2014年秋季新版新人教版八年级数学上学期12.2三角形全等的判定教案43
- 格式:doc
- 大小:98.50 KB
- 文档页数:5
人教版数学八年级上册12.2.2《“边角边”判定三角形全等》教学设计一. 教材分析人教版数学八年级上册12.2.2《“边角边”判定三角形全等》是全等三角形判定方法的一个章节。
本节课主要让学生掌握边角边(SAS)判定三角形全等的方法,并能运用该方法解决实际问题。
教材通过生动的例题和丰富的练习,引导学生探索和发现全等三角形的判定规律,培养学生的逻辑思维能力和解决问题的能力。
二. 学情分析学生在学习本节课之前,已经掌握了全等图形的概念,并学习了用“角角边”(AAS)判定三角形全等的方法。
但部分学生对于全等三角形的判定方法仍然感到困惑,不易理解和运用。
因此,在教学过程中,需要关注学生的学习需求,引导学生通过观察、操作、思考、交流等途径,自主探索和发现边角边(SAS)判定三角形全等的方法。
三. 教学目标1.知识与技能:让学生掌握边角边(SAS)判定三角形全等的方法,能运用该方法解决实际问题。
2.过程与方法:通过观察、操作、思考、交流等途径,培养学生探索问题、解决问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队协作能力和自信心。
四. 教学重难点1.重点:边角边(SAS)判定三角形全等的方法。
2.难点:灵活运用边角边(SAS)判定三角形全等的方法解决实际问题。
五. 教学方法1.情境教学法:创设生动有趣的情境,引导学生积极参与学习。
2.启发式教学法:引导学生观察、思考、交流,自主探索全等三角形的判定方法。
3.合作学习法:学生进行小组讨论,培养团队协作能力。
4.巩固练习法:通过适量练习,巩固所学知识。
六. 教学准备1.教具:三角板、直尺、圆规等。
2.教学素材:例题、练习题、多媒体课件等。
3.学具:学生用三角板、直尺、圆规等。
七. 教学过程1.导入(5分钟)利用多媒体课件展示生活中的全等三角形实例,引导学生关注全等三角形的概念。
提问:你们知道全等三角形是如何判定的吗?2.呈现(10分钟)展示教材中的例题,引导学生观察、思考,发现全等三角形的判定规律。
人教版数学八年级上册12.2.3《“角边角”判定三角形全等》教学设计一. 教材分析《角边角(AAS)判定三角形全等》是人教版八年级上册数学的一个重要内容。
这部分内容是在学生已经掌握了三角形全等的判定方法SSS、SAS、ASA的基础上进行学习的。
通过学习AAS判定三角形全等,能够使学生更全面地了解三角形全等的判定方法,提高他们解决几何问题的能力。
二. 学情分析学生在学习本节课之前,已经掌握了三角形全等的判定方法SSS、SAS、ASA,能够理解并运用这些方法解决一些简单的几何问题。
但是,对于AAS判定三角形全等,他们可能还比较陌生,需要通过实例分析和练习来逐步理解和掌握。
三. 教学目标1.让学生理解并掌握AAS判定三角形全等的方法。
2.培养学生运用AAS判定三角形全等解决实际问题的能力。
3.提高学生分析问题、解决问题的能力。
四. 教学重难点1.重点:理解并掌握AAS判定三角形全等的方法。
2.难点:如何运用AAS判定三角形全等解决实际问题。
五. 教学方法1.采用案例分析法,通过具体的实例让学生理解和掌握AAS判定三角形全等的方法。
2.采用小组合作学习法,让学生在小组内讨论和分析问题,培养他们的团队协作能力。
3.采用练习法,让学生通过多做练习,巩固所学知识,提高解决问题的能力。
六. 教学准备1.准备相关的实例和练习题,用于讲解和练习AAS判定三角形全等。
2.准备课件,用于辅助教学。
七. 教学过程1.导入(5分钟)通过提问方式复习三角形全等的判定方法SSS、SAS、ASA,引导学生思考:这些方法是否能够解决所有的三角形全等问题?引出本节课的内容——AAS判定三角形全等。
2.呈现(10分钟)呈现一个具体的实例,让学生观察和分析,引导学生运用已知的三角形全等判定方法进行尝试。
通过讨论和分析,得出AAS判定三角形全等的方法。
3.操练(10分钟)让学生分组进行练习,每组提供一些相关的题目,让学生运用AAS判定三角形全等的方法进行解答。
全等三角形的判定教学目标:会证明“角角边”定理,并能用“角角边”定理证明三角形全等的一些问题,进一步提高学生的逻辑思维能力。
教学重点:能利用“角边角”定理推导出“角角边”定理。
复习导入:解释:SAS ASAASA,有2角和它们的夹边对应相等的两个三角形全等。
3.讨论:已知:∠ B=∠E, BC=EF,∠C=∠F(ASA)求证:△ABC≌△DEF(1).假设所给的条件不是ASA,比如∠A=∠D,∠B=∠E,BC=EF,我们能否证明所缺的条件∠C=∠F?(2).假设所给的条件不是ASA,比如∠A=∠D,∠C=∠F,BC=EF,我们能否证明所缺的条件∠B=∠E?∠A=∠D∠B=∠E (AAS)∠ B=∠EBC=EF (ASA) BC=EF∠A=∠D ∠C=∠F∠C=∠F (AAS)BC=EF以上三组条件中的任意一组都可证明△ABC≌△DEF(我们是否可以增加一条三角形全等的公理?)二,新授:推论:有两角和其中一角的对边对应相等的两个三角形全等(AAS)要证两个三角形全等,只要证明它们的两组对应角分别相等,一组对应边相等即可(2种形式:ASA,AAS)师:(我们说写字母时要按顺序排好,只有以上2种顺序)例:已知:如图,∠1=∠2,∠C=∠D。
求证:AC=AD。
证明:在△DAB和△CAB中∠C=∠D ∠1=∠2 ∠ABD=∠ABC∠1=∠2 AB=AB ∠C=∠DAB=AB ∠ABD=∠ABC AB=AB∴△DAB≌△CAB要证两个三角形全等,只要证明它们的两组对应角分别相等,一组对应边相等即可例2已知:如图△ABC≌△A`B`C`,AD,A`D`分别是△ABC和△A`B`C`的高。
求证:AD= A`D`证明:∵△ABC≌△A`B`C`,∴AB= A`B`,∠B=∠B`(全等三角形对应边,对应角相等)∵AD,A`D`分别是△ABC,△A`B`C`的高(已知)∴∠ADB=∠A`D`B`=90°在△ABD和△A`D`B`中∠B=∠B`∠ADB=∠A`D`B`AB= A`B`∴△ABD≌△A`D`B`(AAS)∴AD= A`D`(全等三角形对应边相等)总结:全等三角形对应高相等练习:P38/1 (1)√(2)√(3)判断有2个角和一边对应相等的2个三角形全等×有两角和其中一角的对边对应相等的两个三角形全等(AAS)小结:1,ASA,AAS的异同点2,有两角和其中一角的对边对应相等的两个三角形全等(AAS)中国书法艺术说课教案今天我要说课的题目是中国书法艺术,下面我将从教材分析、教学方法、教学过程、课堂评价四个方面对这堂课进行设计。
人教版八年级数学上册12.2.4《直角三角形全等的判定》教学设计一. 教材分析《直角三角形全等的判定》是人教版八年级数学上册第12.2.4节的内容,本节课主要让学生掌握HL(斜边-直角边)判定两个直角三角形全等的方法,并能够运用该方法解决实际问题。
本节课是学生在学习了三角形的基本概念、全等三角形的性质及判定方法的基础上进行的,是对全等三角形判定方法的进一步拓展和深化。
二. 学情分析学生在学习本节课之前,已经掌握了三角形的基本概念、全等三角形的性质及判定方法,能够运用SSS、SAS、ASA、AAS判定两个三角形全等。
但是,对于直角三角形全等的判定方法,学生可能还比较陌生,需要通过实例分析、自主探究等方式,让学生理解和掌握HL判定两个直角三角形全等的方法。
三. 教学目标1.让学生掌握HL(斜边-直角边)判定两个直角三角形全等的方法。
2.培养学生运用数学知识解决实际问题的能力。
3.培养学生的逻辑思维能力和合作交流能力。
四. 教学重难点1.教学重点:掌握HL(斜边-直角边)判定两个直角三角形全等的方法。
2.教学难点:如何让学生理解和运用HL判定两个直角三角形全等。
五. 教学方法1.情境教学法:通过生活实例,引发学生的思考,激发学生的学习兴趣。
2.自主探究法:引导学生通过合作交流、动手操作,自主发现HL判定两个直角三角形全等的方法。
3.讲解法:教师对HL判定两个直角三角形全等的方法进行讲解,帮助学生理解和掌握。
4.练习法:通过适量练习,让学生巩固所学知识,提高运用能力。
六. 教学准备1.教学课件:制作课件,展示直角三角形全等的判定方法。
2.学习材料:准备相关的学习材料,如三角形模型、直角三角形等。
3.教学设备:准备黑板、粉笔、投影仪等教学设备。
七. 教学过程1.导入(5分钟)通过一个生活实例,如建筑工人测量高度,引入直角三角形全等的概念。
提问:如何判断两个直角三角形全等呢?2.呈现(10分钟)展示直角三角形全等的判定方法,引导学生观察、思考,引导学生发现HL判定两个直角三角形全等的方法。
广东省广州市白云区汇侨中学八年级数学上册《11.2.1三角形全等
的条件(一)》教案 新人教版
教学目标
1.三角形全等的“边边边”的条件.2.了解三角形的稳定性.
3.经历探索三角形全等条件的过程,体会利用操作、•归纳获得数学结论的过程. 教学重点
三角形全等的条件.
教学难点
寻求三角形全等的条件.
教学过程
Ⅰ.创设情境,引入新课 出示投影片,回忆前面研究过的全等三角形.
已知△ABC ≌△A ′B ′C ′,找出其中相等的边与角.
C '
B 'A '
C B A
图中相等的边是:AB=A ′B 、BC=B ′C ′、AC=A ′C .
相等的角是:∠A=∠A ′、∠B=∠B ′、∠C=∠C ′. 展示课作前准备的三角形纸片,提出问题:你能画一个三角形与它全等吗?怎样画? (可以先量出三角形纸片的各边长和各个角的度数,再作出一个三角形使它的边、角分别和已知的三角形纸片的对应边、对应角相等.这样作出的三角形一定与已知的三角形纸片全等).
这是利用了全等三角形的定义来作图.那么是否一定需要六个条件呢?条件能否尽可能少呢?现在我们就来探究这个问题.
Ⅱ.导入新课
1.只给一个条件(一组对应边相等或一组对应角相等),•画出的两个三角形一定全等吗?
2.给出两个条件画三角形时,有几种可能的情况,每种情况下作出的三角形一定全等吗?
分别按下列条件做一做. ①三角形一内角为30°,一条边为3cm .
②三角形两内角分别为30°和50°.
③三角形两条边分别为4cm 、6cm . 学生分组讨论、探索、归纳,最后以组为单位出示结果作补充交流.
结果展示:
1.只给定一条边时:
只给定一个角时:
2.给出的两个条件可能是:一边一内角、两内角、两边.
①3cm 3cm 3cm 30︒30︒30︒
②50︒
50︒30︒30︒
③6cm
4cm 4cm
6cm
可以发现按这些条件画出的三角形都不能保证一定全等.
给出三个条件画三角形,你能说出有几种可能的情况吗?
归纳:有四种可能.即:三内角、三条边、两边一内角、两内有一边. 在刚才的探索过程中,我们已经发现三内角不能保证三角形全等.下面我们就来逐一探索其余的三种情况.
已知一个三角形的三条边长分别为6cm 、8cm 、10cm .你能画出这个三角形吗?把你画的三角形剪下与同伴画的三角形进行比较,它们全等吗?
1.作图方法:
先画一线段AB ,使得AB=6cm ,再分别以A 、B 为圆心,8cm 、10cm 为半径画弧,•两弧交点记作C ,连结线段AC 、BC ,就可以得到三角形ABC ,使得它们的边长分别为AB=6cm ,AC=8cm ,BC=10cm .
2.以小组为单位,把剪下的三角形重叠在一起,发现都能够重合.•这说明这些三角形都是全等的.
3.特殊的三角形有这样的规律,要是任意画一个三角形ABC ,根据前面作法,同样可以作出一个三角形A ′B ′C ′,使AB=A ′B ′、AC=A ′C ′、BC=B ′C ′.将△A ′B ′C ′剪下,发现两三角形重合.这反映了一个规律:
三边对应相等的两个三角形全等,简写为“边边边”或“SSS ”.
用上面的规律可以判断两个三角形全等.判断两个三角形全等的推理过程,叫做证明三角形全等.所以“SSS ”是证明三角形全等的一个依据.请看例题.
[例]如图,△ABC 是一个钢架,AB=AC ,AD 是连结点A 与BC 中点D 的支架.
求证:△ABD ≌△ACD .
[分析]要证△ABD ≌△ACD ,可以看这两个三角形的三条边是否对应相等.
证明:因为D 是BC 的中点
所以BD=DC
在△ABD 和△ACD 中(AB AC BD CD AD AD =⎧⎪=⎨⎪=⎩
公共边)
所以△ABD ≌△ACD (SSS ).
生活实践的有关知识:用三根木条钉成三角形框架,它的大小和形状是固定不变的,•而用四根木条钉成的框架,它的形状是可以改变的.三角形的这个性质叫做三角形的稳定性.所以日常生活中常利用三角形做支架.就是利用三角形的稳定性.•例如屋顶的人字梁、大桥
钢架、索道支架等.
Ⅲ.随堂练习
如图,已知AC=FE 、BC=DE ,点A 、D 、B 、F 在一条直线上,AD=FB .要用“边边边”证明△ABC ≌△FDE ,除了已知中的AC=FE ,BC=DE 以外,还应该有什么条件?怎样才能得到这个条件?
F D C
B
E
A
2.课本练习.
Ⅳ.课时小结
本节课我们探索得到了三角形全等的条件,•发现了证明三角形全等的一个规律SSS .并利用它可以证明简单的三角形全等问题.
Ⅴ.作业
1.复习巩固1、2.课后作业:《新课堂》
Ⅵ.活动与探索
如图,一个六边形钢架ABCDEF 由6条钢管连结而成,为使这一钢架稳固,请你用三条钢管连接使它不能活动,你能找出几种方法?
C
本题的目的是让学生能够进一步理解三角形的稳定性在现实生活中的应用.
结果:(1)可从这六个顶点中的任意一个作对角线,•把这个六边形划分成四个三角形.如图(1)为其中的一种.(2)也可以把这个六边形划分成四个三角形.如图(2).
板书设计
(1)
(2)
)。