下一代数据中心的虚拟接入技术
- 格式:doc
- 大小:123.00 KB
- 文档页数:7
数据中心虚拟机迁移随着信息技术的快速发展,数据中心已成为现代企业存储和处理数据的重要基础设施。
然而,为了适应不断增长的业务需求和优化资源利用,数据中心的迁移变得越来越常见和必要。
其中,虚拟机迁移技术的应用为数据中心的管理和维护带来了很大的便利性和灵活性。
虚拟机迁移是指将运行在一台物理服务器上的虚拟机实例转移到另一台物理服务器上的过程。
通过虚拟机迁移技术,管理员可以实现在不中断服务的情况下,动态地调整数据中心中的虚拟机分布,以适应不同负载、故障恢复以及资源管理的需要。
下面将详细介绍数据中心虚拟机迁移的原理和实践。
一、虚拟机迁移原理虚拟机迁移技术的实现基于虚拟化技术和网络通信的支持。
虚拟化技术通过在物理服务器上创建多个虚拟机实例,每个虚拟机实例都运行一个独立的操作系统和应用程序。
而网络通信则通过物理网络或者专用网络来传输虚拟机的状态和数据。
在虚拟机迁移过程中,主要包括以下几个步骤:1. 虚拟机迁移准备:包括检测源服务器和目标服务器的硬件和软件环境,确保两者兼容。
同时,还需要对源服务器上的虚拟机进行状态检查,以确定是否可以进行迁移。
2. 虚拟机迁移预处理:将源服务器上的虚拟机状态和数据复制到目标服务器上,并将目标服务器准备好迎接虚拟机迁入。
3. 虚拟机迁移过程:在迁移过程中,源服务器上的虚拟机会停机,然后将虚拟机的状态和数据传输到目标服务器上,同时将网络配置和存储路径等信息进行更新。
4. 虚拟机迁移完成:迁移完成后,管理员需要验证迁移后的虚拟机是否正常运行,如果有问题,则需要进行故障排除和调整。
二、虚拟机迁移实践虚拟机迁移技术在数据中心中的实践非常广泛,并已成为日常运维中不可或缺的一部分。
下面将介绍一些常见的虚拟机迁移实践场景。
1. 负载均衡:通过监控数据中心中各个物理服务器的资源利用以及虚拟机的负载情况,管理员可以将负载较高的虚拟机迁移到资源较空闲的物理服务器上,以实现负载均衡。
2. 硬件维护:当物理服务器需要进行硬件维护、升级或者更换时,通过虚拟机迁移技术,管理员可以在不中断虚拟机服务的情况下,将虚拟机从故障的物理服务器上迁移到其他正常的物理服务器上。
VCF纵向虚拟化技术架构文/刘刀桂祁正林VM及其迁移驱动着数据中心大规模二层网络的发展,随着网络规模的扩大,网络设备数量随之增大,网络管理成为数据中心基础设施管理中的一个棘手问题。
同时,现代大数据中心对网络提供给服务器的端口密度也提出了更高的要求,例如万台服务器的规模已是互联网数据中心现实中的普遍需求。
端口扩展技术作为提高接入设备端口密度的一种有效手段逐渐成熟并获得了业界的认可。
VCF纵向虚拟化技术(Vertical Con verged Framework,纵向融合框架,以下简称VCF)即是该技术的一种实现方式,满足数据中心虚拟化高密接入并可以简化管理。
Cisco公司相类似的技术是FEX^VCF在纵向维度上支持对系统进行异构扩展,即在形成一台逻辑虚拟设备的基础上,把一台盒式设备作为一块远程接口板加入主设备系统,以达到扩展I/O端口能力和进行集中控制管理的目的。
为叙述方便,后文会把纵向VCF的建立和管理过程等与IRF传统的横向相关功能进行对比。
IRF (横向)堆叠拓扑主要有链型和环形两种。
设备按角色可分为Master和Slave。
Slave在一定条件下可转变为Master,两者业务处理能力是同一水平的,只不过Slave处于“非不能也,实不为也”的状态。
对于VCF (即纵向)来说,设备按角色分为CB (Controlling Bridge )和PE(Port Extender)两种。
CB 表示控制设备,PE表示纵向扩展设备,即端口扩展器(或称远程接口板)。
通常来说,PE设备的能力不足以充当CB,管理拓扑上难以越级,处于“非不为也,实不能也”的状态。
如图1所示,左边是框式设备或者是盒式设备各自形成IRF堆叠横向虚拟化系统,有环形堆叠和链型堆叠(虚线存在的情况)两种拓扑形式;右边是框式设备与盒式设备形成VCF纵向虚拟化系统(简称VCF Fabric),为便于对比CB由IRF堆叠组成。
图1. IRF横向虚拟化和VCF纵向虚拟化对比一般来说,对于IRF(横向)堆叠,控制平面由Master管理,转发能力和端口密度随着Slave增加而增加。
专线上网服务随着信息经济的飞速发展,通过互联网获取信息已经成为人们工作、生活中不可或缺的组成部分。
应运而生的各种广域网接入技术令大家目不暇接,其中包括DDN、FR、ISDN、ADSL、HFC、VPN等。
恒敦通信主要采取专线接入的方案,即DDN方式,下面是专线接入网络拓扑图:VPN服务VPN是英文Virtual Private Network 缩写,中文译为虚拟专网。
对于VPN 的定义有很多,但都是基于这样一种思想,那就是VPN 利用公共网络基础设施,通过一定的技术手段达到类似私有专网的数据安全传输。
从定义上看,VPN 首先是虚拟的,也就是说VPN 并不是某个公司专有的封闭线路或者是租用某个网络服务商提供的封闭线路。
但同时VPN 又具有专线的数据传输功能,因为VPN 能够像专线一样在公共网络上处理自己公司的信息。
通过建设虚拟专用网(VPN),企业可以把公用Internet看成自己的专用WAN,用于连接远程办公室、开展电子商务、为客户提供支持并与供应商和其他商业伙伴沟通。
早期建设的VPN使用永久虚电路(PVC)和隧道技术,并且获得了很大的成功。
但是,随着连接范围的扩大,可扩展性和管理的问题越来越突出。
可喜的是,多协议标记交换(MPLS)技术的出现让我们可以建设能够支持多种业务级别并且能够无限扩展的全互连IP VPN。
(恒敦通信VPN采用此技术)传统VPN面临的困难今天部署的大部分VPN属于两种基本模式,其中比较贵的一种模式,使用电信运营商网络中的第二层,例如帧中继或ATM PVC,建设点对点的网络。
这种方法要求对闭合用户群的每一个地点分配一个唯一的标识,并且对哪些地点之间可以交换信息进行管理。
由于每个地点必须与新增加的地点连接,就很难快速地添加大量新的地点,因为这需要利用服务供应商WAN建立全互连的虚拟电路连接并进行管理。
另外一种VPN模式是在服务供应商网络边缘的路由器之间,建立点对点隧道的网络。
引言概述:数据中心是现代企业和组织的核心基础设施,它承载着大量的数据存储和处理任务。
为了能够高效地管理和处理这些数据,一个合理的数据中心架构是必不可少的。
本文将深入探讨数据中心架构的三个基础要素:网络架构、存储架构和计算架构,以帮助读者更好地理解数据中心的设计和运维。
网络架构:1. 网络拓扑结构:数据中心通常采用三层网络架构,包括核心层、汇聚层和接入层,这样可以提供高可用性和可扩展性。
2. 网络设备:常见的网络设备有路由器、交换机和防火墙等,它们通过虚拟局域网(VLAN)和交换虚拟化技术(VXLAN)等实现数据的传输和隔离。
3. SDN技术:软件定义网络(SDN)可以提高网络的灵活性和可编程性,使得数据中心网络的管理更为简便和高效。
4. 高可用性和负载均衡:通过配置冗余设备和使用负载均衡算法,可以避免单点故障,并实现对网络流量的均衡分配。
存储架构:1. 存储设备:数据中心采用不同类型的存储设备,如磁盘阵列、网络存储设备(NAS)和存储区域网络(SAN)等,以满足不同的存储需求。
2. 存储协议:常见的存储协议有网络文件系统协议(NFS)和块存储协议(如iSCSI和FCP),它们用于数据中心中的文件共享和块级存储。
3. 存储虚拟化:通过存储虚拟化技术,可以将物理存储资源抽象成逻辑存储池,并实现数据的动态迁移和资源的动态分配。
4. 数据保护和备份:在数据中心中,数据的安全性和可靠性非常重要。
通过定期备份、快照和复制等手段,可以保护数据免受损坏和丢失的风险。
5. 存储性能优化:通过使用高速存储介质(如固态硬盘)和优化数据访问模式,可以提升数据中心的存储性能和响应速度。
计算架构:1. 服务器硬件:数据中心中常用的服务器硬件包括标准服务器、刀片服务器和高密度服务器等,可以根据实际需求选择适合的硬件平台。
2. 虚拟化技术:利用虚拟化技术,可以将物理服务器划分为多个虚拟机,实现资源的共享和利用率的提升。
3. 容器化技术:容器化技术(如Docker)可以更加轻量级地实现应用的部署和扩展,提供更高的灵活性和效率。
解析思科数据中心虚拟化技术和部署数据中心的发展正在经历从整合,虚拟化到自动化的演变,基于云计算的数据中心是未来的更远的目标。
整合是基础,虚拟化技术为自动化、云计算数据中心的实现提供支持。
数据中心的虚拟化有很多的技术优点:可以通过整合或者共享物理资产来提高资源利用率,调查公司的结果显示,全球多数的数据中心的资源利用率在15%~20%之间,通过整合、虚拟化技术可以实现50%~60%的利用率;通过虚拟化技术可以实现节能高效的绿色数据中心,如可以减少物理设备、电缆,空间、电力、制冷等的需求;可以实现对资源的快速部署以及重部署以满足业务发展需求。
数据中心虚拟化的简单示意图。
数据中心的资源,包括服务器资源、I/O资源、存储资源组成一个资源池,通过上层的管理、调度系统在智能的虚拟化的网络结构上实现将资源池中的资源根据应用的需求分配到不同的应用处理系统。
虚拟化数据中心可以实现根据应用的需求让数据中心的物理IT资源流动起来,更好的为应用提供资源调配与部署。
数据中心虚拟化发展的第一个阶段是通过整合实现服务器和应用的虚拟化服务,这阶段的数据中心也是很多公司已经做的或正要做的。
在这一阶段,数据中心虚拟化实现的是区域内的虚拟化,表现为数据中心的服务如网络服务、安全服务、逻辑服务还是与物理服务器的部署相关联;虚拟机上的VLAN与网络交换层上的VLAN对应;存储LUN以类似映射到物理服务器的方式映射到虚拟机。
如下图。
数据中心虚拟化发展的第二个阶段是通过虚拟主机迁移技术(VM's Mobility)实现跨物理服务器的虚拟化服务。
如下图。
在这个阶段,实现了数据中心内的跨区域虚拟化,虚拟机可以在不同的物理服务器之间切换,但是,为满足虚拟机的应用环境和应用需求,需要网络为应用提供智能服务,同时还需要为虚拟化提供灵活的部署和服务。
思科在下一代的数据中心设计中采用统一交换的以太网架构,思科数据中心统一交换架构的愿景图如下。
改进之前的数据中心物理上存在几个不同的网络系统,如局域网架构、SAN 网络架构、高层的计算网络架构、管理控制网络架构,各个网络上采用的技术不同,如局域网主要采用以太网技术,SAN网络主要采用Fiber Channel技术。
数据中心网络三大热门技术这几年,云计算、大数据、虚拟化等新技术让人看得眼花缭乱,所有这些技术都要依托数据中心为基础来得以实现。
俗话说“经济基础决定上层建筑”,数据中心网络是实现这些功能的基础,这些迫使网络技术要进行变革,否则根本无法适应这些新东西,所以数据中心网络技术这几年也得到了迅速发展,各种新技术不断涌现,数据中心里最后的一块封锁基地终于得以开垦,这给数据中心带来了活力。
任何技术的进步都不是一撮而就的,需要经过各种磨练,还会有不同的声音,也会有不少的技术会不断消失,本文就来具体说一说数据中心网络涌现了哪些新技术。
虚拟交换技术虚拟交换技术是指允许在同一台物理设备上执行多种交换功能,或在网络中的多台物理设备上执行单功能交换,虚拟交换技术是多服务网络交换结构中的核心概念。
虚拟交换技术的实质是通过服务器来实现网络交换的部分功能,以此用服务器替代网络交换机的部分网络功能。
这样不仅可以简化网络,还可以降低网络建设的成本,可以将交换机的部分功能下移到服务器上,这种技术也是服务器厂商主推的技术,服务器厂商也是希望通过此技术来获得部分的网络市场,得以进入网络市场。
不过虚拟交换技术还是一个全新的领域,很多服务器厂商都有各的想法,难以形成统一的技术标准。
CISCO和VMware向IETF提交了虚拟交换技术草案VN-Link,CISCO是传统的网络硬件厂商,而VMware是虚拟化软件厂商,所以两者的结合也都各有自己的小算盘,所以这次的草案还是提出了两种解决方案,一种是通过软件实现,而另一种就是通过硬件网卡来实现,CISCO甚至还自己提出了基于硬件的虚拟交换方案。
要知道CISCO也是全球第五大服务器厂商,在服务器领域也很有实力。
CISCO提出了802.1qbb BPE和802.1BR,还有别的服务器厂商也提出了自己的虚拟交换技术,比如;802.1Qbg EVB、EVBA等,服务器厂商毕竟不是专做网络设备的,所以这些虚拟交换技术并未得到更多的响应,尤其是得到了网络厂商的积极反击,这样使得虚拟交换技术成为了实验室技术,至今未能大规模地走进数据中心,虽然绝大部分服务器都支持虚拟交换技术,但并未得到大规模的应用。
云时代数据中心SDN网络解决方案随着云计算的快速发展和智能化的大数据应用,数据中心的规模和网络流量都大幅增加。
传统的数据中心网络结构面临着扩展性、可管理性、性能和安全性等方面的挑战。
为了解决这些问题,软件定义网络(Software Defined Networking)技术应运而生,并逐渐成为数据中心网络的主流解决方案。
SDN网络是一种将控制平面(Control Plane)和数据平面(Data Plane)分离的网络架构。
控制平面集中管理整个网络,并通过控制器向数据平面设备下发转发规则,从而实现对网络的灵活控制。
数据平面则负责实际的数据传输。
在云时代的数据中心中,SDN网络可以提供以下解决方案:1.灵活的网络架构:传统的数据中心网络结构通常是层叠式的,难以扩展和管理。
SDN网络可以根据需要动态调整网络拓扑,实现灵活的网络架构。
同时,SDN网络还支持多租户的隔离,为不同的应用提供专用的网络划分。
2.高性能和低延迟:SDN网络可以通过优化数据转发路径和流量分布,提高网络的性能,并降低延迟。
控制器可以根据网络状况实时调整流量的转发路径,保证数据的快速传输。
3.网络安全和策略管理:SDN网络通过集中控制平面的管理,可以更加有效地管理网络安全和策略。
控制器可以根据应用的安全需求下发相应的安全策略,对网络流量进行监控和过滤,从而保护数据中心的安全。
4.简化的网络管理:传统的数据中心网络管理需要对每个设备进行独立配置和管理,非常繁琐。
SDN网络通过集中管理控制器,实现对整个网络的统一配置和管理,大大简化了网络管理的工作。
5.跨数据中心互联:在大型云服务提供商中,通常会有多个数据中心进行资源的部署和负载均衡。
SDN网络可以实现不同数据中心之间的虚拟专网互连,为用户提供高可用性和灵活的公有云服务。
总的来说,云时代的数据中心SDN网络解决方案可以提高网络的灵活性、性能、安全性和管理效率。
它是未来数据中心网络的发展方向,将为大数据应用和云计算提供更好的基础支持。
下一代绿色数据中心建设方案目录1 机房基础设施方案 (4)1.1 总述 (4)1.1.1 设计目标 (4)1.1.2 需求分析 (4)1.1.3 建设主要内容 (4)1.2 设计相关标准和规范 (5)1.3 机房整体规划 (6)1.3.1 机房功能分区及面积划分 (6)1.3.2 机房平面布局 (6)1.3.3 系统特点 (7)1.4 设备配置清单 (8)1.5 空调新风系统 (9)1.5.1 选型分析 (9)1.5.2 空调设备配置 (10)1.5.3 空调系统特点与优势 (11)1.5.4 空调设备性能参数 (12)1.5.5 通风系统 (13)1.6 动力配电系统 (14)1.6.1 配电结构 (14)1.6.2 UPS配置 (15)1.6.3 用电统计 (16)1.7 机柜微环境系统 (17)1.7.1 机柜 (17)1.7.2 机柜排配电 (18)1.7.3 机柜排监控 (19)1.8 装饰装修系统 (20)1.8.1 空间及布线 (20)1.8.2 装饰装修 (20)1.8.3 照明 (21)1.9 防雷接地系统 (21)1.9.1 防雷 (21)1.9.2 接地 (21)1.10 监控管理系统 (22)1.10.1 门禁 (22)1.10.2 视频监控 (22)1.10.3 集中监控 (22)1.11 消防报警系统 (23)1.11.1 消防报警 (23)1.11.2 气体灭火 (24)1.12 建筑场地条件需求 (24)1.12.1 建筑条件 (24)1.12.2 电力条件 (25)1.12.3 空调室外机场地 (25)1机房基础设施方案1.1总述1.1.1设计目标计算机机房工程是一种涉及到空调技术、配电技术、网络通信技术、净化、消防、建筑、装潢、安防等多种专业的综合性产业。
本着从满足机房建设工程项目的实际需要出发,本方案立足于建设高标准化机房的宗旨,严格遵循“投资合理、规划统一、立足现在、适度超前”的设计方向,为用户提供一个完整全面优化的解决方案。
数据中心云接入技术比较摘要:数据中心接入技术,hp/h3c/ibm及服务器厂家的802.1qbg 与cisco的802.1qbh、802.1br、vn-tag的对比;802.1br的功能完全是网络向服务器内的扩展,针对vm的连接、感知并没有定义内容,因此如果在此基础上叠加802.1qbg vdp协议,并进行一些802.1br的修改;802.1qbg和vn-tag具有比较完善的网络扩展与vm关联感知能力,所不同的是802.1qbg定义了分工明确的协议,并且由网络部件和服务器内er部件交互完成,标准化互通方式灵活,而vn-tag的vic协议并未定义在网络设备与er之间,而是管理系统与er之间,具有较大封闭性关键词:数据中心;云;接入技术;虚拟化;标准化中图分类号:g250.76 文献标识码:a 文章编号:1007-9599 (2012) 23-0000-02在数据中心内部计算虚拟化与网络虚拟化的边界,出现了若干技术体系:hp/h3c/ibm及服务器厂家的802.1qbg,cisco的802.1qbh、802.1br、vn-tag,其目的都是为了解决服务器内部的虚拟机与外部虚拟化网络的对接、关联和感知的问题。
在深入研究这几种技术框架基础上对各自异同进行比较,以使读者能够了解到不同技术的差异。
在数据中心内部计算虚拟化与网络虚拟化的边界,出现了若干技术体系:hp/h3c/ibm及服务器厂家的802.1qbg,cisco的802.1qbh、802.1br、vn-tag,其目的都是为了解决服务器内部的虚拟机与外部虚拟化网络的对接、关联和感知的问题。
在深入研究这几种技术框架基础上对各自异同进行比较,以使读者能够了解到不同技术的差异。
1 技术简述表1.技术简要信息1.1 802.1qbg802.1qbg在转发上除了兼容传统的vswitch功能的veb模式(virtual ethernet bridging),还有另外两种独特模式,vepa (virtual ethernet port aggregator,这种模式也称为basic vepa 模式)和multi-channel。
下一代数据中心的虚拟接入技术–VN-Tag和VEPA数据中心的虚拟接入是新一代数据中心的重点课题,各方已经争夺的如火如荼。
目前网络上的中文资料还不多,根据自己的经验写了一点对虚拟接入的理解,意在丟砖,引出真正的大佬。
一、为什么虚拟化数据中心需要一台新的交换机随着虚拟化技术的成熟和x86 CPU性能的发展,越来越多的数据中心开始向虚拟化转型。
虚拟化架构能够在以下几方面对传统数据中心进行优化:∙提高物理服务器CPU利用率;∙提高数据中心能耗效率;∙提高数据中心高可用性;∙加快业务的部署速度正是由于这些不可替代的优点,虚拟化技术正成为数据中心未来发展的方向。
然而一个问题的解决,往往伴随着另一些问题的诞生,数据网络便是其中之一。
随着越来越多的服务器被改造成虚拟化平台,数据中心内部的物理网口越来越少,以往十台数据库系统就需要十个以太网口,而现在,这十个系统可能是驻留在一台物理服务器内的十个虚拟机,共享一条上联网线。
这种模式显然是不合适的,多个虚拟机收发的数据全部挤在一个出口上,单个操作系统和网络端口之间不再是一一对应的关系,从网管人员的角度来说,原来针对端口的策略都无法部署,增加了管理的复杂程度。
其次,目前的主流虚拟平台上,都没有独立网管界面,一旦出现问题网管人员与服务器维护人员又要陷入无止尽的扯皮中。
当初虚拟化技术推行的一大障碍就是责任界定不清晰,现在这个问题再次阻碍了虚拟化的进一步普及。
接入层的概念不再仅仅针对物理端口,而是延伸到服务器内部,为不同虚拟机之间的流量交换提供服务,将虚拟机同网络端口重新关联起来。
二、仅仅在服务器内部实现简单交换是不能的既然虚拟机需要完整的数据网络服务,为什么在软件里不加上呢?没错,很多人已经为此做了很多工作。
作为X86平台虚拟化的领导厂商,VMWare早已经在其vsphere平台内置了虚拟交换机vswitch,甚至更进一步,实现了分布式虚拟交互机VDS(vnetwork distributed switch),为一个数据中心内提供一个统一的网络接入平台,当虚拟机发生vmotion时,所有端口上的策略都将随着虚拟机移动。
VMWare干得貌似不错,实际上在当下大多数情况下也能够满足要求了。
但如果谈到大规模数据中心精细化管理,内置在虚拟化平台上的软件交换机还有很多问题没有解决。
首先,目前的vswitch至多只是一个简单的二层交换机,没有QoS、没有二层安全策略、没有流量镜像,不是说VMWare没有能力实现这些功能,但一直以来这些功能好像都被忽略了;其次,网管人员仍然没有独立的管理介面,同一台物理服务器上不同虚机的流量在离开服务器网卡后仍然混杂在一起,对于上联交换机来说,多个虚拟机的流量仍然共存在一个端口上。
虚拟平台上的软件交换机虽然能够提供基本的二层服务,但是由于这个交换机的管理范围被限制在物理服务器网卡之下,它没法在整个数据中心提供针对虚拟机的端到端服务,只有一个整合了虚拟化软件、物理服务器网卡和上联交换机的解决方案才能彻底解决所有的问题。
这个方案涉及范围如此之广,决定这又是一个只有业界大佬才能参与的游戏。
三、谁在开发新型交换机?HP,Cisco。
一个是PC服务器王者,近年开始在网络领域攻城略地,势头异常凶猛;一个是网络大佬,借着虚拟化浪潮推出服务器产品,顽强地挤进这片红海。
针对前文所说的问题,两家抛出了各自的解决方案,目的都是重整虚拟服务器同数据网络之间那条薄弱的管道,将以往交换机上强大的功能延伸进虚拟化的世界,从而掌握下一代数据中心网络的话语权。
Cisco和VN-TAG虚拟化平台软件如VMWare ESX部署之后,会模拟出一整套硬件资源,包括CPU、硬盘、显卡,以及网卡,虚拟机运行在物理服务器的内存中,通过这个模拟网卡对外交换数据,实际上这个网卡并不存在,我们将其定义为一个虚拟网络接口VIF(Virtual Interface)。
VN-tag是由Cisco和VMWare共同提出的一项标准,其核心思想是在标准以太网帧中增加一段专用的标记—VN-Tag,用以区分不同的VIF,从而识别特定虚拟机的流量。
VN-Tag添加在目的和源MAC地址之后,在这个标签中定义了一种新的地址类型,用以表示一个虚拟机的VIF,每个虚拟机的VIF是唯一的。
一个以太帧的VN-Tag中包含一对这样新地址dvif_id和svif_id,用以表示这个帧从何而来,到何处去。
当数据帧从虚拟机流出后,就被加上一个VN-Tag标签,当多个虚拟机共用一条物理上联链路的时候,基于VN-Tag的源地址dvif_id就能区分不同的流量,形成对应的虚拟通道,类似传统网络中在一条Trunk链路中承载多条VLAN。
只要物理服务器的上联交换机能够识别VN-Tag,就能够在交换机中直接看到不同的VIF,这一下就把对虚拟机网络管理的范围从服务器内部转移到上联网络设备上。
思科针对VN-Tag推出了名为Palo的虚拟服务器网卡,Palo卡为不同的虚拟机分配并打上VN-Tag标签,上联交换机与服务器之间虽然只有一条网线,但通过VN-Tag上联交换机能区分不同虚拟机产生的流量,并在物理交换机上生成对应的虚拟接口VEth,和虚拟机的VIF一一对应,好像把虚拟机的VIF 和物理交换机的VEth直接对接起来,全部交换工作都在上联交换机上进行,即使是同一个物理服务器内部的不同虚拟机之间的流量交换,也通过上联交换机转发。
这样的做法虽然增加了网卡I/O,但通过VN-Tag,将网络的工作重新交回到网络设备。
而且,考虑到万兆接入的普及,服务器的对外网络带宽不再是瓶颈,此外,利用Cisco Nexus 2000这种远端板卡设备,网管人员还能够直接在一个界面中管理数百台虚拟机,每个虚拟机就好象在传统的接入环境中一样,直接连接到一个交换机网络端口。
目前,思科推出的UCS服务器已经能够支持VN-tag,当Palo卡正确安装之后,会对上层操作系统虚拟出多个虚拟通道,每个通道对应一个VIF,在VMWare EXS/ESXi软件中可以将虚拟机绕过vswitch,直接连接到这些通道上,而在UCS管理界面上则能够看到对应的虚拟机,使网管人员能够直接对这些端口进行操作。
Cisco同VMWare已经将向IEEE提出基于VN-Tag的802.1Qbh草案,作为下一代数据中心虚拟接入的基础。
HP和VEPACisco提出的VN-Tag,在IT业界引起的震动远远大于在客户那得到的关注,如果802.1Qbh成为唯一的标准,Cisco等于再一次制定了游戏规则,那些刚刚在交换机市场上屯下重兵的厂商,在未来数据中心市场上将追赶得异常痛苦。
此外,VN-Tag是交换机加网卡的一揽子方案,还能够帮助Cisco快速切入服务器市场,对其他人来说是要多不爽有多不爽。
很容易猜到,这其中最不爽的就是HP,在交换机和服务器领域跟Cisco 明刀明枪地干上之后,被这样摆上一道,换谁也不可能无动于衷。
HP的应对很直接,推出一个类似的方案,替代VN-Tag。
HP的办法称为VEPA(Virtual Ethernet Port Aggregator),其目的是在部署了虚拟化环境的服务器上实现同VN-tag类似的效果,但VEPA采取了一条截然不同的思路来搭建整个方案。
简单来说,VEPA的核心机制就是两条:修改生成树协议、重用Q-in-Q。
VEPA的目标也是要将虚拟机之间的交换行为从服务器内部移出到上联交换机上,当两个处于同一服务器内的虚拟机要交换数据时,从虚拟机A出来的数据帧首先会经过服务器网卡送往上联交换机,上联交换机通过查看帧头中带的MAC地址(虚拟机MAC地址)发现目的主机在同一台物理服务器中,因此又将这个帧送回原服务器,完成寻址转发。
整个数据流好象一个发卡一样在上联交换机上绕了一圈,因此这个行为又称作“发卡弯”。
虽然“发卡弯”实现了对虚拟机的数据转发,但这个行为违反了生成树协议的一项重要原则,即数据帧不能发往收到这个帧的端口,而目前虚拟接入环境基本是一个大二层,因此,在接入层,不可能使用路由来实现这个功能,这就造成了VEPA的机制与生成树协议之间的矛盾。
但是VEPA没有vPC,在接入层还是要跑生成树。
HP的办法就是重写生成树协议,或者说在下联端口上强制进行反射数据帧的行为(Reflective Relay)。
这个方式看似粗暴,但一劳永逸地解决了生成树协议和VEPA机制的冲突,只要考虑周全,不失为一步妙棋。
除了将虚拟机的数据交换转移到物理服务器上之外,VN-Tag还做了一项重要的工作,就是通过dvif_id和svif_id这对新定义的地址对不同虚机流量进行区分。
HP在这里的搞法同样简单直接,VEPA使用Q-in-Q在基本的802.1q 标记外增加了一层表示不同虚拟机的定义,这样在VLAN之外,VEPA还能够通过Q-in-Q区分不同的虚拟机,只要服务器网卡能够给数据帧打上Q-in-Q标记,上联交换机能够处理Q-in-Q帧,基本就可以将不同的虚拟机流量区分开来,并进行处理。
至此,VEPA看起来已近能够实现同VN-Tag类似的功能,因此HP也将VEPA形成草案,作为802.1Qbg的基础提交至IEEE。
不得不说,VEPA是个非常聪明的设计,不管是对生成树行为的修改,还是利用Q-in-Q都不是什么不得了的创新,目前的交换机厂商只要把软件稍微改改,就能够快速推出支持802.1Qbg的产品,重新搭上数据中心这班快车,追上之前被Cisco甩下的距离。
VN-Tag和VEPA自从Cisco祭出VN-Tag大旗后,各种争议就没停过,直到HP推出VEPA,这场口水仗达到高潮,随着2011年,802.1Qbh和802.1Qbg标准化进程的加快,围绕虚拟接入下一代标准的争夺将进入一个新的阶段。
这也不难理解,随着数据中心内虚拟机数量的不断增加,越来越多的物理网口转化为虚拟的VIF,如果一家网络厂商没法提供相应的接入解决方案,它的饼会越来越小,活得非常难受。
VN-Tag就是Cisco试图一统下一个十年数据中心的努力,HP虽然同思科正面开战时间不长,但从VEPA来看,其手法相当老辣。
由于VEPA没有对以太网数据结构提出任何修改,实现成本非常低,以往被思科扫到大门之外的厂商,一下子见到了曙光,前仆后继地投靠过来,Juniper、IBM、Qlogic、Brocade等等都毫不掩饰对VEPA的期待,Extreme甚至表示,已近着手修改OS以保证对VEPA 的支持。
待各方站队结束,大家发现Cisco虽然有强大的盟友VMWare,但另外一边几乎集结了当今网络界的所有主流厂商,舆论也逐渐重视VEPA的优点,甚至Cisco自己也不得不松嘴说会考虑对802.1Qbg的支持。
戏演到这里,很多人幸灾乐祸地等着看Cisco怎么低头。