满分150分,考试时间120分钟.第Ⅰ卷(选择题共60分)⼀、选择题:本⼤题共12⼩题,每⼩题5分,共60分.在每⼩题给出的四个选项中,只有⼀项是符合题⽬要求的.1.已知集合{|}32,A x x n n ==+∈N ,{6,8,10,12,14}B =,则集合A B 中元素的个数为()A .5B .4C .3D .22.已知点0,1A (),3,2B (),向量AC =43--(,),则向量BC =()A (-7,-4)B .(7,4)C .(-1,4)D .(1,4) 3.已知复数z 满⾜(z -1)i=1+i ,则z=()A .-2-iB .-2+iC .2-iD .2+i4.如果3个正整数可作为⼀个直⾓三⾓形三条边的边长,则称这3个数为⼀组勾股数.从1,2,3,4,5中任取3个不同的数,则这3个数构成⼀组勾股数的概率为()A .310C .110D .1205.已知椭圆E 的中⼼在坐标原点,离⼼率为12,E 的右焦点与抛物线28C y x =:的焦点重合,A ,B 是C 的准线与E 的两个交点,则|AB |=()A .3B .6C .9D .126.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委⽶依垣内⾓,下周⼋尺,⾼五尺.问:积及为⽶⼏何?”其意思为:“在屋内墙⾓处堆放⽶(如图,⽶堆为⼀个圆锥的四分之⼀),⽶堆底部的弧长为8尺,⽶堆的⾼为5尺,问⽶堆的体积和堆放的⽶各为多少?”已知1斛⽶的体积约为1.62⽴⽅尺,圆周率约为3,估算出堆放的⽶约有()A .14斛B .22斛C .36斛D .66斛7.已知{}n a 是公差为1的等差数列,n S 为n {}a 的前n 项和.若844S S =,则10a = () A .172B .192C .10D .128.函数=cos(+)x f x ω?()的部分图象如图所⽰,则f x ()的单调递减区间为()A .13π,π+44k k k -∈Z (),B .132π,2π+44k k k -∈Z (), C .13,+44k k k -∈Z (),D .13k k k -∈Z (),9.执⾏如图所⽰的程序框图,如果输⼊的0.01t =,则输出的n = ()A .5B .6C .7D .810.已知函数1222, 1,()log (1), 1,x x f x x x -?-=?-+?≤>且()3f a =-,则(6)f a -= ()A .74-B .54-C .34-D .14-11.圆柱被⼀个平⾯截去⼀部分后与半球(半径为r )组成⼀个⼏何体,该⼏何体三视图中的正视图和俯视图如图所⽰.若该⼏何体的表⾯积为16π20+,则r = ()A .1B .2C .4D .812.设函数()y f x =的图象与2x a y +=的图象关于直线y x =-对称,且(2)(4)f f -+-1=,则a =()A .1-B .1C .2D .4--------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------⽆--------------------效----------------姓名________________ 准考证号_____________数学试卷第4页(共15页)数学试卷第5页(共15页)数学试卷第6页(共15页)第Ⅱ卷(⾮选择题共90分)本卷包括必考题和选考题两部分.第13~21题为必考题,每个试题考⽣都必须作答,第22~24题为选考题,考⽣根据要求作答.⼆、填空题:本⼤题共4⼩题,每⼩题5分,共20分.把答案填在题中的横线上. 13.在数列{}n a 中12a =,12n n a a +=,n S为{}n a 的前n 项和.若126n S =,则n =_____.14.已知函数31f x ax x =++()的图象在点1,1f (())处的切线过点(2,7),则a =_____. 15.若x ,y 满⾜约束条件20,210,220,x y x y x y +-??-+??-+?≤≤≥则z 3x y =+的最⼤值为_____.16.已知F 是双曲线2218yC x -=:的右焦点,P 是C的左⽀上⼀点,A (.当APF △周长最⼩时,该三⾓形的⾯积为_____.三、解答题:本⼤题共6⼩题,共70分.解答应写出必要的⽂字说明、证明过程或演算步骤. 17.(本⼩题满分12分)已知a ,b ,c 分别是ABC △内⾓A ,B ,C 的对边,2sin 2sin sin B A C =. (Ⅰ)若a b =,求cos B ;(Ⅱ)若B =90°,且a ABC △的⾯积. 18.(本⼩题满分12分)如图,四边形ABCD 为菱形,G 为AC 与BD 交点,BE ABCD ⊥平⾯. (Ⅰ)证明:平⾯AEC ⊥平⾯BED ;(Ⅱ)若ABC ∠=120°,AE EC ⊥,三棱锥E ACD -,求该三棱锥的侧⾯积.19.(本⼩题满分12分)某公司为确定下⼀年度投⼊某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y (单位:t )和年利润z(单位:千元)的影响,对近8年的年宣传费i x 和年销售量i y (i =1,2,…,8)数据作了初步处理,得到下⾯的散点图及⼀些统计量的值.表中i ωω=8ii=1ω∑(Ⅰ)根据散点图判断,y a bx =+与y c =+y 关于年宣传费x 的回归⽅程类型?(给出判断即可,不必说明理由)(Ⅱ)根据(Ⅰ)的判断结果及表中数据,建⽴y 关于x 的回归⽅程;(Ⅲ)已知这种产品的年利率z 与x ,y 的关系为z=0.2y -x .根据(Ⅱ)的结果回答下列问题:(i )年宣传费x =49时,年销售量及年利润的预报值是多少?(ii )年宣传费x 为何值时,年利润的预报值最⼤?附:对于⼀组数据11()u v ,,22(,)u v ,…,(,)n n u v ,其回归直线v u αβ=+的斜率和截距的最⼩⼆乘估计分别为121()(),()nii i nii uu v v v u uu βαβ==--==--∑∑.20.(本⼩题满分12分)已知过点(0,1)A 且斜率为k 的直线l 与圆22 ()2(3)1C x y -+-=:交于M ,N 两点. (Ⅰ)求k 的取值范围;(Ⅱ)若12OM ON ?=,其中O 为坐标原点,求||MN . 21.(本⼩题满分12分)设函数()2ln x f x e a x =-.(Ⅰ)讨论()f x 的导函数()f x '的零点的个数;(Ⅱ)证明:当0a >时,()22ln f x a a a+≥.请考⽣在第22~24三题中任选⼀题作答,如果多做,则按所做的第⼀题计分. 22.(本⼩题满分10分)选修4—1:⼏何证明选讲如图,AB 是⊙O 的直径,AC 是⊙O 的切线,BC 交⊙O 于点E . (Ⅰ)若D 为AC 的中点,证明:DE 是⊙O 的切线;(Ⅱ)若OA CE ,求∠ACB 的⼤⼩.23.(本⼩题满分10分)选修4—4:坐标系与参数⽅程在直⾓坐标系xOy 中,直线1C :x =-2,圆2C :(x -1)2+(y -2)2=1,以坐标原点为极点,x 轴的正半轴为极轴建⽴极坐标系. (Ⅰ)求1C ,2C 的极坐标⽅程;(Ⅱ)若直线3C 的极坐标⽅程为()π4θρ=∈R ,设2C 与3C 的交点为M ,N ,求2C MN △的⾯积.24.(本⼩题满分10分)选修4—5:不等式选讲已知函数12f x =|||x |x a --+(),0a >. (Ⅰ)当=1a 时,求不等式1f x >()的解集;(Ⅱ)若f x ()的图象与x 轴围成的三⾓形⾯积⼤于6,求a 的取值范围.数学试卷第7页(共15页)数学试卷第8页(共15页)数学试卷第9页(共15页)2015年普通⾼等学校招⽣全国统⼀考试(全国新课标卷1)数学(⽂科)答案解析第Ⅰ卷{8,14A B =【答案】A 【解析】(3,1)AB OB OA =-=(7,BC AC AB ∴=-=-【考点】向量运算【答案】C【解析】抛物线,1e 2c a ==代⼊椭圆E 【解析】公差【解析】()f a =-1a >时,-第Ⅱ卷】12a =,2)1262n -=-数学试卷第10页(共15页)数学试卷第11页(共15页)数学试卷第12页(共15页)【解析】()3f x '=,⼜(1)f a =(1,2)a +,切线过为4.(0,66)A ∴直线90,由勾股定理得120,可得3624AC GD BE x 3,EAD △的⾯积与ACD c y dw ∴=-576.6z =?0.2(100.6z =时,z数学试卷第13页(共15页)数学试卷第14页(共15页)数学试卷第15页(共15页)12OM ON x x =2(1)8=121k k+++的⼀元⼆次⽅程,利⽤平⾯向量数量积的坐标公式及12OM ON =,90ACB ∠+,90,90∴∠,DE ∴.AE x =,由已知得AB =2x -,由射影定理可得,AECE BE =,212x x ∴=-3x =60ACB ∴∠=.90,即90∠,CE BE ,列出关于【考点】圆的切线判定与性质,圆周⾓定理,直⾓三⾓形射影定理1 452=.。
2015年全国高考试题独家解析(新课标全国卷Ⅰ)文科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合{32,},{6,8,10,12,14}A x x n n N B ==+∈=,则集合A B 中的元素个数为A .5B .4C .3D .22.已知点(0,1),(3,2)A B ,向量(4,3)AC =--,则向量BC = A .(7,4)-- B .(7,4) C .(1,4)- D .(1,4) 3.已知复数z 满足(1)1z i i -=+,则z =A .2i --B .2i -+C .2i -D .2i +4.如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数,从1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率为A .310 B .15 C .110 D .1205.已知椭圆E 的中心为坐标原点,离心率为12,E 的右焦点与抛物线C :28y x =的焦点重合,A B 、是C 的准线与E 的两个交点,则AB = A .3 B .6 C .9 D .12 6.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺,问”积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有A .14斛B .22斛C .36斛D .66斛7.已知{}n a 是公差为1的等差数列,n S 为{}n a 的前n 项和,若844S S =,则10a = A .172 B .192C .10D .12 8.函数()cos()f x x ωϕ=+的部分图像如图所示,则()f x 的单调递减区间为A .13(,),44k k k Z ππ-+∈ B .13(2,2),44k k k Z ππ-+∈ C .13(,),44k k k Z -+∈ D .13(2,2),44k k k Z -+∈9.执行右面的程序框图,如果输入的0.01t =,则输出的n =A .5B .6C .7D .810.已知函数1222,1()log (1),1x x f x x x -⎧-=⎨-+>⎩≤ ,且()3f a =-,则(6)f a -=A .74-B .54-C .34-D .14-11.圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体的三视图中的正视图和俯视图如图所示,若该几何体的表面积为1620π+,则r =A .1B .2C .4D .812.设函数()y f x =的图像与2x a y +=的图像关于直线y x =-对称,且(2)(4)1f f -+-=,则a =A .1-B .1C .2D .4第Ⅱ卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答。
2015年高考全国卷1文科数学试题及答案解析(word精校版)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至3页,第Ⅱ卷4至6页。
注意事项:1. 答题前,考生务必将自己的准考证号、姓名填写在答题卡上。
考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致。
2. 第Ⅰ卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,在选涂其他答案标号。
第Ⅱ卷必须用0.5毫米黑色签字笔书写作答.若在试题卷上作答,答案无效。
3. 考试结束,监考员将试题卷、答题卡一并收回。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)已知集合A={x|x=3n+2,n ∈N},B={6,8,12,14},则集合A ⋂B中元素的个数为(A)5 (B)4 (C)3 (D)2(2)已知点A(0,1),B(3,2),向量AC=(-4,-3),则向量BC=(A)(-7,-4)(B)(7,4)(C)(-1,4)(D)(1,4)(3)已知复数z满足(z-1)i=i+1,则z=(A)-2-I (B)-2+I (C)2-I (D)2+i(4)如果3个整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数,从1,2,3,4,5中任取3个不同的数,则3个数构成一组勾股数的概率为(A)103(B)15(C)110(D)120(5)已知椭圆E的中心在坐标原点,离心率为12,E的右焦点与抛物线C:y²=8x的焦点重合,A,B是C的准线与E的两个焦点,则|AB|=(A)3 (B)6 (C)9 (D)12(6)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺。
问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧度为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放斛的米约有A.14斛B.22斛C.36斛D.66斛(7)已知是公差为1的等差数列,则=4,= (A)(B)(C)10 (D)12(8)函数f(x)=的部分图像如图所示,则f(x)的单调递减区间为(A)(k-, k-),k(A)(2k-, 2k-),k(A)(k-, k-),k(A)(2k-, 2k-),k(9)执行右面的程序框图,如果输入的t=0.01,则输出的n=(A)5 (B)6 (C)7 (D)8(10)已知函数,且f(a)=-3,则f(6-a)=(A)-74(B)-54(C)-34(D)-14(11)圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示,若该几何体的表面积为16+20π,则r=(A )1 (B) 2 (C) 4 (D) 8(12)设函数y=f (x )的图像关于直线y=-x 对称,且f (-2)+f (-4)=1,则a= (A )-1 (B )1 (C )2 (D )4第Ⅱ卷注意事项:第Ⅱ卷共3页,须用黑色墨水签字笔在答题卡上作答。
2015年普通高等学校招生全国统一考试(新课标1卷)文一、选择题:每小题5分,共60分1、已知集合{32,},{6,8,10,12,14}A x x n n N B ==+∈=,则集合A B 中的元素个数为(A )5(B )4(C )3(D )22、已知点(0,1),(3,2)A B ,向量(4,3)AC =--,则向量BC =(A )(7,4)--(B )(7,4)(C )(1,4)-(D )(1,4)3、已知复数z 满足(1)1z i i -=+,则z =()(A )2i--(B )2i-+(C )2i-(D )2i+4、如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数,从1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率为()(A )310(B )15(C )110(D )1205、已知椭圆E 的中心为坐标原点,离心率为12,E 的右焦点与抛物线2:8C y x =的焦点重合,,A B 是C 的准线与E 的两个交点,则AB =(A )3(B )6(C )9(D )126、《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺,问”积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有()(A )14斛(B )22斛(C )36斛(D )66斛7、已知{}n a 是公差为1的等差数列,n S 为{}n a 的前n 项和,若844S S =,则10a =()(A )172(B )192(C )10(D )128、函数()cos()f x x ωϕ=+的部分图像如图所示,则()f x 的单调递减区间为()(A )13(,),44k k k Z ππ-+∈(B )13(2,244k k k Zππ-+∈(C )13(,),44k k k Z -+∈(D )13(2,2),44k k k Z-+∈9、执行右面的程序框图,如果输入的0.01t =,则输出的n =()(A )5(B )6(C )7(D )810、已知函数1222,1()log (1),1x x f x x x -⎧-≤=⎨-+>⎩,且()3f a =-,则(6)f a -=(A )74-(B )54-(C )34-(D )14-11、圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体的三视图中的正视图和俯视图如图所示,若该几何体的表面积为1620π+,则r =()(A )1(B )2(C )4(D )812、设函数()y f x =的图像与2x ay +=的图像关于直线y x =-对称,且(2)(4)1f f -+-=,则a =()(A )1-(B )1(C )2(D )4二、填空题:本大题共4小题,每小题5分13、数列{}n a 中112,2,n n n a a a S +==为{}n a 的前n 项和,若126n S =,则n =.14.已知函数()31f x ax x =++的图像在点()()1,1f 的处的切线过点()2,7,则a =.15.若x ,y 满足约束条件20210220x y x y x y +-≤⎧⎪-+≤⎨⎪-+≥⎩,则z =3x +y 的最大值为.16.已知F 是双曲线22:18y C x -=的右焦点,P 是C左支上一点,(A ,当APF ∆周长最小时,该三角形的面积为.三、解答题17.(本小题满分12分)已知,,a b c 分别是ABC ∆内角,,A B C 的对边,2sin 2sin sin B A C =.(I )若a b =,求cos ;B (II )若90B =,且a =求ABC ∆的面积.18.(本小题满分12分)如图四边形ABCD 为菱形,G 为AC 与BD 交点,BE ABCD ⊥平面,(I )证明:平面AEC ⊥平面BED ;(II )若120ABC ∠=,,AE EC ⊥三棱锥E ACD -的体积为3,求该三棱锥的侧面积.19.(本小题满分12分)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y (单位:t )和年利润z (单位:千元)的影响,对近8年的宣传费i x 和年销售量()1,2,,8i y i = 数据作了初步处理,得到下面的散点图及一些统计量的值.(I )根据散点图判断,y a bx =+与y c =+,哪一个适宜作为年销售量y 关于年宣传费x 的回归方程类型(给出判断即可,不必说明理由);(II )根据(I )的判断结果及表中数据,建立y 关于x 的回归方程;(III )已知这种产品的年利润z 与x ,y 的关系为0.2z y x =-,根据(II )的结果回答下列问题:(i )当年宣传费x =49时,年销售量及年利润的预报值时多少?(ii )当年宣传费x 为何值时,年利润的预报值最大?20.(本小题满分12分)已知过点()1,0A 且斜率为k 的直线l 与圆C :()()22231x y -+-=交于M ,N 两点.(I )求k 的取值范围;(II )若12OM ON ⋅=,其中O 为坐标原点,求MN .21.(本小题满分12分)设函数()2ln xf x ea x =-.(I )讨论()f x 的导函数()f x '的零点的个数;(II )证明:当0a >时()22lnf x a a a≥+.请考生在22、23、24题中任选一题作答,如果多做,则按所做的第一题计分,做答时请写清题号22.(本小题满分10分)选修4-1:几何证明选讲如图AB 是 O 直径,AC 是 O 切线,BC 交 O 与点E .(I )若D 为AC 中点,证明:DE 是 O 切线;(II )若OA =,求ACB ∠的大小.23.(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,直线1:2C x =-,圆()()222:121C x y -+-=,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系.(I )求12,C C 的极坐标方程.(II )若直线3C 的极坐标方程为()πR 4θρ=∈,设23,C C 的交点为,M N ,求2C MN ∆的面积.24.(本小题满分10分)选修4-5:不等式选讲已知函数()12,0f x x x a a =+-->.(I )当1a =时求不等式()1f x >的解集;(II )若()f x 的图像与x 轴围成的三角形面积大于6,求a 的取值范围.欢迎光临:蒙清牛肉干店(按ctrl 键点击即可进入淘宝店铺)牛肉干无脂肪.减肥必备超级抗饿.熬夜必备美食(3斤牛肉才做1斤牛肉干)2015年普通高等学校招生全国统一考试(新课标1卷)文答案一、选择题(1)D (2)A (3)C (4)C (5)B (6)B (7)B (8)D (9)C (10)A (11)B (12)C二、填空题(13)6(14)1(15)4(16)三、解答题17、解:(I )由题设及正弦定理可得2b =2ac.又a=b ,可得cosB=2222a c b ac+-=14……6分(II )由(I )知2b =2ac.因为B=o90,由勾股定理得222a c =b +.故22a c =2ac +,的.所以△ABC 的面积为1.……12分18、解:(I)因为四边形ABCD 为菱形,所以AC⊥BD.因为BE⊥平面ABCD,所以AC⊥BE,故AC⊥平面BED.又AC ⊂平面AEC,所以平面AEC ⊥平面BED.……5分(II )设AB=x ,在菱形ABCD 中,又∠ABC=o120,可得AG=GC=32x ,GB=GD=2x .因为AE ⊥EC,所以在Rt△AEC 中,可的EG=32x .由BE ⊥平面ABCD,知△EBG 为直角三角形,可得BE=2x .由已知得,三棱锥E-ACD 的体积E ACD V -=13×12AC ·GD ·BE=366243x =.故x =2……9分从而可得.所以△EAC 的面积为3,△EAD 的面积与△ECD.故三棱锥E-ACD 的侧面积为……12分19、解:(I )由散点图可以判断,适宜作为年销售量y 关于年宣传费x 的回归方程式类型.(II)令w =,先建立y 关于w 的线性回归方程式.由于28181()()108.8d=681.6(i i i i i w w y y w w ==--==-∑∑ ,56368 6.8100.6c y d w =-=-⨯=,所以y 关于w 的线性回归方程为y=100.668w +,因此y 关于x的回归方程为y 100.6=+(Ⅲ)(i )由(II )知,当x =49时,年销售量y 的预报值y 100.6=+,年利润z 的预报值z=576.60.24966.32⨯-=……9分(ii )根据(II )的结果知,年利润z的预报值=-20.12x x ++.13.6=6.82=,即x =46.24时,z取得最大值.故年宣传费为46.24千元时,年利润的预报值最大.……12分20、解:(I )由题设,可知直线l 的方程为1y kx =+.因为l 与C1.解得474733k +〈〈.所以k 的取值范围为4747()33+.……5分(II )设()1122,,(,)M x y N x y .将1y kx =+代入方程22(2)(3)1x y -+-=,整理得22(1)4(1)70k x k x +-++=.所以1212224(1)7,11k x x x x k k++==++.1212OM ON c x y y ⋅=+()()2121211k x x k x x =++++()24181k k k +=++.由题设可得()24181k k k+=++=12,解得k=1,所以l 的方程是y=x+1.故圆心C 在l上,所以2MN =.……12分21、解:(I )()f x 的定义域为()()20,,2(0)xaf x e x x'+∞=-〉.当a ≤0时,()()0f x f x ''〉,没有零点;当0a 〉时,因为2xe 单调递增,ax-单调递减,所以()f x '在()0,+∞单调递增,又()0f a '〉,当b 满足0<b <4a且b <14时,()0f b '〈,故当a <0时()f x '存在唯一零点.……6分(II )由(I ),可设()f x '在()0,+∞的唯一零点为0x ,当()00x x ∈,时,()f x '<0;当()0x x ∈+∞,时,()f x '>0.故()f x 在()0+∞,单调递减,在()0x +∞,单调递增,所以0x x =时,()f x 取得最小值,最小值为()0f x .由于02020x aex -=,所以()0002221212a f x ax a n a a n x a a =++≥+.故当0a 〉时,()221f x a a n a≥+.……12分22、解:(I )连接AE ,由已知得,AE ⊥BC,AC ⊥AB.在Rt △AEC 中,由已知得,DE=DC,故∠DEC=∠DCE.连结OE ,则∠OBE=∠OEB.又∠OED+∠ABC=o90,所以∠DEC+∠OEB=o90,故∠OED=o90,DE 是 O 的切线. (5)分(II )设CE=1,AE=x ,由已知得AB=由射影定理可得,2AE CE BE =⋅,所以2x =,即42120x x +-=.可得x =ACB=60o .……10分23、解:(I )因为cos ,sin x y ρθρθ==,所以1C 的极坐标方程为cos 2ρθ=-,2C 的极坐标方程为22cos 4sin 40ρρθρθ--+=.……5分(II )将4πθ=代入22cos 4sin 40ρρθρθ--+=,得240ρ-+=,解得12ρρ==.故12ρρ-=MN =由于2C 的半径为1,所以2C MN ∆的面积为12.……10分24、解:(I )当1a =时,()1f x >化为12110x x +--->.当1x ≤-时,不等式化为40x ->,无解;当11x -<<时,不等式化为320x ->,解得213x <<;当1x ≥,不等式化为-x +2>0,解得1≤x <2.所以()1f x >的解集为223x x ⎧⎫⎨⎬⎩⎭︱<<.……5分(II )由题设可得,()12,1312,1,12,.x a x f x x a x a x a x a --⎧⎪=+--≤≤⎨⎪-++⎩<<所以函数()f x 的图像与x 轴围成的三角形的三个丁点分别为()()21,0,21,0,,13a A B a C a a -⎛⎫++ ⎪⎝⎭,△ABC 的面积为()2213a +.由题设得()2213a +>6,故a >2.所以a 的取值范围为()2+∞,.……10分。
2015年普通高等学校招生全国统一考试(新课标1卷)文一、选择题:每小题5分,共60分1、已知集合,则集合中的元素个数为(A) 5 (B)4 (C)3 (D)22、已知点,向量,则向量(A)(B)(C)(D)3、已知复数满足,则()(A)(B)(C)(D)4、如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数,从中任取3个不同的数,则这3个数构成一组勾股数的概率为()(A)(B)(C)(D)5、已知椭圆E的中心为坐标原点,离心率为,E的右焦点与抛物线的焦点重合,是C的准线与E的两个交点,则(A)(B)(C)(D)6、《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺,问”积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有()(A)斛(B)斛(C)斛(D)斛7、已知是公差为1的等差数列,为的前项和,若,则()(A)(B)(C)(D)8、函数的部分图像如图所示,则的单调递减区间为()(A)(B)(C)(D)9、执行右面的程序框图,如果输入的,则输出的()(A)(B)(C)7 (D)810、已知函数,且,则(A)(B)(C)(D)11、圆柱被一个平面截去一部分后与半球(半径为)组成一个几何体,该几何体的三视图中的正视图和俯视图如图所示,若该几何体的表面积为,则( )(A)(B)(C)(D)12、设函数的图像与的图像关于直线对称,且,则( )(A)(B)(C)(D)二、填空题:本大题共4小题,每小题5分13、数列中为的前n项和,若,则.14.已知函数的图像在点的处的切线过点,则.15. 若x,y满足约束条件 ,则z=3x+y的最大值为.16.已知是双曲线的右焦点,P是C左支上一点,,当周长最小时,该三角形的面积为.三、解答题17. (本小题满分12分)已知分别是内角的对边,.(I)若,求(II)若,且求的面积.18. (本小题满分12分)如图四边形ABCD为菱形,G为AC与BD交点,,(I)证明:平面平面;(II)若,三棱锥的体积为,求该三棱锥的侧面积.19. (本小题满分12分)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x(单位:千元)对年销售量y(单位:t)和年利润z(单位:千元)的影响,对近8年的宣传费和年销售量数据作了初步处理,得到下面的散点图及一些统计量的值.(I)根据散点图判断,与,哪一个适宜作为年销售量y关于年宣传费x的回归方程类型(给出判断即可,不必说明理由);(II)根据(I)的判断结果及表中数据,建立y关于x的回归方程;(III)已知这种产品的年利润z与x,y的关系为,根据(II)的结果回答下列问题:(i)当年宣传费=49时,年销售量及年利润的预报值时多少?(ii)当年宣传费为何值时,年利润的预报值最大?20. (本小题满分12分)已知过点且斜率为k的直线l与圆C:交于M,N两点.(I)求k的取值范围;(II)若,其中O为坐标原点,求.21. (本小题满分12分)设函数.(I)讨论的导函数的零点的个数;(II)证明:当时.请考生在22、23、24题中任选一题作答,如果多做,则按所做的第一题计分,做答时请写清题号22. (本小题满分10分)选修4-1:几何证明选讲如图AB是O直径,AC是O切线,BC交O与点E.(I)若D为AC中点,证明:DE是O切线;(II)若,求的大小.23. (本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系中,直线,圆,以坐标原点为极点,x轴正半轴为极轴建立极坐标系.(I)求的极坐标方程.(II)若直线的极坐标方程为,设的交点为,求的面积.24. (本小题满分10分)选修4-5:不等式选讲已知函数 .(I)当时求不等式的解集;(II)若的图像与x轴围成的三角形面积大于6,求a的取值范围.2015年普通高等学校招生全国统一考试(新课标1卷)文答案一、选择题(1)D (2)A (3)C (4)C (5)B (6)B(7)B (8)D (9)C (10)A (11)B (12)C二、填空题(13)6 (14)1 (15)4 (16)三、解答题17、解:(I)由题设及正弦定理可得=2ac.又a=b,可得cosB==……6分(II)由(I)知=2ac.因为B=,由勾股定理得.故,的c=a=.所以△ABC的面积为1. ……12分18、解:(I)因为四边形ABCD为菱形,所以AC⊥BD.因为BE⊥平面ABCD,所以AC⊥BE,故AC⊥平面BED.又AC平面AEC,所以平面AEC⊥平面BED. (5)分(II)设AB=,在菱形ABCD中,又∠ABC=,可得AG=GC=,GB=GD=.因为AE⊥EC,所以在Rt△AEC中,可的EG=.由BE⊥平面ABCD,知△EBG为直角三角形,可得BE=.由已知得,三棱锥E-ACD的体积=×AC·GD·BE=.故=2……9分从而可得AE=EC=ED=.所以△EAC的面积为3,△EAD的面积与△ECD的面积均为.故三棱锥E-ACD的侧面积为3+2. ……12分19、解:(I)由散点图可以判断,y=c+d适宜作为年销售量y关于年宣传费的回归方程式类型.(II)令,先建立y关于w的线性回归方程式.由于,,所以y关于w的线性回归方程为,因此y关于的回归方程为(Ⅲ)(i)由(II)知,当=49时,年销售量y的预报值,年利润z的预报值……9分(ii)根据(II)的结果知,年利润z的预报值.所以当,即=46.24时,取得最大值.故年宣传费为46.24千元时,年利润的预报值最大. ……12分20、解:(I)由题设,可知直线的方程为.因为与C交于两点,所以.解得.所以k的取值范围为. ……5分(II)设.将代入方程,整理得.所以..由题设可得=12,解得k=1,所以的方程是y=x+1.故圆心C在上,所以. ……12分21、解:(I)的定义域为.当≤0时,没有零点;当时,因为单调递增,单调递减,所以在单调递增,又,当b满足0<b<且b<时,,故当<0时存在唯一零点.……6分(II)由(I),可设在的唯一零点为,当时,<0;当时,>0.故在单调递减,在单调递增,所以时,取得最小值,最小值为.由于,所以.故当时,. ……12分22、解:(I)连接AE,由已知得,AE⊥BC,AC⊥AB.在Rt△AEC中,由已知得,DE=DC,故∠DEC=∠DCE.连结OE,则∠OBE=∠OEB.又∠OED+∠ABC=,所以∠DEC+∠OEB=,故∠OED=,DE是O的切线.……5分(II)设CE=1,AE=,由已知得AB=,BE=.由射影定理可得,,所以,即.可得,所以∠ACB=.……10分23、解:(I)因为,所以的极坐标方程为,的极坐标方程为. ……5分(II)将代入,得,解得.故,即由于的半径为1,所以的面积为. ……10分24、解:(I)当时,化为.当时,不等式化为,无解;当时,不等式化为,解得;当,不等式化为-+2>0,解得1≤<2.所以的解集为. (5)分(II)由题设可得,所以函数的图像与轴围成的三角形的三个丁点分别为,△ABC的面积为.由题设得>6,故>2.所以的取值范围为. ……10分。
绝密★启封并使用完毕前2015年普通高等学校招生全国统一考试文科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至3页,第Ⅱ卷4至6页。
注意事项:1. 答题前,考生务必将自己的准考证号、姓名填写在答题卡上。
考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致。
2. 第Ⅰ卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,在选涂其他答案标号。
第Ⅱ卷必须用0.5毫米黑色签字笔书写作答.若在试题卷上作答,答案无效。
3. 考试结束,监考员将试题卷、答题卡一并收回。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)已知集合A={x|x=3n+2,n ∈N},B={6,8,12,14},则集合A ⋂B中元素的个数为(A)5 (B)4 (C)3 (D)2(2)已知点A(0,1),B(3,2),向量AC=(-4,-3),则向量BC=(A)(-7,-4)(B)(7,4)(C)(-1,4)(D)(1,4)(3)已知复数z满足(z-1)i=i+1,则z=(A)-2-I (B)-2+I (C)2-I (D)2+i(4)如果3个整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数,从1,2,3,4,5中任取3个不同的数,则3个数构成一组勾股数的概率为(A)103(B)15(C)110(D)120(5)已知椭圆E的中心在坐标原点,离心率为12,E的右焦点与抛物线C:y²=8x的焦点重合,A,B是C的准线与E的两个焦点,则|AB|= (A)3 (B)6 (C)9 (D)12(6)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺。
问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧度为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放斛的米约有A.14斛B.22斛C.36斛D.66斛(7)已知是公差为1的等差数列,则=4,= (A)(B)(C)10 (D)12(8)函数f(x)=的部分图像如图所示,则f(x)的单调递减区间为(A)(k-, k-),k(A)(2k-, 2k-),k(A)(k-, k-),k(A)(2k-, 2k-),k(9)执行右面的程序框图,如果输入的t=0.01,则输出的n=(A)5 (B)6 (C)7 (D)8(10)已知函数,且f(a)=-3,则f(6-a)=(A)-74(B)-54(C)-34(D)-14(11)圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示,若该几何体的表面积为16+20π,则r=(A )1 (B) 2 (C) 4 (D) 8(12)设函数y=f (x )的图像关于直线y=-x 对称,且f (-2)+f (-4)=1,则a= (A )-1 (B )1 (C )2 (D )4第Ⅱ卷注意事项:第Ⅱ卷共3页,须用黑色墨水签字笔在答题卡上作答。
2015年普通高等学校招生全国统一考试(全国Ⅰ卷)文科数学试题解析1. 解析 当3214n +…,得4n ….由32x n =+,当0n =时,2x =;当1n =时,5x =;当2n =时,8x =;当3n =时,11x =;当4n =时,14x =. 所以{}8,14AB =,则集合A B 中含元素个数为2.故选D .2. 解析 BA =()03,12--=()3,1--,()()34,137,4BC BA AC =+=----=--.故选A.3. 解析 由题意可得i 1i i 12i z =++=+,12i2i iz +==-.故选C. 4. 解析 由211=,222224,39,416,525====, 可知只有()3,4,5是一组勾股数.从1,2,3,4,5中任取3个不同的数,其基本事件有:()()()1,2,3,1,2,4,1,2,5,()()()1,3,4,1,3,5,1,4,5, ()()()()2,3,4,2,3,5,2,4,5,3,4,5,共10种.则从1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率110P =.故选C. 5. 解析 28y x =的焦点为()2,0,准线方程为2x =-. 由E 的右焦点与28y x =的焦点重合,可得2c =.又12c a =,得4a =,212b =,所以椭圆E 的方程为2211612x y +=. 当2x =-时,()22211612y -+=,得3y =±,即6AB =.故选B. 6. 解析 由l r α=,得816332lr α===. 21116320354339V ⎛⎫=⨯⨯⨯⨯=⎪⎝⎭. 故堆放的米约有3201.62229÷≈(斛).故选B.7. 解析 解法一:由844S S =,1d =,知()()118814418144122a a --⎡⎤+⨯=+⨯⎢⎥⎣⎦, 解得112a =.所以()10119101122a =+-⨯=.故选B. 解法二:由844S S =,即()()1814442a a a a +=⨯+,可得8142a a a =+. 又公差1d =,所以817a a =+,则427a =,解得472a =. 所以1041962a a =+=.故选B. 8. 解析 由图可知511244T =-=,得2T =,2ππTω==. 画出图中函数()f x 的一条对称轴0x x =,如图所示. 由图可知034x =,则3πcos 14ϕ⎛⎫+=- ⎪⎝⎭, 可得3π2ππ4k ϕ+=+,则()π2π4k k ϕ=+∈Z ,得()πcos π4f x x ⎛⎫=+ ⎪⎝⎭. 由π2ππ2ππ4k x k ++剟,得()f x 的单调递减区间为132244k xk -+剟. 故选D.9. 解析 由程序框图可知, 第一次循环为:1110.0122S =-=>, 11224m ==,011n =+=;第二次循环为:1110.01244S =-=>,18m =,2n =; 第三次循环为:1110.01488S =-=>,116m =,3n =; 第四次循环为:1110.0181616S=-=>,132m =,4n =;第五次循环为:1110.01163232S =-=>,164m =,5n =; 第六次循环为:1110.01326464S =-=>,1128m =,6n =; 第七次循环为:1110.0164128128S =-=…,1256m =,7n =. 此时循环结束,输出7n =.故选C.10. 解析 当1a …时,()1223a f a -=-=-,即121a -=-,无解;当1a >时,()()2log 13f a a =-+=-,即()322log 13log 2a +==, 得18a +=,所以7a =,符合1a >. 综上可知,7a =.则()()()1176671224f a f f ---=-=-=-=-.故选A. 11. 解析 由几何体的视图,还原其立体图形,并调整其摆放姿势,让半圆柱体在下方,半球在上方,如图所示.224π22π2π2r S r r r r r =+++=2245π1620πr r +=+,得2r =.故选B.12. 解析 设(),x y 为()f x 图像上一点,则(),x y 关于y x =-的对称点为(),y x --, 代入2x a y +=,得2y ax -+-=,①对①两边取以2为底的对数,得()2log x y a -=-+,即()2log y x a =---⎡⎤⎣⎦. 又()()241f f -+-=,即()()22log 2log 41a a ----=, 得()121a a ---=,得2a =.故选C. 13. 解析 由12n n a a +=,得12n na a +=,即数列{}n a 是首项为2,公比为2的等比数列. ()()11212126112n n n a q S q--===--,得6n =.14. 解析 由题意可得()12f a =+,()131f a '=+,2r所以切线方程为()()()2311y a a x -+=+-.又过点()2,7,即()()723121a a --=+-,解得1a =. 15. 解析 画出满足不等式组的可行域,如图中阴影部分所示.联立()1122y x y x ⎧=+⎪⎨⎪=-+⎩,得()1,1B . 由图可知当直线3y x =-经过点()1,1B 时,z 取得最大值.max 134z =+=.16. 解析 设双曲线的左焦点为1F ,连接AF ,与双曲线左支交于点P ,连接PF .则此P 点即为使得APF △周长最小时的点P ,如图所示.证明如下:由双曲线的定义知,122PF PF a -==.所以12PF PF =+. 又APF C AF AP PF =++△, 所以12APF C AF AP PF =+++△,所以当点A ,P ,1F 在同一条直线上时,周长取得最小值. 由题意可得1AF所在直线方程为)3y x =+, 同理可得AF的直线方程为)3y x =--.联立)22318y x y x ⎧=+⎪⎨-=⎪⎩,解得(2,P -. 则(),d P AF ==又15AF ==,所以1152PAF S =⨯=△17. 解析 (1)由正弦定理得,22b ac =.又a b =,所以22a ac =,即2a c =.则22222212cos 2422a a a a cb B a ac a ⎛⎫+- ⎪+-⎝⎭===⋅. (2)解法一:因为90B ∠=,所以()2sin 12sin sin 2sin sin 90B A C A A ===-,即2sin cos 1A A =,亦即sin 21A =.又因为在ABC △中,90B ∠=,所以090A <∠<, 则290A ∠=,得45A ∠=.所以ABC △为等腰直角三角形,得a c ==,所以112ABC S ==△. 解法二:由(1)可知22b ac =,①因为90B ∠=,所以222a cb +=,②将②代入①得()20a c -=,则a c ==,所以112ABC S ==△. 18. 解析 (1)因为BE ⊥平面ABCD ,所以BE AC ⊥. 又ABCD 为菱形,所以AC BD ⊥.又因为BD BE B =,BD ,BE ⊂平面BED ,所以AC ⊥平面BED .又AC ⊂平面AEC ,所以平面AEC ⊥平面BED . (2)在菱形ABCD 中,取2AB BC CD AD x ====, 又120ABC ∠=,所以AG GC ==,BG GD x ==. 在AEC △中,90AEC ∠=,所以12EG AC ==, 所以在Rt EBG △中,BE =,所以31122sin120232E ACD V x x x x -=⨯⨯⋅⋅⋅==,解得1x =. 在Rt EBA △,Rt EBC △,Rt EBD △中,可得AE EC ED===所以三棱锥的侧面积1122322S =⨯⨯=+侧19. 解析 (1)由散点图变化情况选择y c =+.。
2015年全国高考文科数学试题和答案word精校版(新课标1卷)2015年普通高等学校招生全国统一考试(新课标1卷)文科一、选择题:每小题5分,共60分1.已知集合 $A=\{x|x=3n+2,n\in N\}$,$B=\{6,8,10,12,14\}$,则集合 $A$ 中的元素个数为()A)5 (B)4 (C)3 (D)22.已知点 $A(0,1)$,$B(3,2)$,向量$\overrightarrow{AC}=(-4,-3)$,则向量$\overrightarrow{BC}$ 为()A)$(-7,-4)$ (B)$(7,4)$ (C)$(-1,4)$ (D)$(1,4)$3.已知复数 $z$ 满足 $(z-1)i=1+i$,则 $z$ 等于()A)$-2-i$ (B)$-2+i$ (C)$2-i$ (D)$2+i$5.已知椭圆 $E$ 的中心为坐标原点,离心率为$\frac{1}{2}$,$E$ 的右焦点与抛物线$C:y=8x$ 的焦点重合,$A,B$ 是 $C$ 的准线与 $E$ 的两个交点,则 $AB$ 的长度为()A)3 (B)6 (C)9 (D)126.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺,问积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有()A)14斛(B)22斛(C)36斛(D)66斛7.已知 $\{a_n\}$ 是公差为1的等差数列,$S_n$ 为$\{a_n\}$ 的前 $n$ 项和,若 $S_8=4S_4$,则 $a_{10}$ 等于()A)17 (B)22 (C)10 (D)128.函数 $f(x)=\cos(\omega x+\varphi)$ 的部分图像如图所示,则 $f(x)$ 的单调递减区间为()A)$(k\pi-\frac{13}{4},k\pi+\frac{4}{4}),k\in Z$B)$(2k\pi-\frac{1}{4},2k\pi+\frac{3}{4}),k\in Z$C)$(k-\frac{1}{4},k+\frac{3}{4}),k\in Z$D)$(2k-\frac{1}{4},2k+\frac{3}{4}),k\in Z$9.执行右面的程序框图,如果输入的 $t=0.01$,则输出的$n$ 等于()A)5 (B)6 (C)7 (D)810.已知函数 $f(x)=\begin{cases} 2x-1-2,&x\le 1\\ -\log_2(x+1),&x>1 \end{cases}$,且 $f(a)=-3$,则 $f(6-a)$ 等于()A)$-\frac{7}{4}$ (B)$-\frac{5}{4}$11、圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体的三视图中的正视图和俯视图如图所示,若该几何体的表面积为16+20π,则r=()C)412、设函数y=f(x)的图像与y=2x+a的图像关于直线y=-x对称,且f(-2)+f(-4)=1,则a=()A)-113、数列{an}中a1=2,an+1=2an,Sn为{an}的前n项和,若Sn=126,则n=6.14.已知函数f(x)=ax+x+1的图像在点(1,f(1))的处的切线过点(2,7),则a=3.15.若x,y满足约束条件{x+y-2≤0.x-2y+1≤0.2x-y+2≥0},则z=3x+y的最大值为5.16.已知F是双曲线C:x-8^2-y^2=1的右焦点,P是C左支上一点,A(0,6),当△APF周长最小时,该三角形的面积为24.17.(本小题满分12分)已知a,b,c分别是△ABC内角A,B,C的对边,sinB=2sinAsinC.I)若a=b,求cosB;II)若B=90,且a=2,求△ABC的面积.18.(本小题满分12分)如图四边形ABCD为菱形,G为AC与BD交点,BE⊥平面ABCD。
2015年高考文科数学试卷全国卷1(解析版)1 23 参考答案41.D 5【解析】6试题分析:由条件知,当n=2时,3n+2=8,当n=4时,3n+2=14,故A ∩B={8,14},7 故选D.8考点:集合运算 92.A 10【解析】11试题分析:∵AB OB OA =-=(3,1),∴BC =AC AB -=(-7,-4),故选A. 12考点:向量运算 133.C 14【解析】15试题分析:∴(1)1z i i -=+,∴z=212(12)()2i i i i i i ++-==--,故选C. 16考点:复数运算 174.C 18【解析】19试题分析:从1,2,3,4,51,2,3,4,5中任取3个不同的数共有10种不同的取20 法,其中的勾股数只有3,4,5,故3个数构成一组勾股数的取法只有1种,故所21 求概率为110,故选C. 22考点:古典概型 235.B 24【解析】25试题分析:∵抛物线2:8C y x =的焦点为(2,0),准线方程为2x =-,∴椭26 圆E 的右焦点为(2,0),27∴椭圆E 的焦点在x 轴上,设方程为22221(0)x y a b a b+=>>,c=2,28∵12c e a ==,∴4a =,∴22212b a c =-=,∴椭圆E 方程为2211612x y +=, 29将2x =-代入椭圆E 的方程解得A (-2,3),B (-2,-3),∴|AB|=6,故选30 B.31考点:抛物线性质;椭圆标准方程与性质 326.B 33【解析】34试题分析:设圆锥底面半径为r ,则12384r ⨯⨯=,所以163r =,所以米堆的35 体积为211163()5433⨯⨯⨯⨯=3209,故堆放的米约为3209÷1.62≈22,故选B.36考点:圆锥的性质与圆锥的体积公式377.B 38【解析】39试题分析:∵公差1d =,844S S =,∴11118874(443)22a a +⨯⨯=+⨯⨯,解得40 1a =12,∴1011199922a a d =+=+=,故选B.41考点:等差数列通项公式及前n 项和公式 428.D 43【解析】44试题分析:由五点作图知,1+4253+42πωϕπωϕ⎧=⎪⎪⎨⎪=⎪⎩,解得=ωπ,=4πϕ,所以45()cos()4f x x ππ=+,令22,4k x k k Z πππππ<+<+∈,解得124k -<x <324k +,46 k Z ∈,故单调减区间为(124k -,324k +),k Z ∈,故选D. 47考点:三角函数图像与性质 489.C 49【解析】 50试题分析:执行第1次,51 t=0.01,S=1,n=0,m=12=0.5,S=S-m=0.5,2mm ==0.25,n=1,S=0.5>t=0.01,是,循52 环,53执行第2次,S=S-m =0.25,2mm ==0.125,n=2,S=0.25>t=0.01,是,循环, 54执行第3次,S=S-m =0.125,2mm ==0.0625,n=3,S=0.125>t=0.01,是,循55 环,56执行第4次,S=S-m=0.0625,2mm ==0.03125,n=4,S=0.0625>t=0.01,是,57 循环,58执行第5次,S=S-m =0.03125,2mm ==0.015625,n=5,S=0.03125>t=0.01,59 是,循环,60执行第6次,S=S-m=0.015625,2mm ==0.0078125,n=6,S=0.015625>t=0.01,61 是,循环,62执行第7次,S=S-m=0.0078125,2mm ==0.00390625,n=7,S=0.0078125>63 t=0.01,否,输出n=7,故选C.64考点:程序框图 6510.A 66【解析】67试题分析:∵()3f a =-,∴当1a ≤时,1()223a f a -=-=-,则121a -=-,68 此等式显然不成立,69当1a >时,2log (1)3a -+=-,解得7a =,70∴(6)f a -=(1)f -=117224---=-,故选A.71考点:分段函数求值;指数函数与对数函数图像与性质 7211.B73试题分析:由正视图和俯视图知,该几何体是半球与半个圆柱的组合体,圆75 柱的半径与球的半径都为r ,圆柱的高为2r ,其表面积为76 22142222r r r r r r πππ⨯+⨯++⨯=2254r r π+=16 + 20π,解得r=2,故选B. 77考点:简单几何体的三视图;球的表面积公式;圆柱的测面积公式 7812.C 79【解析】80试题分析:设(,)x y 是函数()y f x =的图像上任意一点,它关于直线y x =-对81 称为(,y x --),由已知知(,y x --)在函数2x a y +=的图像上,∴2y a x -+-=,解82 得2log ()y x a=--+,即2()log ()f x x a=--+,∴83 22(2)(4)log 2log 41f f a a -+-=-+-+=,解得2a =,故选C.84考点:函数对称;对数的定义与运算 8513.6 86【解析】87试题分析:∵112,2n n a a a +==,∴数列{}n a 是首项为2,公比为2的等比数88 列,89∴2(12)12612n n S -==-,∴264n =,∴n=6. 90考点:等比数列定义与前n 项和公式 9114.192试题分析:∵2()31f x ax '=+,∴(1)31f a '=+,即切线斜率31k a =+, 94又∵(1)2f a =+,∴切点为(1,2a +),∵切线过(2,7),∴273112a a +-=+-,95 解得a =1.96考点:利用导数的几何意义求函数的切线;常见函数的导数; 9715.4 98【解析】99试题分析:作出可行域如图中阴影部分所示,作出直线0l :30x y +=,平移100直线0l ,当直线l :z=3x+y 过点A 时,z 取最大值,由2=021=0x y x y +-⎧⎨-+⎩解得A (1,1),101∴z=3x+y 的最大值为4.102103 考点:简单线性规划解法 10416.126105【解析】106试题分析:设双曲线的左焦点为1F ,由双曲线定义知,1||2||PF a PF =+, 107∴△APF的周长为108|PA|+|PF|+|AF|=|PA|+12||a PF ++|AF|=|PA|+1||PF +|AF|+2a ,109由于2||a AF +是定值,要使△APF 的周长最小,则|PA|+1||PF 最小,即P 、110 A 、1F 共线,111∵()0,66A ,1F (-3,0),∴直线1AF 的方程为1366x +=-,即326x =-112代入2218y x -=整理得266960y y +-=,解得26y =或86y =-(舍),所以P 113点的纵坐标为26,114∴11APF AFF PFF S S S ∆∆∆=-=1166662622⨯⨯-⨯⨯=126.115116 考点:双曲线的定义;直线与双曲线的位置关系;最值问题 11717.(Ⅰ)14(Ⅱ)1 118【解析】119试题分析:(Ⅰ)先由正弦定理将2sin 2sin sin B A C =化为变得关系,结合条120 件a b =,用其中一边把另外两边表示出来,再用余弦定理即可求出角B 的余弦121 值;(Ⅱ)由(Ⅰ)知22b ac ,根据勾股定理和即可求出c ,从而求出ABC ∆的122 面积.123试题解析:(Ⅰ)由题设及正弦定理可得22b ac .124又a b ,可得2b c ,2a c ,125由余弦定理可得2221cos 24a cb Bac. 126(Ⅱ)由(1)知22b ac .127因为B 90°,由勾股定理得222a c b .128故222a c ac ,得2c a .129所以ABC 的面积为1.130考点:正弦定理;余弦定理;运算求解能力 13118.(Ⅰ)见解析(Ⅱ)132【解析】133试题分析:(Ⅰ)由四边形ABCD 为菱形知AC BD ,由BE平面ABCD 知ACBE ,134 由线面垂直判定定理知AC平面BED ,由面面垂直的判定定理知平面AEC ⊥平135面BED ;(Ⅱ)设AB=x ,通过解直角三角形将AG 、GC 、GB 、GD 用x 表示出来,136 在Rt AEC 中,用x 表示EG ,在Rt EBG 中,用x 表示EB ,根据条件三棱锥E ACD -137的体积为3求出x ,即可求出三棱锥E ACD -的侧面积. 138试题解析:(Ⅰ)因为四边形ABCD 为菱形,所以AC BD ,139因为BE平面ABCD ,所以AC BE ,故AC平面BED.140又AC 平面AEC ,所以平面AEC平面BED141(Ⅱ)设AB=x ,在菱形ABCD 中,由ABC=120°,可得142AG=GC=2x ,GB=GD=2x . 143因为AE EC ,所以在Rt AEC 中,可得EG=2x . 144由BE 平面ABCD ,知EBG 为直角三角形,可得BE=2x . 145由已知得,三棱锥E-ACD 的体积3116632EACDV AC GD BE x .故146 x =2147从而可得.148所以EAC 的面积为3,EAD 的面积与ECD149故三棱锥E-ACD 的侧面积为150考点:线面垂直的判定与性质;面面垂直的判定;三棱锥的体积与表面积的151 计算;逻辑推理能力;运算求解能力15219.(Ⅰ)y c =+适合作为年销售y 关于年宣传费用x 的回归方程类型153(Ⅱ)100.6y =+46.24154【解析】155试题分析:(Ⅰ)由散点图及所给函数图像即可选出适合作为拟合的函数;156(Ⅱ)令w =y 关于w 的线性回归方程,即可y 关于x 的回归方157 程;(Ⅲ)(ⅰ)利用y 关于x 的回归方程先求出年销售量y 的预报值,再根据年158 利率z 与x 、y 的关系为z=0.2y-x 即可年利润z 的预报值;(ⅱ)根据(Ⅱ)的159结果知,年利润z 的预报值,列出关于x 的方程,利用二次函数求最值的方法即160 可求出年利润取最大值时的年宣传费用.161试题解析:(Ⅰ)由散点图可以判断,y c =+适合作为年销售y 关于年162 宣传费用x 的回归方程类型.163(Ⅱ)令w =,先建立y 关于w 的线性回归方程,由于16481821()()()iii ii w w yy d w w ==--=-∑∑=108.8=6816, 165∴c y dw =-=563-68×6.8=100.6.166∴y 关于w 的线性回归方程为100.668y w =+,167∴y 关于x的回归方程为100.6y =+168(Ⅲ)(ⅰ)由(Ⅱ)知,当x =49时,年销售量y 的预报值169100.6y =+,170576.60.24966.32z =⨯-=.171(ⅱ)根据(Ⅱ)的结果知,年利润z 的预报值1720.2(100.620.12z x x =+-=-+, 17313.6=6.82,即46.24x =时,z 取得最大值. 174故宣传费用为46.24千元时,年利润的预报值最大.……12分175考点:非线性拟合;线性回归方程求法;利用回归方程进行预报预测;应用176本卷由系统自动生成,请仔细校对后使用,答案仅供参考。
2015 年一般高等学校招生全国一致考试(新课标1 卷)文一、选择题:每题5分,共60分1、已知会合 A{ x x 3n 2,nN}, B{6,8,10,12,14} ,则会合 A I B 中的元素个数为(A ) 5(B )4(C )3(D )2uuur4,uuur2、已知点 A(0,1), B(3,2) ,向量 AC (3) ,则向量 BC(A ) ( 7, 4)1( B ) (7, 4) (C ) (1,4)( D ) (1,4)、已知复数z 知足 ( z1)ii ,则z( )3( A )2 i( B ) 2 i(C ) 2 i(D ) 2 i4、假如 3 个正整数可作为一个直角三角形三条边的边长,则称这 3 个数为一组勾股数, 从 1,2,3,4,5 中任取 3 个不一样的数,则这 3 个数构成一组勾股数的概率为()( A )311( D )110( B )( C )2051 105、已知椭圆 E 的中心为坐标原点, 离心率为 ,E 的右焦点与抛物线 C : y 28x 的焦点重合, A, B 是2C 的准线与 E 的两个交点,则AB(A ) 3(B ) 6 (C ) 9 (D )126、《九章算术》 是我国古代内容极为丰富的数学名著, 书中有以下问题: “今有委米依垣内角,下周八尺,高五尺,问 ”积及为米几何? ”其意思 为: “在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一) ,米堆底部的弧长为 8 尺,米堆的高为 5 尺,问米堆的体积和堆放的米各为多少? ”已知 1 斛米的体积约为 1.62 立方尺,圆周率约为 3,估量出堆放的米约有( )(A ) 14斛(B ) 22斛 ( C ) 36斛 (D ) 66斛7 、已知 { a n } 是公差为1 的等差数列, S n 为 { a n } 的前 n 项和,若S 8 4S 4 ,则 a 10()( A ) 17( B )19(C ) 10(D ) 12228、函数 f (x) cos( x) 的部分图像以下图,则f (x) 的单一递减区间为( )( A ) ( k13Z, k), k44( B ) (2k1 ,2 k3 Z4), k4( C ) (k1 , k3), k Z44( D ) (2 k1,2 k3), k Z449、履行右边的程序框图,假如输入的t 0.01,则输出的 n()(A ) 5(B ) 6(C ) 7(D )82x 12, x110、已知函数 f (x),log 2 (x1),x 1且 f (a)3,则 f (6 a)7 (A )4 ( B )54( C )34( D ) 1411、圆柱被一个平面截去一部分后与半球(半径为r )构成一个几何体,该几何体的三视图中的正视图和俯视图以下图,若该几何体的表面积为 16 20 ,则 r ( )(A )1(B ) 2(C ) 4(D )812、设函数 yf (x) 的图像与 y 2x a 的图像对于直线 yx 对称,且f ( 2) f ( 4) 1 ,则 a ( )( A ) 1 (B )1(C ) 2 (D ) 4二、填空题:本大题共 4小题,每题 5分13、数列 a n 中 a 1 2, a n 12a n , S n 为 a n 的前 n 项和,若 S n 126 ,则 n.14.已知函数 fxax 3 x 1 的图像在点 1, f 1 的处的切线过点 2,7,则 a.x y 2 015. 若 x,y 知足拘束条件x 2y 1 0 ,则 z=3x+y 的最大值为 .2x y 216.已知 F 是双曲线 C : x 2y 2 1 的右焦点, P 是 C 左支上一点, A 0,6 6 ,当APF 周长最小时,8该三角形的面积为 .三、解答题17. (本小题满分 12 分)已知 a,b, c 分别是 ABC 内角 A, B, C 的对边, sin 2 B 2sin Asin C .( I )若 a b ,求 cos B;( II )若 B90o ,且 a2, 求 ABC 的面积 .18. (本小题满分12 分)如图四边形 ABCD 为菱形, G 为 AC 与 BD 交点, BE平面 ABCD ,N 两点.( I )求 k 的取值范围;uuuur uuur 12 ,此中 O 为坐标原点,求MN .(II )若 OM ON 21. (本小题满分 12 分)设函数f xe 2xa ln x .( I )议论 fx 的导函数f x 的零点的个数;( II )证明:当 a0 时 f x2a a ln2.a请考生在 22、 23、 24 题中任选一题作答 ,假如多做 ,则按所做的第一题计分 ,做答时请写清题号( I )证明:平面AEC 平面 BED ;23. (本小题满分10 分)选修 4-4:坐标系与参数方程xOy 中,直线 C 1 : x2,圆C 222,x 轴正半120o , AE6,求该三棱锥的侧面积在直角坐标系 : x 1y 21 ,以坐标原点为极点 ( II )若 ABCEC , 三棱锥 E ACD 的体积为.轴为极轴成立极坐标系 .3( I )求 C 1,C 2 的极坐标方程 .19. (本小题满分12 分)某企业为确立下一年度投入某种产品的宣传费,需认识年宣传费x (单位:千π元)对年销售量 y (单位: t )和年收益 z (单位:千元)的影响,对近8 年的宣传费 x 和年销售量( II )若直线 C 3 的极坐标方程为R ,设 C 2, C 3 的交点为 M , N ,求 C 2 MN 的面积 .i4y i i 1,2, L ,8 数据作了初步办理,获得下边的散点图及一些统计量的值.24. (本小题满分 10 分)选修 4-5:不等式选讲已知函数 f x x 1 2 x a , a 0 .( I )当 a 1 时求不等式 f x 1 的解集;( II )若 fx 的图像与 x 轴围成的三角形面积大于6,求 a 的取值范围 .( I )依据散点图判断, y a bx 与 y c d x ,哪一个适合作为年销售量 y 对于年宣传费 x 的回归方程种类(给出判断即可,不用说明原因); ( II )依据( I )的判断结果及表中数据,成立 y 对于 x 的回归方程;( III )已知这类产品的年收益 z 与 x , y 的关系为 z 0.2 y x ,依据( II )的结果回答以下问题:( i )当年宣传费 x =49 时,年销售量及年收益的预告值时多少? ( ii )当年宣传费 x 为什么值时,年收益的预告值最大?20. (本小题满分12 分)已知过点 A 1,022且斜率为 k 的直线 l 与圆 C : x 2 y 31交于 M ,2015 年一般高等学校招生全国一致考试(新课标 1 卷)文答案一、选择题( 1)D (2)A (3)C (4)C ( 5)B (6)B( 7)B( 8)D(9)C (10)A( 11)B (12)C二、填空题(13) 6(14)1( 15)4(16) 12 6三、解答题17、解:( I )由题设及正弦定理可得b 2 =2ac.2又 a=b ,可得 cosB=ac 2 b 2 = 1 6 分( II )由( I )知 b 22ac 4=2ac.因为 B= 90o ,由勾股定理得 a 2 c 2 =b 2 .故 a 2 c 2 =2ac ,的 c=a= 2 . 所以△ ABC 的面积为 1. 12 分 18、解:( I )因为四边形 ABCD 为菱形,所以 AC ⊥BD.因为 BE ⊥平面 ABCD,所以 AC ⊥ BE,故 AC ⊥平面 BED.又 AC 平面 AEC, 所以平面 AEC ⊥平面 BED.5 分( II )设 AB= x ,在菱形 ABCD 中,又∠ ABC= 120o,可得 AG=GC=3x , GB=GD= x .22因为 AE ⊥EC,所以在 Rt △ AEC 中,可的 EG=3x .2由 BE ⊥平面 ABCD,知△ EBG 为直角三角形,可得BE=2x .2由已知得,三棱锥 E-ACD 的体积 V EACD =1 × 1 AC ·GD ·BE= 6 x 3 6 . 故 x =2329 分243进而可得 AE=EC=ED= 6 .所以△ EAC 的面积为 3,△ EAD 的面积与 △ECD 的面积均为 5 .故三棱锥 E-ACD 的侧面积为 3+2 5 .12 分19、解:( I )由散点图能够判断, y=c+dx 适合作为年销售量y 对于年宣传费 x 的回归方程式种类 .( II )令 wx ,先成立 y 对于 w 的线性回归方程式.因为8) i 1( w i w)( y i y)108.8d=868 ,(w i w) 21.6)i1y)563 686.8 100.6 ,cd w所以 y 对于 w 的线性回归方程为)68w ,所以 y 对于 x 的回归方程为y=100.6) 100.668 xy(Ⅲ)( i )由( II )知,当 x =49 时,年销售量y 的预告值)68 49=576.6 ,y 100.6年收益 z 的预告值)0.2 49 66.329 分z=576.6( ii )依据( II )的结果知,年收益z 的预告值)x)-x=-x 13.6 x 20.12 .z=0.2(100.6+68 所以当x 13.6 )2 =6.8 ,即 x =46.24 时, z 获得最大值 .故年宣传费为 46.24 千元时,年收益的预告值最大 .12 分20、解: l 的方程为 y kx1( I )由题设,可知直线.因为 l 与 C 交于两点,所以 2k 3 11 k2 1.解得47 k 47 .33所以 k 的取值范围为(47 , 4 7) .5 分33( II )设 M x 1, y 1 , N ( x 2 , y 2 ) . 将 ykx 1 代入方程 ( x2)2 ( y 3)21 ,整理得(1k 2 )x 2 4(1 k )x 7 0 .所以 x 1 x 2 4(1 k )7 2 . 1 k 2 , x 1 x 2k 1OM ONc 1x 2 y 1 y 21 k2 x 1x 2 k x 1 x 214k 1 k8 .1 k 2由题设可得4k 1 k8=12 ,解得 k=1 ,所以 l 的方程是 y=x+1.1 k 2故圆心 C 在 l上,所以 MN 2 .12 分21、解:( I ) fx 的定义域为 0,, fx2e 2xa(x 0) .当 a ≤ 0 时, f x 0,f x 没有零点;x当 a 0 时,因为 e2x单一递加,a单一递减,所以f x 在 0,单一递加,又f a 0 ,当 b 知足 0< b < a 且 b <1x时, f (b) 0,故当 a < 0 时 fx 存在独一零点 .446 分( II )由( I ),可设 f x 在 0,的独一零点为 x 0 ,当 x0,x 0 时, f x < 0;当 xx 0, 时, f x >0.故 f x 在 0, 单一递减,在 x ,单一递加,所以xx 0 时, f x 获得最小值,最小值为f x 0 .因为 2e2xa 0 ,所以 f x 0a 2ax 0 a1n 22a a1n 2.x 02 x 0 aa 故当 a 0时, f x2a a1n 2.12 分a( II )设 CE=1 , AE= x ,由已知得 AB= 2 3 ,BE=12 x 22CE BE ,.由射影定理可得,AE所以 x 212 x 2 ,即 x 4 x 2 12 0 .可得 x3 ,所以∠ ACB= 60o .10 分23、解:( I )因为 x cos , ysin ,所以 C 1 的极坐标方程为 cos 2 ,C 2 的极坐标方程为 22cos4 sin40 . 5 分(II )将代入 22 cos 4 sin4 0,得2324 0,解得41 22,22.故 122,即 MN2因为 C 2 的半径为 1,所以C 2MN 1 10 分的面积为.224、解:( I )当 a 1 时, f x1化为 x 1 2 x 1 1>0 .当 x 1时,不等式化为 x 4>0 ,无解;当 1<x <1时,不等式化为 3x 2>0 ,解得 2< x <1;x 1 3当 ,不等式化为 - x +2 > 0,解得 1≤ x <2.f x1x 22所以x.5 分的解集为︱<<3x 12a, x < 1 ( II )由题设可得,f x3x12a, 1 x a,x 1 2a, x < a.所以函数 fx 的图像与 x 轴围成的三角形的三个丁点分别为2 aA 2a1,0, B 2a 1,0 , C a,a1 ,△ ABC 的面积为 1 .233由题设得2a12> 6,故 a > 2.32,所以 a 的取值范围为 .10 分。
2015年普通高等学校招生全国统一考试文科数学注意事项:1. 答题前,考生务必将自己的准考证号、姓名填写在答题卡上。
考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致。
2. 第Ⅰ卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,在选涂其他答案标号。
第Ⅱ卷必须用0.5毫米黑色签字笔书写作答.若在试题卷上作答,答案无效。
3. 考试结束,监考员将试题卷、答题卡一并收回。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)已知集合A={x|x=3n+2,n ∈N},B={6,8,12,14},则集合A ⋂B中元素的个数为(A)5 (B)4 (C)3 (D)2(2)已知点A(0,1),B(3,2),向量AC=(-4,-3),则向量BC=(A)(-7,-4)(B)(7,4)(C)(-1,4)(D)(1,4)(3)已知复数z满足(z-1)i=i+1,则z=(A)-2-I (B)-2+I (C)2-I (D)2+i(4)如果3个整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数,从1,2,3,4,5中任取3个不同的数,则3个数构成一组勾股数的概率为(A)103(B)15(C)110(D)120(5)已知椭圆E的中心在坐标原点,离心率为12,E的右焦点与抛物线C:y²=8x的焦点重合,A,B是C的准线与E的两个焦点,则|AB|= (A)3 (B)6 (C)9 (D)12。
绝密★启封并使用完毕前2015年普通高等学校招生全国统一考试(全国卷1)文科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至3页,第Ⅱ卷4至6页。
注意事项:1.答题前,考生务必将自己的准考证号、姓名填写在答题卡上。
考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致。
2.第Ⅰ卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,在选涂其他答案标号。
第Ⅱ卷必须用0.5毫米黑色签字笔书写作答.若在试题卷上作答,答案无效。
3.考试结束,监考员将试题卷、答题卡一并收回。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)已知集合A={x|x=3n+2,n∈N},B={6,8,12,14},则集合A⋂B中元素的个数为(A)5 (B)4 (C)3 (D)2(2)已知点A(0,1),B(3,2),向量AC=(-4,-3),则向量BC=(A)(-7,-4)(B)(7,4)(C)(-1,4)(D)(1,4)(3)已知复数z满足(z-1)i=i+1,则z=(A)-2-I (B)-2+I (C)2-I (D)2+i(4)如果3个整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数,从1,2,3,4,5中任取3个不同的数,则3个数构成一组勾股数的概率为(A)103(B)15(C)110(D)120(5)已知椭圆E的中心在坐标原点,离心率为12,E的右焦点与抛物线C:y²=8x的焦点重合,A,B是C的准线与E的两个焦点,则|AB|= (A)3 (B)6 (C)9 (D)12(6)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺。
问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧度为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放斛的米约有A.14斛B.22斛C.36斛D.66斛(7)已知是公差为1的等差数列,则=4,=(A)(B)(C)10 (D)12(8)函数f(x)=的部分图像如图所示,则f(x)的单调递减区间为(A)(k-, k-),k(A)(2k-, 2k-),k(A)(k-, k-),k(A)(2k-, 2k-),k(9)执行右面的程序框图,如果输入的t=0.01,则输出的n=(A)5 (B)6 (C)7 (D)8(10)已知函数,且f(a)=-3,则f(6-a)=(A)-74(B)-54(C)-34(D)-14(11)圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示,若该几何体的表面积为16+20π,则r=(A )1 (B) 2 (C) 4 (D) 8(12)设函数y=f (x )的图像关于直线y=-x 对称,且f (-2)+f (-4)=1,则a= (A )-1 (B )1 (C )2 (D )4第Ⅱ卷注意事项:第Ⅱ卷共3页,须用黑色墨水签字笔在答题卡上作答。
2015年普通高等学校招生全国统一考试(新课标1卷)文 1 一、选择题:每小题5分,共60分2 1、已知集合{32,},{6,8,10,12,14}A x x n n N B ==+∈=,则集合A B 中的元素个数为 3(A ) 5 (B )4 (C )3 (D )2 4 2、已知点(0,1),(3,2)A B ,向量(4,3)AC =--,则向量BC = 5 (A ) (7,4)-- (B )(7,4) (C )(1,4)- (D )(1,4)63、已知复数z 满足(1)1z i i -=+,则z =( ) 7 (A ) 2i -- (B )2i -+ (C )2i - (D )2i +8 4、如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾9 股数,从1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率为( ) 10 (A )310 (B )15 (C )110 (D )120115、已知椭圆E 的中心为坐标原点,离心率为12,E 的右焦点与抛物线2:8C y x =的焦12 点重合,,A B 是C 的准线与E 的两个交点,则AB = 13 (A ) 3 (B )6 (C )9 (D )1214 6、《九章算术》是我国古代内容极为丰富的数学名著,书15中有如下问题:“今有委米依垣内角,下周八尺,高五尺,问”16 积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,17 米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆18 的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛19 米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有( ) 20 (A )14斛 (B )22斛 (C )36斛 (D )66斛21 7、已知{}n a 是公差为1的等差数列,n S 为{}n a 的前n 项和,若844S S =,则10a =( )22(A ) 172(B )192(C )10 (D )1223 8、函数()cos()f x x ωϕ=+的部分图像如图所示,则()f x 的单24 调递减区间为( )25 (A )13(,),44k k k Z ππ-+∈26 (B )13(2,2),44k k k Z ππ-+∈27 (C )13(,),44k k k Z -+∈28 (D )13(2,2),44k k k Z -+∈293031 9、执行右面的程序框图,如果输入的0.01t =,则输出的n =( )32 (A ) 5 (B )6 (C )7 (D )83334 35 10、已知函数1222,1()log (1),1x x f x x x -⎧-≤=⎨-+>⎩ ,36 且()3f a =-,则(6)f a -=37 (A )74-38 (B )54-39 (C )34-40(D )14-41 42 43 11、圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体的44三视图中的正视图和俯视图如图所示,若该几何体的表面积为1620π+,则r =( ) 45 (A )1 46 (B )2 47 (C )4 48 (D )84950 5152 12、设函数()y f x =的图像与2x a y +=的图像关于直线y x =-对称,且 53 (2)(4)1f f -+-=,则a =( )54 (A ) 1- (B )1 (C )2 (D )455二、填空题:本大题共4小题,每小题5分56 13、数列{}n a 中112,2,n n n a a a S +==为{}n a 的前n 项和,若126n S =,则n = .57 14.已知函数()31f x ax x =++的图像在点()()1,1f 的处的切线过点()2,7,则 58 a = .59 15. 若x ,y 满足约束条件20210220x y x y x y +-≤⎧⎪-+≤⎨⎪-+≥⎩,则z =3x +y 的最大值为 .60 16.已知F 是双曲线22:18y C x -=的右焦点,P 是C 左支上一点,()0,66A ,当APF ∆61周长最小时,该三角形的面积为 . 62 三、解答题63 17. (本小题满分12分)已知,,a b c 分别是ABC ∆内角,,A B C 的对边,2sin 2sin sin B A C =. 64 (I )若a b =,求cos ;B65 (II )若90B =,且2,a = 求ABC ∆的面积. 66 67 68 69 70 71 18. (本小题满分12分)如图四边形ABCD 为菱形,G 为AC 与BD 交点,BE ABCD ⊥平面,7273(I )证明:平面AEC ⊥平面BED ;74 (II )若120ABC ∠=,,AE EC ⊥ 三棱锥E ACD -的体积为6,求该三棱锥的侧面75 积.76 19. (本小题满分12分)某公司为确定下一年度投入某种产品的宣传费,需了解年77 宣传费x (单位:千元)对年销售量y (单位:t )和年利润z (单位:千元)的影响,对78 近8年的宣传费i x 和年销售量()1,2,,8i y i =数据作了初步处理,得到下面的散点图及一79 些统计量的值. 8081 (I )根据散点图判断,y a bx =+与y c d x =+,哪一个适宜作为年销售量y 关于年82宣传费x 的回归方程类型(给出判断即可,不必说明理由); 83 (II )根据(I )的判断结果及表中数据,建立y 关于x 的回归方程;84 (III )已知这种产品的年利润z 与x ,y 的关系为0.2z y x =- ,根据(II )的结果85回答下列问题: 86 (i )当年宣传费x =49时,年销售量及年利润的预报值时多少? 87 (ii )当年宣传费x 为何值时,年利润的预报值最大?8889 20. (本小题满分12分)已知过点()1,0A 且斜率为k 的直线l 与圆C :90()()22231x y -+-=交于M ,N 两点. 91 (I )求k 的取值范围; 92 (II )若12OM ON ⋅=,其中O 为坐标原点,求MN .9321. (本小题满分12分)设函数()2ln x f x e a x =-. 94 (I )讨论()f x 的导函数()f x '的零点的个数;95(II )证明:当0a >时()22ln f x a a a≥+.96 请考生在22、23、24题中任选一题作答,如果多做,则按所做的第一题计分,做答时请97 写清题号 98 23. (本小题满分10分)选修4-4:坐标系与参数方程99在直角坐标系xOy 中,直线1:2C x =-,圆()()222:121C x y -+-=,以坐标原点为极100点,x 轴正半轴为极轴建立极坐标系.101 (I )求12,C C 的极坐标方程. 102 (II )若直线3C 的极坐标方程为()πR 4θρ=∈,设23,C C 的交点为,M N ,求2C MN ∆ 的103面积.104 24. (本小题满分10分)选修4-5:不等式选讲 105 已知函数()12,0f x x x a a =+--> . 106 (I )当1a = 时求不等式()1f x > 的解集; 107 (II )若()f x 的图像与x 轴围成的三角形面积大于6,求a 的取值范围.108109110 2015年普通高等学校招生全国统一考试(新课标1卷)文111 答案112113一、 选择题 114(1)D (2)A (3)C (4)C (5)B (6)B115 (7)B (8)D (9)C (10)A (11)B (12)C116117 二、 填空题 118 (13)6 (14)1 (15)4 (16)119120 三、 解答题 121 17、解:122 (I )由题设及正弦定理可得2b =2ac.123 又a=b ,可得cosB=2222a c b ac +-=14……6分124 (II )由(I )知2b =2ac.125 因为B=o90,由勾股定理得222a c =b +. 126 故22ac =2ac +,的.127 所以△ABC 的面积为1. ……12分 128 18、解:129 (I )因为四边形ABCD 为菱形,所以AC ⊥BD.130 因为BE ⊥平面ABCD,所以AC ⊥BE,故AC ⊥平面BED.131 又AC ⊂平面AEC,所以平面AEC ⊥平面BED. ……5分 132 (II )设AB=x ,在菱形ABCD 中,又∠ABC=o120 ,可得133AG=GC=2x ,GB=GD=2x . 134 因为AE ⊥EC,所以在Rt △AEC 中,可的EG=2x . 135 由BE ⊥平面ABCD,知△EBG 为直角三角形,可得BE=2x . 136 由已知得,三棱锥E-ACD 的体积E ACD V -=13×12AC ·GD ·BE=3243x =. 137 故x =2 ……9分 138 从而可得.139 所以△EAC 的面积为3,△EAD 的面积与 △ECD140 故三棱锥E-ACD 的侧面积为. ……12分 141 19、解:142(I )由散点图可以判断,适宜作为年销售量y 关于年宣传费x 的回归方143程式类型.144 (II)令w =y 关于w 的线性回归方程式.由于14528181()()108.8d=681.6()iii i i w w y y w w ==--==-∑∑, 14656368 6.8100.6c y d w =-=-⨯=,147 所以y 关于w 的线性回归方程为y=100.668w +,因此y 关于x 的回归方程为148y 100.6=+149(Ⅲ)(i )由(II )知,当x =49时,年销售量y 的预报值150y100.6=+,151年利润z的预报值152z=576.60.24966.32⨯-=……9分153(ii)根据(II)的结果知,年利润z的预报值154=-20.12 x x+.15513.6=6.82=,即x=46.24时,z取得最大值.156故年宣传费为46.24千元时,年利润的预报值最大. ……12分15720、解:158(I)由题设,可知直线l的方程为1y kx=+.159因为l与C1.160解得k.161所以k的取值范围为. ……5分162(II)设()1122,,(,)M x y N x y.163将1y kx=+代入方程22(2)(3)1x y-+-=,整理得16422(1)4(1)70k x k x+-++=.165所以1212224(1)7,11kx x x xk k++==++.1661212OM ON c x y y⋅=+167()()2121211k x x k x x=++++168()24181k kk+=++.169由题设可得()24181k kk+=++=12,解得k=1,所以l的方程是y=x+1.170故圆心C在l上,所以2MN=. ……12分17121、解:172(I)()f x的定义域为()()20,,2(0)xaf x e xx'+∞=-〉.173当a≤0时,()()f x f x''〉,没有零点;174当0a〉时,因为2xe单调递增,ax-单调递减,所以()f x'在()0,+∞单调递增,又()0f a'〉,175当b满足0<b<4a且b<14时,()0f b'〈,故当a<0时()f x'存在唯一零点.176……6分177(II)由(I),可设()f x'在()0,+∞的唯一零点为x,当()0x x∈,时,()f x'<0;178当()x x∈+∞,时,()f x'>0.179故()f x在()0+∞,单调递减,在()x+∞,单调递增,所以x x=时,()f x取得最小值,180最小值为()0f x.181由于0220xaex-=,所以()002221212af x ax a n a a nx a a=++≥+.182故当0a〉时,()221f x a a na≥+. ……12分183(II)设CE=1,AE=x,由已知得AB=,BE=.由射影定理可得,1842AE CE BE=⋅,185所以2x,即42120x x+-=.可得x=ACB=60o.186……10分 187 23、解:188 (I )因为cos ,sin x y ρθρθ==,所以1C 的极坐标方程为cos 2ρθ=-,189 2C 的极坐标方程为22cos 4sin 40ρρθρθ--+=. ……5分190 (II )将4πθ=代入22cos 4sin 40ρρθρθ--+=,得240ρ-+=,解得191 12ρρ==.故12ρρ-=MN =192 由于2C 的半径为1,所以2C MN ∆的面积为12. ……10分 193 24、解:194 (I )当1a =时,()1f x >化为12110x x +--->.195 当1x ≤-时,不等式化为40x ->,无解;196 当11x -<<时,不等式化为320x ->,解得213x <<;197 当1x ≥,不等式化为-x +2>0,解得1≤x <2.198 所以()1f x >的解集为223x x ⎧⎫⎨⎬⎩⎭︱<<. ……5分 199 (II )由题设可得,()12,1312,1,12,.x a x f x x a x a x a x a --⎧⎪=+--≤≤⎨⎪-++⎩<<200 所以函数()f x 的图像与x 轴围成的三角形的三个丁点分别为201 ()()21,0,21,0,,13a A B a C a a -⎛⎫++⎪⎝⎭,△ABC 的面积为()2213a +. 202203 由题设得()2213a +>6,故a >2.204 所以a 的取值范围为()2+∞,. ……10分205 206 207208209210 211 212 213 214 215 216 217 218 219 220221222。
绝密★启封并使用完毕前2015年普通高等学校招生全国统一考试(全国卷1)文科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至3页,第Ⅱ卷4至6页。
注意事项:1. 答题前,考生务必将自己的准考证号、姓名填写在答题卡上。
考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致。
2. 第Ⅰ卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,在选涂其他答案标号。
第Ⅱ卷必须用0.5毫米黑色签字笔书写作答.若在试题卷上作答,答案无效。
3. 考试结束,监考员将试题卷、答题卡一并收回。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)已知集合A={x|x=3n+2,n ∈N},B={6,8,12,14},则集合A ⋂B中元素的个数为(A)5 (B)4 (C)3 (D)2(2)已知点A(0,1),B(3,2),向量AC=(-4,-3),则向量BC=(A)(-7,-4)(B)(7,4)(C)(-1,4)(D)(1,4)(3)已知复数z满足(z-1)i=i+1,则z=(A)-2-I (B)-2+I (C)2-I (D)2+i(4)如果3个整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数,从1,2,3,4,5中任取3个不同的数,则3个数构成一组勾股数的概率为(A)103(B)15(C)110(D)120(5)已知椭圆E的中心在坐标原点,离心率为12,E的右焦点与抛物线C:y²=8x的焦点重合,A,B是C的准线与E的两个焦点,则|AB|= (A)3 (B)6 (C)9 (D)12(6)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺。
问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧度为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放斛的米约有A.14斛B.22斛C.36斛D.66斛(7)已知是公差为1的等差数列,则=4,= (A)(B)(C)10 (D)12(8)函数f(x)=的部分图像如图所示,则f(x)的单调递减区间为(A)(k-, k-),k(A)(2k-, 2k-),k(A)(k-, k-),k(A)(2k-, 2k-),k(9)执行右面的程序框图,如果输入的t=0.01,则输出的n=(A)5 (B)6 (C)7 (D)8(10)已知函数,且f(a)=-3,则f(6-a)=(A)-74(B)-54(C)-34(D)-14(11)圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示,若该几何体的表面积为16+20π,则r=(A )1 (B) 2 (C) 4 (D) 8(12)设函数y=f (x )的图像关于直线y=-x 对称,且f (-2)+f (-4)=1,则a= (A )-1 (B )1 (C )2 (D )4第Ⅱ卷注意事项:第Ⅱ卷共3页,须用黑色墨水签字笔在答题卡上作答。
2015年高考文科数学试卷全国卷1(解析版)参考答案1.D 【解析】试题分析:由条件知,当n=2时,3n+2=8,当n=4时,3n+2=14,故A ∩B={8,14},故选D 、 考点:集合运算 2.A 【解析】试题分析:∵AB OB OA =-u u u r u u u r u u u r =(3,1),∴BC =u u u r AC AB -u u u r u u u r=(-7,-4),故选A 、考点:向量运算 3.C 【解析】试题分析:∴(1)1z i i -=+,∴z=212(12)()2i i i i i i ++-==--,故选C 、 考点:复数运算 4.C 【解析】试题分析:从1,2,3,4,51,2,3,4,5中任取3个不同得数共有10种不同得取法,其中得勾股数只有3,4,5,故3个数构成一组勾股数得取法只有1种,故所求概率为110,故选C 、 考点:古典概型 5.B 【解析】试题分析:∵抛物线2:8C y x =得焦点为(2,0),准线方程为2x =-,∴椭圆E 得右焦点为(2,0),∴椭圆E 得焦点在x 轴上,设方程为22221(0)x y a b a b+=>>,c=2,∵12c e a ==,∴4a =,∴22212b a c =-=,∴椭圆E 方程为2211612x y +=, 将2x =-代入椭圆E 得方程解得A (-2,3),B (-2,-3),∴|AB|=6,故选B 、考点:抛物线性质;椭圆标准方程与性质 6.B 【解析】试题分析:设圆锥底面半径为r ,则12384r ⨯⨯=,所以163r =,所以米堆得体积为211163()5433⨯⨯⨯⨯=3209,故堆放得米约为3209÷1、62≈22,故选B 、 考点:圆锥得性质与圆锥得体积公式7.B 【解析】试题分析:∵公差1d =,844S S =,∴11118874(443)22a a +⨯⨯=+⨯⨯,解得1a =12,∴1011199922a a d =+=+=,故选B 、 考点:等差数列通项公式及前n 项与公式8.D 【解析】试题分析:由五点作图知,1+4253+42πωϕπωϕ⎧=⎪⎪⎨⎪=⎪⎩,解得=ωπ,=4πϕ,所以()cos()4f x x ππ=+,令22,4k x k k Z πππππ<+<+∈,解得124k -<x <324k +,k Z ∈,故单调减区间为(124k -,324k +),k Z ∈,故选D 、 考点:三角函数图像与性质9.C 【解析】试题分析:执行第1次,t=0、01,S=1,n=0,m=12=0、5,S=S-m=0、5,2mm ==0、25,n=1,S=0、5>t=0、01,就是,循环,执行第2次,S=S-m =0、25,2mm ==0、125,n=2,S=0、25>t=0、01,就是,循环, 执行第3次,S=S-m =0、125,2mm ==0、0625,n=3,S=0、125>t=0、01,就是,循环,执行第4次,S=S-m=0、0625,2mm ==0、03125,n=4,S=0、0625>t=0、01,就是,循环,执行第5次,S=S-m =0、03125,2mm ==0、015625,n=5,S=0、03125>t=0、01,就是,循环,执行第6次,S=S-m=0、015625,2mm ==0、0078125,n=6,S=0、015625>t=0、01,就是,循环,执行第7次,S=S-m=0、0078125,2mm ==0、00390625,n=7,S=0、0078125>t=0、01,否,输出n=7,故选C 、 考点:程序框图 10.A 【解析】试题分析:∵()3f a =-,∴当1a ≤时,1()223a f a -=-=-,则121a -=-,此等式显然不成立,当1a >时,2log (1)3a -+=-,解得7a =, ∴(6)f a -=(1)f -=117224---=-,故选A 、 考点:分段函数求值;指数函数与对数函数图像与性质 11.B 【解析】试题分析:由正视图与俯视图知,该几何体就是半球与半个圆柱得组合体,圆柱得半径与球得半径都为r ,圆柱得高为2r ,其表面积为22142222r r r r r r πππ⨯+⨯++⨯=2254r r π+=16 + 20π,解得r=2,故选B 、考点:简单几何体得三视图;球得表面积公式;圆柱得测面积公式 12.C 【解析】试题分析:设(,)x y 就是函数()y f x =得图像上任意一点,它关于直线y x =-对称为(,y x --),由已知知(,y x --)在函数2x ay +=得图像上,∴2y a x -+-=,解得2log ()y x a=--+,即2()log ()f x x a=--+,∴22(2)(4)log 2log 41f f a a -+-=-+-+=,解得2a =,故选C 、考点:函数对称;对数得定义与运算 13.6 【解析】试题分析:∵112,2n n a a a +==,∴数列{}n a 就是首项为2,公比为2得等比数列,∴2(12)12612n n S -==-,∴264n =,∴n=6、 考点:等比数列定义与前n 项与公式 14.1 【解析】试题分析:∵2()31f x ax '=+,∴(1)31f a '=+,即切线斜率31k a =+,又∵(1)2f a =+,∴切点为(1,2a +),∵切线过(2,7),∴273112a a +-=+-,解得a =1、考点:利用导数得几何意义求函数得切线;常见函数得导数; 15.4 【解析】试题分析:作出可行域如图中阴影部分所示,作出直线0l :30x y +=,平移直线0l ,当直线l :z=3x+y 过点A 时,z 取最大值,由2=021=0x y x y +-⎧⎨-+⎩解得A (1,1),∴z=3x+y 得最大值为4、考点:简单线性规划解法 16.126 【解析】试题分析:设双曲线得左焦点为1F ,由双曲线定义知,1||2||PF a PF =+, ∴△APF 得周长为|PA|+|PF|+|AF|=|PA|+12||a PF ++|AF|=|PA|+1||PF +|AF|+2a , 由于2||a AF +就是定值,要使△APF 得周长最小,则|PA|+1||PF 最小,即P 、A 、1F 共线, ∵()0,66A ,1F (-3,0),∴直线1AF 得方程为1366x +=-,即326x =-代入2218y x -=整理得266960y y +-=,解得26y =或86y =-(舍),所以P 点得纵坐标为26,∴11APF AFF PFF S S S ∆∆∆=-=1166662622⨯⨯-⨯⨯=126、考点:双曲线得定义;直线与双曲线得位置关系;最值问题 17.(Ⅰ)14(Ⅱ)1 【解析】试题分析:(Ⅰ)先由正弦定理将2sin 2sin sin B A C =化为变得关系,结合条件a b =,用其中一边把另外两边表示出来,再用余弦定理即可求出角B 得余弦值;(Ⅱ)由(Ⅰ)知22b ac =,根据勾股定理与即可求出c ,从而求出ABC ∆得面积、试题解析:(Ⅰ)由题设及正弦定理可得22b ac =、 又a b =,可得2b c =,2a c =,由余弦定理可得2221cos 24a cb B ac +-==、 (Ⅱ)由(1)知22b ac =、因为B =90°,由勾股定理得222a c b +=、故222a c ac +=,得c a =、 所以D ABC 得面积为1、考点:正弦定理;余弦定理;运算求解能力18.(Ⅰ)见解析(Ⅱ)【解析】 试题分析:(Ⅰ)由四边形ABCD 为菱形知AC ^BD ,由BE ^平面ABCD 知AC ^BE ,由线面垂直判定定理知AC ^平面BED ,由面面垂直得判定定理知平面AEC ⊥平面BED ;(Ⅱ)设AB=x ,通过解直角三角形将AG 、GC 、GB 、GD 用x 表示出来,在Rt D AEC 中,用x 表示EG ,在Rt D EBG 中,用x 表示EB ,根据条件三棱锥E ACD -得体积为3x ,即可求出三棱锥E ACD -得侧面积、 试题解析:(Ⅰ)因为四边形ABCD 为菱形,所以AC ^BD , 因为BE ^平面ABCD ,所以AC ^BE ,故AC ^平面BED 、 又AC Ì平面AEC ,所以平面AEC ^平面BED(Ⅱ)设AB=x ,在菱形ABCD 中,由ÐABC=120°,可得x ,GB=GD=2x 、因为AE ^EC ,所以在Rt D AEC 中,可得EG=2x 、由BE ^平面ABCD ,知D EBG 为直角三角形,可得BE=2x 、由已知得,三棱锥E-ACD 得体积31132243E ACD V AC GD BE x -=醋?=、故x =2从而可得、所以D EAC 得面积为3,D EAD 得面积与D ECD故三棱锥E-ACD 得侧面积为考点:线面垂直得判定与性质;面面垂直得判定;三棱锥得体积与表面积得计算;逻辑推理能力;运算求解能力19.(Ⅰ)y c =+适合作为年销售y 关于年宣传费用x 得回归方程类型(Ⅱ)$100.6y =+46、24【解析】试题分析:(Ⅰ)由散点图及所给函数图像即可选出适合作为拟合得函数;(Ⅱ)令w =先求出建立y 关于w 得线性回归方程,即可y 关于x 得回归方程;(Ⅲ)(ⅰ)利用y 关于x 得回归方程先求出年销售量y 得预报值,再根据年利率z 与x 、y 得关系为z=0、2y-x 即可年利润z 得预报值;(ⅱ)根据(Ⅱ)得结果知,年利润z 得预报值,列出关于x 得方程,利用二次函数求最值得方法即可求出年利润取最大值时得年宣传费用、试题解析:(Ⅰ)由散点图可以判断,y c =+适合作为年销售y 关于年宣传费用x 得回归方程类型、(Ⅱ)令w =,先建立y 关于w 得线性回归方程,由于$81821()()()iii ii w w yy dw w ==--=-∑∑=108.8=6816, ∴$cy dw =-$=563-68×6、8=100、6、 ∴y 关于w 得线性回归方程为$100.668y w =+, ∴y 关于x 得回归方程为$100.6y =+(Ⅲ)(ⅰ)由(Ⅱ)知,当x =49时,年销售量y 得预报值$100.6y =+、6,576.60.24966.32z=⨯-=$、 (ⅱ)根据(Ⅱ)得结果知,年利润z 得预报值0.2(100.620.12zx x =+-=-+$,=13.6=6.82,即46.24x =时,z$取得最大值、 故宣传费用为46、24千元时,年利润得预报值最大、……12分考点:非线性拟合;线性回归方程求法;利用回归方程进行预报预测;应用意识20.(Ⅰ)桫(Ⅱ)2【解析】 试题分析:(Ⅰ)设出直线l 得方程,利用圆心到直线得距离小于半径列出关于k 得不等式,即可求出k 得取值范围;(Ⅱ)设1122(,),(,)M x y N x y ,将直线l 方程代入圆得方程化为关于x 得一元二次方程,利用韦达定理将1212,x x y y 用k 表示出来,利用平面向量数量积得坐标公式及12OM ON ⋅=u u u u r u u u r列出关于k 方程,解出k ,即可求出|MN|、试题解析:(Ⅰ)由题设,可知直线l 得方程为1y kx =+、因为l 与C1<、解得4433k -<<所以k得取值范围就是桫、(Ⅱ)设1122(,),(,)M x y N x y 、 将1y kx =+代入方程()()22231x y -+-=,整理得22(1)-4(1)70k x k x +++=,所以1212224(1)7,.11k x x x x k k++==++21212121224(1)1181k k OM ON x x y y k x x k x x k u u u u r u u u r +?+=++++=++,由题设可得24(1)8=121k k k +++,解得=1k ,所以l 得方程为1y x =+、故圆心在直线l 上,所以||2MN =、考点:直线与圆得位置关系;设而不求思想;运算求解能力21.(Ⅰ)当0a £时,()f x ¢没有零点;当0a >时,()f x ¢存在唯一零点、(Ⅱ)见解析 【解析】试题分析:(Ⅰ)先求出导函数,分0a £与0a >考虑()f x '得单调性及性质,即可判断出零点个数;(Ⅱ)由(Ⅰ)可设()f x ¢在()0+¥,得唯一零点为0x ,根据()f x '得正负,即可判定函数得图像与性质,求出函数得最小值,即可证明其最小值不小于22ln a a a+,即证明了所证不等式、试题解析:(Ⅰ)()f x 得定义域为()0+¥,,()2()=20x af x e x x¢->、当0a £时,()0f x ¢>,()f x ¢没有零点; 当0a >时,因为2x e 单调递增,ax-单调递增,所以()f x ¢在()0+¥,单调递增、又()0f a ¢>,当b 满足04a b <<且14b <时,(b)0f ¢<,故当0a >时,()f x ¢存在唯一零点、 (Ⅱ)由(Ⅰ),可设()f x ¢在()0+¥,得唯一零点为0x ,当()00x x Î,时,()0f x ¢<;当()0+x x 违,时,()0f x ¢>、 故()f x 在()00x ,单调递减,在()0+x ¥,单调递增,所以当0x x =时,()f x 取得最小值,最小值为0()f x 、 由于0202=0x a ex -,所以00022()=2ln 2ln 2a f x ax a a a x a a ++?、 故当0a >时,2()2lnf x a a a?、 考点:常见函数导数及导数运算法则;函数得零点;利用导数研究函数图像与性质;利用导数证明不等式;运算求解能力、 22.(Ⅰ)见解析(Ⅱ)60° 【解析】 试题分析:(Ⅰ)由圆得切线性质及圆周角定理知,AE ⊥BC ,AC ⊥AB ,由直角三角形中线性质知DE=DC ,OE=OB ,利用等量代换可证∠DEC+∠OEB=90°,即∠OED=90°,所以DE 就是圆O 得切线;(Ⅱ)设CE=1,设AE=x ,由直角三角形射影定理可得2AE CE BE =g ,列出关于x 得方程,解出x ,即可求出∠ACB 得大小、试题解析:(Ⅰ)连结AE ,由已知得,AE ⊥BC ,AC ⊥AB , 在Rt △AEC 中,由已知得DE=DC ,∴∠DEC=∠DCE , 连结OE ,∠OBE=∠OEB ,∵∠ACB+∠ABC=90°,∴∠DEC+∠OEB=90°, ∴∠OED=90°,∴DE 就是圆O 得切线、(Ⅱ)设CE=1,AE=x ,由已知得由射影定理可得,2AE CE BE =g ,,解得x =考点:圆得切线判定与性质;圆周角定理;直角三角形射影定理 23.(Ⅰ)cos 2ρθ=-,22cos 4sin 40ρρθρθ--+=(Ⅱ)12【解析】试题分析:(Ⅰ)用直角坐标方程与极坐标互化公式即可求得1C ,2C 得极坐标方程;(Ⅱ)将将=4πθ代入22cos 4sin 40ρρθρθ--+=即可求出|MN|,利用三角形面积公式即可求出2C MN V得面积、 试题解析:(Ⅰ)因为cos ,sin x y ρθρθ==, ∴1C 得极坐标方程为cos 2ρθ=-,2C 得极坐标方程为22cos 4sin 40ρρθρθ--+=、……5分(Ⅱ)将=4πθ代入22cos 4sin 40ρρθρθ--+=,得23240ρρ-+=,解得1ρ=2,2ρ2,|MN|=1ρ-2ρ2,因为2C 得半径为1,则2C MN V得面积o 121sin 452⨯=12、 考点:直角坐标方程与极坐标互化;直线与圆得位置关系 24.(Ⅰ)2{|2}3x x <<(Ⅱ)(2,+∞) 【解析】试题分析:(Ⅰ)利用零点分析法将不等式f(x)>1化为一元一次不等式组来解;(Ⅱ)将()f x 化为分段函数,求出()f x 与x 轴围成三角形得顶点坐标,即可求出三角形得面积,根据题意列出关于a 得不等式,即可解出a 得取值范围、试题解析:(Ⅰ)当a=1时,不等式f(x)>1化为|x+1|-2|x-1|>1,等价于11221x x x ≤-⎧⎨--+->⎩或111221x x x -<<⎧⎨++->⎩或11221x x x ≥⎧⎨+-+>⎩,解得223x <<,所以不等式f(x)>1得解集为2{|2}3x x <<、 (Ⅱ)由题设可得,12,1()312,112,x a x f x x a x a x a x a --<-⎧⎪=+--≤≤⎨⎪-++>⎩,所以函数()f x 得图像与x 轴围成得三角形得三个顶点分别为21(,0)3a A -,(21,0)B a +,(,+1)C a a ,所以△ABC 得面积为22(1)3a +、由题设得22(1)3a +>6,解得2a >、所以a 得取值范围为(2,+∞)、考点:含绝对值不等式解法;分段函数;一元二次不等式解法。