2018届四川省南充市高三第一次高考适应性考试数学理试题word版含解析
- 格式:doc
- 大小:809.50 KB
- 文档页数:16
四川省南充市2018-2019学年高三理数第一次高考适应性考试试卷一、单选题 (共12题;共12分)1.(1分)已知集合A={−1,0,1,2},B={x|x2=x},则A∩B=()A.B.C.D.2.(1分)(1+i)2=()A.B.C.2D.-23.(1分)下列命题中的假命题是()A.,B.,C.,D.,4.(1分)α是第四象限角,tanα=−43,则sinα=()A.B.C.D.5.(1分)在(x2−1x3)n的展开式中含有常数项,则正整数n的最小值是()A.4B.5C.6D.76.(1分)点M,N是圆x2+y2+kx+2y−4=0上的不同两点,且点M,N关于直线x−y+1=0对称,则该圆的半径等于()A.B.C.1D.37.(1分)已知函数f(x)=lgx,则函数g(x)=|f(1−x)|的图像大致是()A.B.C.D.8.(1分)设离散型随机变量X可能的取值为1,2,3,4,P(X=k)=ak+b,又X的数学期望为E(X)=3,则a+b=()A.B.0C.D.9.(1分)将边长为2的正ΔABC沿高AD折成直二面角B−AD−C,则三棱锥B−ACD的外接球的表面积是()A.B.C.D.10.(1分)ΔABC的内角A,B,C的对边分别为a,b,c,若a,b,c成等差数列,B=30°,ΔABC的面积为32,则b=()A.B.C.D.11.(1分)在实数的原有运算法则(“ ⋅” “ −”仍为通常的乘法和减法)中,我们补充定义新运算“ ⊕”如下:当a≥b时,a⊕b=a;当a<b时,a⊕b=b2,则当x∈[−2,2]时,函数f(x)=(1⊕x)⋅x−(2⊕x)的最大值等于()A.-1B.1C.6D.1212.(1分)已知双曲线x2a2−y2b2=1(a>0,b>0)与函数y=√x(x≥0)的图像交于点P .若函数y=√x在点P处的切线过双曲线左焦点F(−1,0),则双曲线的离心率是()A.B.C.D.二、填空题 (共4题;共4分)13.(1分)若变量x,y满足约束条件{2x−y+1≥0,3x+2y−23≤0,y−1≥0,则z=2y−x的最大值是.14.(1分)若sinα=13,则cos2α=.15.(1分)已知函数f(x)=sinx+2x,f(1−a)+f(2a)<0,则实数a的取值范围是.16.(1分)已知抛物线y2=2px(p>0)的焦点为F(1,0),直线l:y=x+m与抛物线交于不同的两点A,B.若0≤m<1,则ΔFAB的面积的最大值是.三、解答题 (共7题;共14分)17.(2分)在数列{a n}中,a1=1,a n+1=3a n.(1)(1分)求{a n}的通项公式;(2)(1分)数列{b n}是等差数列,S n为{b n}前n项和,若b1=a1+a2+a3,b3=a3,求S n.18.(2分)为了解某班学生喜好体育运动是否与性别有关,对本班50人进行了问卷调查得到了如下的列联表:已知按喜好体育运动与否,采用分层抽样法抽取容量为10的样本,则抽到喜好体育运动的人数为6.附: K 2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d)(1)(1分)请将上面的列联表补充完整;(2)(1分)能否在犯错概率不超过0.01的前提下认为喜好体育运动与性别有关?说明理由.19.(2分)如图,三棱柱 ABC −A 1B 1C 1 中, A 1A ⊥ 平面 ABC , ΔABC 为正三角形, D 是BC 边的中点, AA 1=AB =1 .(1)(1分)求证:平面 ADB 1⊥ 平面 BB 1C 1C ; (2)(1分)求二面角 B −AB 1−D 的余弦值.20.(2分)已知椭圆的焦点 F 1(−4,0) , F 2(4,0) ,过点 F 2 并垂直于 x 轴的直线与椭圆的一个交点为 B ,并且 |F 1B|+|F 2B|=10 ,椭圆上不同的两点 A(x 1,y 1) , C(x 2,y 2) 满足条件: |F 2A| , |F 2B| , |F 2C| 成等差数列. (1)(1分)求椭圆的方程;(2)(1分)求弦 AC 中点的横坐标.21.(2分)已知函数 f(x)=e x −ax −1−x 22.(1)(1分)若 a =12,求 f(x) 的单调区间;(2)(1分)设函数 F(x)=f(x)+f(−x)+2+x 2 ,求证: F(1)⋅F(2)⋅⋯⋅F(n) >(en+1+2)n2(n ∈N ∗) .22.(2分)在直角坐标系 xOy 中,曲线 C 的参数方程为 {x =2cosθ,y =4sinθ ( θ 为参数),直线 l 的参数方程为 {x =1+tcosα,y =2+tsinα ( t 为参数). (1)(1分)求 C 和 l 的直角坐标方程;(2)(1分)若曲线 C 截直线 l 所得线段的中点坐标为 (1, 2) ,求 l 的斜率.23.(2分)设函数 f(x)=5−|x +a|−|x −2| .(1)(1分)当 a =1 时,求不等式 f(x)≥0 的解集; (2)(1分)若 f(x)≤1 ,求 a 的取值范围.答案解析部分1.【答案】C【解析】【解答】∵B={x|x2=x}={0,1}则A∩B={0,1}.故答案为:C.【分析】用求解一元二次方程的方法求出方程的解,从而求出集合B,再利用集合的交集运算求出集合A和B的交集。
四川省南充市2018届高三第一次高考适应性考试(一诊)数学文试题第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合{}{}0,112,2,A B x x ==-<<,则A B ⋂=( ) A .{}0 B .{}1 C .{}0,1 D .{}0,1,22. 若复数212bii-+的实部和虚部互为相反数,那么实数b 等于( )A .23-B .23C .23. 已知平面向量()()1,3,4,2a b =-=-,若a b λ-与a 垂直,则λ=( ) A .1- B .1 C .2- D .24. 已知变量x 与变量y 之间具有相关关系,并测得如下一组数据则变量x 与y 之间的线性回归方程可能为( )A .0.7 2.3y x =-B .0.710.3y x =-+C .10.30.7y x =-+D .10.30.7y x =-5. 已知数列{}n a 满足:11,0n a a =>,()22*11n n a a n N +-=∈,那么使5n a <成立的n 的最大值为( )A .4B .5C .24D .256. 已知函数()()()2sin 0f x x ωϕω=+>的部分图象如图所示,则函数()f x 的一个单调递增区间是( )A .75,1212ππ⎛⎫- ⎪⎝⎭B .7,1212ππ⎛⎫-- ⎪⎝⎭C .,36ππ⎛⎫- ⎪⎝⎭D .1117,1212ππ⎛⎫⎪⎝⎭ 7. 若01m <<,则( )A .()()11m m log m log m +>-B .(10)m log m +> C. ()211m m ->+D .()()113211m m ->-8. 已知一个棱长为2的正方体,被一个平面截后所得几何体的三视图如图所示,则该截面的面积为( )A .92 B .4 C. 3 D9. 若函数()324f x x x ax =+--在区间()1,1-内恰有一个极值点,则实数a 的取值范围为( )A .()1,5B .[)1,5 C. (]1,5 D .()(),15,-∞⋃+∞10.已知,,,A B C D 是同一球面上的四个点,其中ABC ∆是正三角形,AD ⊥平面ABC ,26AD AB ==,则该球的体积为( )A. B .48π C. 24π D .16π11.设数列{}n a 前n 项和为n S ,已知145a =,112,0,2121,1,2n n n n n a a a a a +⎧≤≤⎪⎪=⎨⎪-<≤⎪⎩则2018S 等于( )A .50445 B .50475 C. 50485 D .5049512.已知抛物线2:4C x y =,直线:1l y =-,,PA PB 为抛物线C 的两条切线,切点分别为,A B ,则“点P 在l 上”是“PA PB ⊥”的( )A .充分不必要条件B .必要不充分条件 C. 充要条件 D .既不充分也不必要条件第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 若,x y 满足约束条件0,20,0,x y x y y -≥⎧⎪+-≤⎨⎪≥⎩则34z x y =-的最小值为 .14. 数列{}n a 满足:212log 1log n n a a +=+,若310a =,则8a = .15. 若圆221:5O x y +=与圆()()222:20O x m y m R ++=∈相交于,A B 两点,且两圆在点A 处的切线互相垂直,则线段AB 的长度是 .16. 函数()21,1,ln ,1,x x f x x x ⎧-≤=⎨>⎩若方程()12f x mx =-恰有四个不相等的实数根,则实数m 的取值范围是 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17. 设函数()1sin ,2f x x x x R =+∈. (1)求函数()f x 的最小正周期和值域;(2)记ABC ∆的内角,,A B C 的对边分别为,,a b c ,若()f A =a =,求角C 的值. 18.某厂家为了了解某新产品使用者的年龄情况,现随机调査100 位使用者的年龄整理后画出的频率分布直方图如图所示.(1)求100名使用者中各年龄组的人数,并利用所给的频率分布直方图估计所有使用者的平均年龄;(2)若已从年龄在[)[]35,45,45,55的使用者中利用分层抽样选取了6人,再从这6人中选出2人,求这2人在不同的年龄组的概率.19. 如图,边长为2的正方形ABCD 与等边三角形ABE 所在的平面互相垂直,,M N 分别是,DE AB 的中点.(1)证明://MN 平面 BCE ; (2)求三棱锥B EMN -的体积.20. 已知椭圆222210()x y a b a b +=>>的左右焦点分别为12,F F ,左顶点为A ,122F F =,椭圆的离心率12e =.(1)求椭圆的标准方程;(2)若P 是椭圆上任意一点,求1PF PA ⋅的取值范围.21.已知函数()xf x e =,直线l 的方程为(),,y kx b k R b R =+∈∈.(1)若直线l 是曲线()y f x =的切线,求证:()f x kx b ≥+对任意x R ∈成立;(2)若()f x kx b ≥+对任意[)0,x ∈+∞恒成立,求实数是,k b 应满足的条件. 请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.在平面直角坐标系xOy 中,曲线C 的参数方程为3cos sin x y αα=⎧⎨=⎩(α为参数),在以原点为极点,x 轴正半轴为极轴的极坐标系中,直线l 的极坐标方程为sin 4πρθ⎛⎫-= ⎪⎝⎭(1)求C 的普通方程和l 的倾斜角;(2)设点()0,2,P l 和C 交于,A B 两点,求PA PB +.23.已知函数()1f x x =+.(1)求不等式/()211f x x <+-的解集M ; (2)设,a b M ∈,证明:()()()f ab f a f b >--.试卷答案一、选择题1-5: CABBC 6-10: DDABA 11、12:BC 二、填空题13. 1-14. 320 15. 4 16.12⎛ ⎝⎭三、解答题17.解:(1)因为()1sin 2f x x x =+, sin 3x π⎛⎫=+ ⎪⎝⎭,所以()f x 的最小正周期为π. 因为x R ∈,所以3x R π⎛⎫+∈ ⎪⎝⎭,所以()f x 的值域为[]1,1-.(2)由(1)得()sin 3f A A π⎛⎫=+ ⎪⎝⎭,所以sin 3A π⎛⎫+= ⎪⎝⎭.因为0A π<<,所以4333A πππ<+<, 所以2,333A A πππ+==,因为a =,由正弦定理sin sin a b A B =可得sin bB =,所以sin 1B =, 因为0B π<<,所以2B π=,所以6C A B ππ=--=.18.解:(1)由图可得,各组年龄的人数分別为:10,30,40,20.估计所有使用者的平均年龄为:0. 1200.3300.4400. 25037⨯+⨯+⨯+⨯= (岁)(2)由题意可知抽取的6人中,年龄在[)35,45范围内的人数为4,记为,,,a b c d ;年龄在[]45,55范围内的人数为2,记为,m n .从这6人中选取2人,结果共有15种:()()()()()()()()()()()()()()(),,,,,,,,,,,,,,ab ac ad am an bc bd bm bn cd cm cn dm dn mn .设“这2人在不同年龄组“为事件A . 则事件A 所包含的基本事件有8种,故()815P A =,所以这2人在不同年龄组的概率为815. 19. (1)证明:取AE 中点P ,连结,MP NP . 由题意可得////MP AD BC ,因为MP ⊄平面BCE ,BC ⊂平面BCE , 所以//MP 平面BCE , 同理可证//NP 平面BCE . 因为MP NP P ⋂=, 所以平面//MNP 平面BCE , 又MN ⊂平面MNP , 所以//MN 平面BCE .(2)解:由(1)可得//12MP DA =,因为平面ABCD ⊥平面ABE ,平面ABCD ⋂平面ABE AB =,且DA AB ⊥ 所以DA ⊥平面ABE所以M 到平面ENB 的距离为112MP AD == 因为N 为AB 的中点,所以12EMB ABE S S ∆∆=所以1132B EMN M EBN ABE V V S MP --∆==⨯⨯111221322=⨯⨯⨯⨯=20.解:(1)由已知可得122,2c c e a === 所以2,1a c == 因为222a b c =+所以b =所以椭圆的标准方程为:22143x y += (2)设()00,P x y ,又 ()()12,0,1,0A F -- 所以()()2100012PF PA x x y ⋅=----+,因为P 点在椭圆22143x y +=上,所以2200143x y +=,即2200334y x =-,且022x -≤≤,所以21001354PF PA x x ⋅=++, 函数()20001354f x x x =++在[]2,2-单调递增,当02x =-时,()0f x 取最小值为0; 当02x =时,()0f x 取最大值为12. 所以1PF PA ⋅的取值范围是[]0,12.21.解:(1)因为()x f x e '=,设切点为(),tt e , 所以(),1t t k e b e t ==-,所以直线l 的方程为:()1t ty e x e t =+-,令函数()()F x f x kx b =--,即()()1x t t F x e e x e t =---,()x tF x e e '=-所以()F x 在(),t -∞单调递减,在(),t +∞单调递增, 所以()()min 0F x f t == 故()()0F x f x kx b =--≥, 即()f x kx b ≥+对任意x R ∈成立.(2)令()()[),0,xH x f x kx b e kx b x =--=--∈+∞()[),0,x H x e k x '=-∈+∞①当1k ≤时,()0H x '≥,则()H x 在[)0,+∞单调递增, 所以()()min 010,1H x H b b ==-≥≤ 即11k b ≤⎧⎨≤⎩,符合题意.②当1k >时,()H x 在[]0,ln k 上单调递减,在[)ln ,k +∞单调递增, 所以()()min ln ln 0H x H k k k k b ==--≥ 即()1ln b k k ≤-综上所述:满足题意的条件是1,1,k b ≤⎧⎨≤⎩或()1,1ln .k b k k >⎧⎪⎨≤-⎪⎩22.解:(1)由3cos sin x y αα=⎧⎨=⎩消去参数α,得2219xy +=即C 的普通方程为2219x y +=由sin 4πρθ⎛⎫-= ⎪⎝⎭sin cos 2ρθρθ-=①将cos sin x y ρθρθ=⎧⎨=⎩代入①得2y x =+所以直线l 的斜率角为4π. (2)由(1)知,点()0,2P 在直线l 上,可设直线l 的参数方程为cos 42sin4x t y t ππ⎧=⎪⎪⎨⎪=+⎪⎩(t 为参数)即2x y ⎧=⎪⎪⎨⎪=⎪⎩(t 为参数),代入2219x y +=并化简得25270t ++=(24527108∆=-⨯⨯=>0设,A B 两点对应的参数分别为12,t t .则1212270,05t t t t +=<=>,所以120,0t t <<所以12PA PB t t +=+=. 23. (1)解:①当1x ≤-时,原不等式化为122x x --<--解得1x <-; ②当112x -<≤-时,原不等式化为1x x +<-2-2解得1x <-,此时不等式无解; ③当12x >-时,原不等式化为12x x +<解1x >. 综上,{1M x x =<-或 }1x > (2)证明,因为()()()1111f a f b a b a b a b --=+--+≤+-+=+.所以要证()()()f ab f a f b >--,只需证1ab a b +>+, 即证221ab a b +>+,即证2222212a b ab a ab b ++>++,即证22221a b a b --+>0,即证()()22110a b -->,因为,a b M ∈,所以221,1a b >>,所以2210,10a b ->->,所以()()22110a b -->成立.所以原不等式成立.。
南充市高2018届高考适应性考试(零诊)数学试题(理科)第Ⅰ卷 选择题(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}{}1,0,1,2,0,1A B =-=-,则A B =U ( )A .{}0,1B . {}1,2--C .{}2,1,0,1--D .φ2.复数12z i -=-在复平面内所对应的点在( )A .第一象限内B .第二象限内C .第三象限内D .第四象限内3.某工厂生产产品,用传送带将产品送到下一道工序,质检人员在传送带的某一个位置每隔十分钟取一件检验,则这种抽样方法是( )A .简单随机抽样B .系统抽样C .分层抽样D . 非上述答案4.已知角θ的终边经过点()2,3P ,则tan 2θ=( )A .23B .32 C. 125 D .125-5.若实数,x y 满足14210x x y x y ≥⎧⎪+≤⎨⎪--≤⎩,则2z x y =+的最大值为( )A . 2B . 5 C. 7 D .86.将函数sin 26y x π⎛⎫=- ⎪⎝⎭的图象向左平移4π个单位,所得函数图象的一条对称轴方程是( )A . 12x π=-B . 6x π= C. 3x π= D .12x π=7.函数4cos x y x e =-(e 为自然对数的底数)的图象可能是( )A .B .C. D .8.一个与球心距离为2的平面截球所得圆面面积为π,则球的表面积为( )A .20πB .202π C. 16π D .162π9.阅读如图所示的程序框图,运行相应的程序,输出的结果是( )A .2B . 4 C. 8 D .1610.已知函数()[]24,0,1f x x x a x =-++∈,若()f x 有最小值-2,则()f x 的最大值为( )A . -1B . 0 C. 2 D .111.已知双曲线()222210,0x y a b a b -=>>的一条渐近线与圆()2221x y +-=没有公共点,则双曲线离心率的取值范围是( )A .()1,2B .(]1,2 C. ()1,+∞ D .()2,+∞12.已知函数()ln f x x x x =+,若k z ∈,且()()2k x f x -<对任意2x >恒成立,则k 的最大值为( )A .3B .4 C. 5 D .6第Ⅱ卷(共90分)二、填空题:本大题共4小题,每小题5分,满分20分,将答案填在答题纸上13.在ABC ∆中,()()090,1,2,3,B AB BC λ∠==-=uu u r uu u r ,则λ= .14.若函数()()1,0,0x x g x f x x ->⎧=⎨<⎩是奇函数,则()f x = .15.在ABC ∆中,角,,A B C 的对边分别为,,a b c ,已知1sin 2sin ,cos 3a B C C ==,ABC ∆的面积为4,则边c = .16.已知0,0a b >>,方程为22420x y x y +-+=的曲线关于直线10ax by --=对称,则32a bab +的最小值为 .三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.已知数列{}n a 前n 项和为22n n nS +=.(1)求数列{}n a 的通项公式;(2)求数列{}2n a 的前n 项和.18. 某公司新开发了A ,B 两种新产品,其质量按测试指标划分为:指标大于或等于82为正品,小于82为次品,现随机抽取这两种产品各100件进行检测,检测结果统计如下: 测试指标 [70,76) [76,82) [82,88) [88,94) [94,100) 产品A 8 12 40 32 8产品B 7 18 40 29 6(1)分别估计产品A 、产品B 为正品的概率;(2)生产一件产品A ,若是正品可盈利80元,次品则亏损10元;生产一件产品B ,若是正品可盈利100元,次品则亏损20元,在(1)的前提下,记X 为生产一件产品A 和一件产品B 的总利润,求随机变量X 的分布列和数学期望.19.如图,在四棱锥P ABCD -中,底面ABCD 为矩形,PCD ∆为等边三角形,AB BC 2=,点M 为BC 的中点,平面PCD ⊥平面ABCD .(1)求证:PD BC ⊥;(2)求二面角P-AD-M 的余弦值.20. 已知椭圆22221x y a b +=与双曲线22132x y -=具有相同焦点12,F F ,椭圆的一个顶点()0,2P .(1)求椭圆的方程;(2)设过抛物线212x y =焦点F 的直线交椭圆于,A B 两点,若FB FA λ=,求实数λ的取值范围.21. 已知函数()()214ln ,f x a x x a R =+-∈.(1)若12a =,求曲线()y f x =在点()()1,1f 处的切线方程;(2)讨论函数()f x 的单调性.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22. 已知:直线l 的参数方程为:23x t y t=+⎧⎪⎨=⎪⎩(t 为参数),曲线C 的极坐标方程为:2cos 21ρθ=.(1)求曲线C 的普通方程;(2)求直线l 被曲线C 截得的弦长.23.已知函数()45f x x x =-++.(1)求不等式()10f x ≥的解集;(2)若关于x 的不等式()f x a <的解集不是空集,求实数a 的取值范围.试卷答案一、选择题1-5:CBBDC 6-10: DAACD 11、12:AB二、填空题 13. 32 14. 1x + 15. 6 16. 437+三、解答题17.解:(1)因为22n n n S +=,故当2n ≥时,()()21112n n n S --+-=,两式相减得()2n a n n =≥, 又由题设可得2111112a S +===,从而{}n a 的通项公式为:n a n =;(2)记数列{}2n a 的前n 项和为n T ,由(1)知22n a n =,所以()123121222222212nn n n T +-=++++==--L .18.解:(1)6条道路的平均得分为()156789107.56⨯+++++=,所以该市总体交通状况等级为合格;(2)设A 事件表示“样本平均数与总体平均数之差的绝对值不超过0.5”.从6条道路中抽取2条的得分组成的所有基本事件为()()()()()()()()()()()()5,6,5,7,5,8,5,9,5,10,6,7,6,8,6,9,6,10,7,8,7,9,7,10,()()()8,9,8,10,9,10共15个基本事件,事件A 包括()()()()()()()5,9,5,10,6,8,6,9,6,10,7,8,7,9共7个事件.所以()715P A =.19.(1)证明:因为ABCD 为矩形,所以BC DC ⊥,又因为平面PCD ⊥平面ABCD ,且平面PCD I 平面ABCD CD =,所以BC ⊥平面PDC .PD ⊂平面PDC ,所以PD BC ⊥;(2)解:取CD 的中点O ,连接OP ,所以OP DC ⊥,因为平面PCD ⊥平面ABCD ,所以PO ⊥平面ABCD ,故PO 同为四面体PDMC 与四面体PDAM 的高.由题设可知:DMC ∆的面积是矩形ABCD 面积的14;ADM ∆的面积为矩形ABCD 面积的12. 故:四面体PDMC 与四面体PDAM 的体积比为1:2.20.解:(1)因为双曲线22132x y -=的焦点()()125,0,5,0F F -, 所以椭圆22221x y a b +=的焦点()()125,0,5,0F F -,所以225a b -=,又因为椭圆一个顶点()0,1P ,所以21b =,故:2256a b =+=, 所以椭圆的方程为2216x y +=;(2)因为抛物线24x y =的焦点坐标为()0,1,所以直线AB 的方程为:1y x =+,又由(1)得椭圆方程为:2216x y +=, 联立22116y x x y =+⎧⎪⎨+=⎪⎩得27120x x +=,设()()1122,,,A x y B x y ,由以上方程组可得()1250,1,,77A B ⎛⎫-- ⎪⎝⎭, 所以()()2222212112512201777AB x x y y ⎛⎫⎛⎫=-+-=--+--= ⎪ ⎪⎝⎭⎝⎭.21.解:(1)当12a =时,()()()2114ln 02f x x x x =+->,则()12f =,又()()41,12f x x f x ''=+-=-,所以曲线()y f x =在()1,2处的切线方程为:()221y x -=--,即240x y +-=;(2)()()()()2224210ax ax f x a x x x x +-'=+-=>,令()22g x ax ax =+-,①当0a =时,()4ln f x x =-,()40f x x '=-<,所以()f x 在()0,+∞单调递减;②当0a <时,二次函数()g x 的图象开口方向向下, 其图象对称轴12x =-,且()020g =-<,所以当0x >时,()()0,0g x f x '<<,所以()f x 在()0,+∞单调递减;③当0a >时,二次函数开口向上,其图象对称轴12x =-.()020g =-<,其图象与x 轴正半轴交点为28,02a a aa ⎛⎫-++ ⎪ ⎪⎝⎭, 所以当2802a a ax a -++<<时,()()0,0g x f x '<<,所以()f x 在280,2a a a a ⎛⎫-++ ⎪ ⎪⎝⎭上单调递减. 当282a a ax a -++>时,()()0,0g x f x '>>,所以()f x 在28,2a a a a ⎛⎫-+++∞ ⎪ ⎪⎝⎭上单调递增,综上所述:当0a ≤时,()f x 在()0+∞,上单调递减;当0a >时,()f x 在280,2a a a a ⎛⎫-++ ⎪ ⎪⎝⎭单调递减,在28,2a a aa ⎛⎫-+++∞⎪ ⎪⎝⎭上单调递增.22.解:(1)由曲线()2222:cos 2cos sin 1C ρθρθθ=-=,得 2222cos sin 1ρθρθ-=,化成普通方程为:221x y -=;(2)把直线l 的参数方程化为普通方程为()32y x =-, 代入221x y -=,得2212130,0x x -+=∆>,设l 与C 交于()()1122,,,A x y B x y ,则1212136,2x x x x +==g , 所以1213210AB x x =+-=g .23.解:(1)()21,59,5421,4x x f x x x x --≤-⎧⎪=-<<⎨⎪+≥⎩,①当5x ≤-时,112110,2x x --≥≤-;②当4x ≥时,2110x +≥,92x ≥; 综上①②,不等式解集为119,,22⎛⎤⎡⎫-∞-+∞ ⎪⎥⎢⎝⎦⎣⎭U .(2)因为()()()45459f x x x x x =-++≥--+=, 所以若关于x 的不等式()f x a <的解集非空,则()min 9a f x >=,即a 的取值范围是()9,+∞.。
四川省南充市高三第一次高考适应性考试(一诊)物理试题第Ⅰ卷(选择题共126分)二、选择题(本题共8小题,每小题6分,在每小题给出的四个选项中,第14-18题只有一项符合题目要求,第19-21题有多项符合题目要求.全部选对得6分,选对但不全的得3分,有选错的得0分)14.以下运动中物体的机械能一定守恒的是A.物体做匀速直线运动 B、物体从高处以g/4的加速度竖直下落C.不计空气阻力,细绳一端拴一小球,使小球在竖直平面内做圆周运动D物体做匀变速曲线运动15.经常低头玩手机会引起如背痛、胃痛、偏头痛和呼吸道疾病等。
当人体直立时,颈椎所承受的压力等于头部的重量;低头玩手机时,颈椎受到的压力会随之变化。
现将人体头颈部简化为如图的模型:低头时,头部的重心在P点,受沿颈椎OP方向的支持力和沿PQ方向肌拉力的作用处于静止,OP与竖直方向的夹角为37°,PQ与竖直方向的角为53°,此时,预椎受到的压力约为直立时颈椎受到压力的(sin37°=0.6 cos53°=0.8,cos37°==0.6 sin53°=0.8)A、4.7倍B、3.3倍C、1.8倍D、2.9倍16.如图所示,在竖直面内有一固定的半圆槽,半圆直径AG水平,B、C、D、E、F将半圆周六等分,现将质量相同的小球1、2、3、4、5,从A点向右做平抛运动,分别落到B、C、D、E、F上则下列说法正确的是A.球4到达E点时,速度的反向延长线必过圆心OB.平抛运动全过程,球3动量变化率最大C.平抛运动全过程,球5运动的时间最长D.平抛运动全过程,球3的重力冲量最大17.环绕地球做圆周运动的卫星,其运动的周期会随着轨道半径的变化而变化,某同学根据测得的不同卫星做圆周运动的半径r与周期T,作出如图所示图象,则可求得地球密度为(已知引力常量为G,地球的半径为R)18.如图甲所示,水平面上的物体在水平向右的拉力F作用下,由静止开始运动,运动过程中,力F的功率恒为P。
南充市高2019届第一次高考适应性考试数学试题(理科)第Ⅰ卷选择题(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,,则A. B. C. D.【答案】C【解析】【分析】先求出集合B,由此能求出.【详解】则.故选C.【点睛】本题考查集合交集的求法,属基础题.2.A. B. C. 2 D. -2【答案】A【解析】【分析】利用复数的乘方运算法则运算即可.【详解】故选A.【点睛】本题考查复数的乘方运算,属基础题.3.下列命题中的假命题是A. ,B. ,C. ,D. ,【答案】C【解析】【分析】对四个选项,逐一举例子进行真假性的判断,由此得到正确选项.【详解】对于选项A,当时,故A选项为真命题.对于B选项,当时,,故选项B为真命题.当时,,故C选项为真命题.根据指数函数的性质知D选项为真命题.故选C.【点睛】本小题主要考查全称命题与特称命题真假性的判断,考查指数函数、对数函数和正切函数有关的性质.属于基础题.4.是第四象限角,,则A. B. C. D.【答案】B【解析】【分析】由的值及α为第四象限角,利用同角三角函数间的基本关系求出cosα的值,即可确定出的值.【详解】由题是第四象限角,则故选B.【点睛】此题考查了同角三角函数间的基本关系,熟练掌握基本关系是解本题的关键.5.在的展开式中含有常数项,则正整数的最小值是A. 4B. 5C. 6D. 7【答案】B【解析】【分析】当存在与时,展开式有常数项,此时.【详解】由于和的最小公倍数为,故当存在与时,展开式有常数项,即为常数项,此时,故选B.【点睛】本小题主要考查二项式的展开式,考查两个数的最小公倍数.二项式展开式的通项公式为.属于基础题.6.点,是圆上的不同两点,且点,关于直线对称,则该圆的半径等于A. B. C. 1 D. 3【答案】D【解析】【分析】圆上的点关于直线对称,则直线经过圆心,求出圆的圆心,代入直线方程,即可求出k,然后求出半径.【详解】圆x2+y2+kx+2y-4=0的圆心坐标为(,因为点M,N在圆x2+y2+kx+2y-4=0上,且点M,N关于直线l:x-y+1=0对称,所以直线l:x-y+1=0经过圆心,所以.所以圆的方程为:x2+y2+3x+2y-4=0,圆的半径为:故选:C.【点睛】本题考查直线与圆的位置关系,考查圆的一般方程的应用,考查计算能力.7.已知函数,则函数的图像大致是A. B. C. D.【答案】A【解析】【分析】求出函数的定义域,排除BCD,即可得到答案.【详解】函数,函数,则函数的定义域为,故排除B,C,D,故选:A.【点睛】本题考查函数的图象,考查同对函数基础知识的把握程度以及数形结合的思维能力.8.设离散型随机变量可能的取值为1,2,3,4,,又的数学期望为,则A. B. 0 C. D.【答案】A【解析】【分析】将代入的表达式,利用概率之和为列方程,利用期望值列出第二个方程,联立方程组,可求解得的值.【详解】依题意可的的分布列为依题意得,解得,故.所以选A.【点睛】本小题主要考查离散型随机变量分布列,考查概率之和为,考查离散型随机变量的数学期望,还考查了方程的思想.属于基础题.9.将边长为2的正沿高折成直二面角,则三棱锥的外接球的表面积是A. B. C. D.【答案】D【解析】【分析】三棱锥B-ACD的三条侧棱BD、DC、DA两两互相垂直,它的外接球就是它扩展为长方体的外接球,求出长方体的对角线的长,就是球的直径,然后求球的表面积即可.【详解】根据题意可知三棱锥B-ACD的三条侧棱BD、DC、DA两两互相垂直,所以它的外接球就是它扩展为长方体的外接球,所以求出长方体的对角线的长为:,所以球的直径是,半径为,所以球的表面积为:故选D.【点睛】本题主要考查了外接球的表面积的度量,解题关键将三棱锥B-ACD的外接球扩展为长方体的外接球,属于中档题.10.的内角,,的对边分别为,,,若,,成等差数列,,的面积为,则A. B. C. D.【答案】B【解析】成等差数列,,平方得,又的面积为,且故由,得由余弦定理解得又为边长,故答案选点睛:根据等差中项的性质可得运用平方求得边长的数量关系,再根据面积公式求出的值,代入余弦定理求得结果11.在实数的原有运算法则(“” “”仍为通常的乘法和减法)中,我们补充定义新运算“如下:当时,;当时,,则当时,函数的最大值等于A. -1B. 1C. 6D. 12【解析】【分析】新定义运算“”是选择两个数中较大的一个.将所在的区间分为两类,写出函数的解析式,再由解析式求得函数的最大值.【详解】新定义运算“”是选择两个数中较大的一个.当时,,此时函数为增函数,故.当时,,此时函数为增函数,故.故函数的最大值为.因此选C.【点睛】本小题主要考查新定义运算的理解,考查了分类讨论的数学思想方法,考查了一次函数和幂函数的单调性.对于新定义运算的题目,关键的突破口在于理解新定义的运算.理解新定义运算后,观察的表达式,有两个关键元素和,所以对给定的定义域,要分成两段来讨论,将表示为分段函数的形式,再来求最大值.12.已知双曲线与函数的图像交于点.若函数在点处的切线过双曲线左焦点,则双曲线的离心率是A. B. C. D.【答案】A【解析】试题分析:设,∴切线的斜率为,又∵在点处的切线过双曲线左焦点,∴,解得,∴,因此,,故双曲线的离心率是,故选A.考点:双曲线离心率的计算.第Ⅱ卷(共90分)二、填空题:本大题共4小题,每小题5分,共20分.13.若变量,满足约束条件则的最大值是__________.【答案】11【分析】先根据约束条件画出可行域,再利用几何意义求最值,z=2y-x表示直线在y轴上的截距,只需求出可行域直线在y轴上的截距最大值即可.【详解】变量,满足约束条件在坐标系中画出图象,三条线的交点分别是A(0,1),B(7,1),C(3,7),在△ABC中满足z=2y-x的最大值是点C,代入得最大值等于11.故填:11.【点睛】本题主要考查了简单的线性规划,以及利用几何意义求最值,属于基础题.14.若,则__________.【答案】【解析】15.已知函数,,则实数的取值范围是__________.【答案】【解析】【分析】判断出函数为奇函数,并且导数为正数,为递增函数,利用奇偶性和单调性化简题目所给的不等式,由此求得的取值范围.【详解】由于,故函数为奇函数,由于故函数为上的增函数.由得,故.故的取值范围是.【点睛】本小题考查函数的奇偶性,考查利用导数求函数的单调性,考查抽象不等式的解法.对于有关函数的题目,首先想到的是函数的性质,如单调性、奇偶性和周期性等等.对于抽象函数的不等式,往往要结合函数的单调性来求解.利用导数可以判断出函数的单调性.属于中档题.16.已知抛物线的焦点为,直线与抛物线交于不同的两点,.若,则的面积的最大值是__________.【答案】【解析】【分析】根据抛物线焦点的坐标求得的值.联立直线的方程和抛物线的方程,消去得到关于的一元二次方程,这个方程的判别式大于零,利用韦达定理求得弦长的表达式,利用点到直线距离公式求得到直线的距离,由此求得三角形面积的表达式,在利用导数求得面积的最大值.【详解】由于抛物线的焦点为,故,抛物线方程为,联立得,.由于直线和抛物线有两个交点,故判别式,解得.由弦长公式得.焦点到直线的距离为.故三角形的面积为,由于,故上式可化为.令,,故当时,函数递增,当时,函数递减,故当时取得最大值,此时=. 【点睛】本小题主要考查抛物线的标准方程,考查直线和抛物线的位置关系,考查与抛物线有关的三角形的面积公式.由于抛物线的参数只有一个,故只要一个条件就可以求得的值.直线和抛物线形成的弦长公式可以利用韦达定理计算出来.求得面积的表达式后,由于表达式是高次的,故利用导数求得它的最大值. 三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分17.在数列中,,.(1)求的通项公式;(2)数列是等差数列,为前项和,若,,求.【答案】(1);(2).【解析】【分析】(1)已知,由等比数列的定义可知数列是首项为1,公比为3的等比数列,则的通项公式易求;(2)由(1)得:,由此求得公差,代入等差数列前公式计算即可.【详解】(1)因为所以数列是首项为1,公比为3的等比数列,所以.(2)由(1)得:,则,,所以 .【点睛】本题考查等差数列,等比数列的基本量计算,属基础题.18.为了解某班学生喜好体育运动是否与性别有关,对本班50人进行了问卷调查得到了如下的列联表:已知按喜好体育运动与否,采用分层抽样法抽取容量为10的样本,则抽到喜好体育运动的人数为6. (1)请将上面的列联表补充完整;(2)能否在犯错概率不超过0.01的前提下认为喜好体育运动与性别有关?说明理由.附:【答案】(1)见解析;(2)在犯错误率不超过0.01的前提下认为喜好体育运动与性别有关.【解析】【分析】(1)根据分层抽样比计算出全班喜欢体育运动的人数和不喜欢体育运动的人数,可将列联表补充完整;(2)根据公式计算K2,对照临界值表作结论.【详解】(1)设喜好体育运动人数为,则 .所以列联表补充如下:(2)因为所以可以在犯错误率不超过0.01的前提下认为喜好体育运动与性别有关.【点睛】本题考查分层抽样的统计原理,独立性检验的运用,考查学生分析解决问题的能力,是基础题.19.如图,三棱柱中,平面,为正三角形,是边的中点,.(1)求证:平面平面;(2)求二面角的余弦值.【答案】(1)证明见解析;(2)【解析】【分析】(1)先证明平面,根据面面垂直的性质定理可以得到平面平面.(2)以为坐标原点,为轴,为轴建立空间直角坐标系,利用平面和平面的法向量,计算二面角的余弦值.【详解】(1)证明:因为三棱柱中平面,所以平面,又平面,所以平面平面因为为正三角形,为的中点,所以,又平面平面,所以平面,又平面所以平面平面.(2)解:以为坐标原点,为轴,为轴建立空间直角坐标系,则,,,,所以,设平面的法向量则即令,则得同理可求得平面的法向量设二面角的大小为,所以.【点睛】本小题主要考查面面垂直的判定定理,考查利用空间向量的方法计算二面角的余弦值,属于中档题.20.已知椭圆的焦点,,过点并垂直于轴的直线与椭圆的一个交点为,并且,椭圆上不同的两点,满足条件:,,成等差数列.(1)求椭圆的方程;(2)求弦中点的横坐标.【答案】(1);(2)4【解析】【分析】(1)利用椭圆的焦点坐标得到,利用椭圆的定义得到,利用求得,由此求得椭圆的方程.(2)利用,,成等差数列列出方程,将的坐标代入,可求得的值,由此求得中点的横坐标.【详解】(1)由题意可知.所以,又,所以,所以椭圆方程为:.(2)由点在椭圆上,得.由,,成等差数列,得①点在椭圆上,得所以②同理可得③将②③代入①式,得:所以设中点坐标为,则横坐标:.【点睛】本小题主要考查椭圆标准方程的求法,考查直线和椭圆的位置关系,还考查了等差中项的性质.属于中档题.21.已知函数.(1)若,求的单调区间;(2)设函数,求证:.【答案】(1)在单调递增;(2)证明见解析.【解析】【分析】(1)当时,利用的二阶导数,求得函数的单调区间.(2)先求得的表达式,化简得到.将要证明的不等式的左边利用倒序相乘的方法,证得不等式成立.【详解】(1)当时,(),令,则,当时,,单调递减,当时,,单调递增.所以所以在单调递增.(2)证明:,当时,所以由此得故()【点睛】本小题考查利用导数求函数的单调区间,考查利用导数证明不等式,要有一定分析问题和运算的能力,属于难题.22.[选修4-4:坐标系与参数方程]在直角坐标系中,曲线的参数方程为(为参数),直线的参数方程为(为参数).(1)求和的直角坐标方程;(2)若曲线截直线所得线段的中点坐标为,求的斜率.【答案】(1)当时,的直角坐标方程为,当时,的直角坐标方程为.(2)【解析】分析:(1)根据同角三角函数关系将曲线的参数方程化为直角坐标方程,根据代入消元法将直线的参数方程化为直角坐标方程,此时要注意分与两种情况.(2)将直线参数方程代入曲线的直角坐标方程,根据参数几何意义得之间关系,求得,即得的斜率.详解:(1)曲线的直角坐标方程为.当时,的直角坐标方程为,当时,的直角坐标方程为.(2)将的参数方程代入的直角坐标方程,整理得关于的方程.①因为曲线截直线所得线段的中点在内,所以①有两个解,设为,,则.又由①得,故,于是直线的斜率.点睛:直线的参数方程的标准形式的应用过点M0(x0,y0),倾斜角为α的直线l的参数方程是.(t是参数,t可正、可负、可为0) 若M1,M2是l上的两点,其对应参数分别为t1,t2,则(1)M1,M2两点的坐标分别是(x0+t1cos α,y0+t1sin α),(x0+t2cos α,y0+t2sin α).(2)|M1M2|=|t1-t2|.(3)若线段M1M2的中点M所对应的参数为t,则t=,中点M到定点M0的距离|MM0|=|t|=.(4)若M0为线段M1M2的中点,则t1+t2=0.23.设函数.(1)当时,求不等式的解集;(2)若,求的取值范围.【答案】(1).(2).【解析】分析:(1)先根据绝对值几何意义将不等式化为三个不等式组,分别求解,最后求并集,(2)先化简不等式为,再根据绝对值三角不等式得最小值,最后解不等式得的取值范围.详解:(1)当时,可得的解集为.(2)等价于.而,且当时等号成立.故等价于.由可得或,所以的取值范围是.点睛:含绝对值不等式的解法有两个基本方法,一是运用零点分区间讨论,二是利用绝对值的几何意义求解.法一是运用分类讨论思想,法二是运用数形结合思想,将绝对值不等式与函数以及不等式恒成立交汇、渗透,解题时强化函数、数形结合与转化化归思想方法的灵活应用,这是命题的新动向.。
南充市高2019届第一次高考适应性考试数学试题(理科)第Ⅰ卷选择题(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,,则A. B. C. D.【答案】C【解析】【分析】先求出集合B,由此能求出.【详解】则.故选C.【点睛】本题考查集合交集的求法,属基础题.2.A. B. C. 2 D. -2【答案】A【解析】【分析】利用复数的乘方运算法则运算即可.【详解】故选A.【点睛】本题考查复数的乘方运算,属基础题.3.下列命题中的假命题是A. ,B. ,C. ,D. ,【答案】C【解析】【分析】对四个选项,逐一举例子进行真假性的判断,由此得到正确选项.【详解】对于选项A,当时,故A选项为真命题.对于B选项,当时,,故选项B为真命题.当时,,故C选项为真命题.根据指数函数的性质知D选项为真命题.故选C.【点睛】本小题主要考查全称命题与特称命题真假性的判断,考查指数函数、对数函数和正切函数有关的性质.属于基础题.4.是第四象限角,,则A. B. C. D.【答案】B【解析】【分析】由的值及α为第四象限角,利用同角三角函数间的基本关系求出cosα的值,即可确定出的值.【详解】由题是第四象限角,则故选B.【点睛】此题考查了同角三角函数间的基本关系,熟练掌握基本关系是解本题的关键.5.在的展开式中含有常数项,则正整数的最小值是A. 4B. 5C. 6D. 7【答案】B【解析】【分析】当存在与时,展开式有常数项,此时.【详解】由于和的最小公倍数为,故当存在与时,展开式有常数项,即为常数项,此时,故选B.【点睛】本小题主要考查二项式的展开式,考查两个数的最小公倍数.二项式展开式的通项公式为.属于基础题.6.点,是圆上的不同两点,且点,关于直线对称,则该圆的半径等于A. B. C. 1 D. 3【答案】D【解析】【分析】圆上的点关于直线对称,则直线经过圆心,求出圆的圆心,代入直线方程,即可求出k,然后求出半径.【详解】圆x2+y2+kx+2y-4=0的圆心坐标为(,因为点M,N在圆x2+y2+kx+2y-4=0上,且点M,N关于直线l:x-y+1=0对称,所以直线l:x-y+1=0经过圆心,所以.所以圆的方程为:x2+y2+3x+2y-4=0,圆的半径为:故选:C.【点睛】本题考查直线与圆的位置关系,考查圆的一般方程的应用,考查计算能力.7.已知函数,则函数的图像大致是A. B. C. D.【答案】A【解析】【分析】求出函数的定义域,排除BCD,即可得到答案.【详解】函数,函数,则函数的定义域为,故排除B,C,D,故选:A.【点睛】本题考查函数的图象,考查同对函数基础知识的把握程度以及数形结合的思维能力.8.设离散型随机变量可能的取值为1,2,3,4,,又的数学期望为,则A. B. 0 C. D.【答案】A【解析】【分析】将代入的表达式,利用概率之和为列方程,利用期望值列出第二个方程,联立方程组,可求解得的值.【详解】依题意可的的分布列为依题意得,解得,故.所以选A.【点睛】本小题主要考查离散型随机变量分布列,考查概率之和为,考查离散型随机变量的数学期望,还考查了方程的思想.属于基础题.9.将边长为2的正沿高折成直二面角,则三棱锥的外接球的表面积是A. B. C. D.【答案】D【解析】【分析】三棱锥B-ACD的三条侧棱BD、DC、DA两两互相垂直,它的外接球就是它扩展为长方体的外接球,求出长方体的对角线的长,就是球的直径,然后求球的表面积即可.【详解】根据题意可知三棱锥B-ACD的三条侧棱BD、DC、DA两两互相垂直,所以它的外接球就是它扩展为长方体的外接球,所以求出长方体的对角线的长为:,所以球的直径是,半径为,所以球的表面积为:故选D.【点睛】本题主要考查了外接球的表面积的度量,解题关键将三棱锥B-ACD的外接球扩展为长方体的外接球,属于中档题.10.的内角,,的对边分别为,,,若,,成等差数列,,的面积为,则A. B. C. D.【答案】B【解析】成等差数列,,平方得,又的面积为,且故由,得由余弦定理解得又为边长,故答案选点睛:根据等差中项的性质可得运用平方求得边长的数量关系,再根据面积公式求出的值,代入余弦定理求得结果11.在实数的原有运算法则(“” “”仍为通常的乘法和减法)中,我们补充定义新运算“如下:当时,;当时,,则当时,函数的最大值等于A. -1B. 1C. 6D. 12【解析】【分析】新定义运算“”是选择两个数中较大的一个.将所在的区间分为两类,写出函数的解析式,再由解析式求得函数的最大值.【详解】新定义运算“”是选择两个数中较大的一个.当时,,此时函数为增函数,故.当时,,此时函数为增函数,故.故函数的最大值为.因此选C.【点睛】本小题主要考查新定义运算的理解,考查了分类讨论的数学思想方法,考查了一次函数和幂函数的单调性.对于新定义运算的题目,关键的突破口在于理解新定义的运算.理解新定义运算后,观察的表达式,有两个关键元素和,所以对给定的定义域,要分成两段来讨论,将表示为分段函数的形式,再来求最大值.12.已知双曲线与函数的图像交于点.若函数在点处的切线过双曲线左焦点,则双曲线的离心率是A. B. C. D.【答案】A【解析】试题分析:设,∴切线的斜率为,又∵在点处的切线过双曲线左焦点,∴,解得,∴,因此,,故双曲线的离心率是,故选A.考点:双曲线离心率的计算.第Ⅱ卷(共90分)二、填空题:本大题共4小题,每小题5分,共20分.13.若变量,满足约束条件则的最大值是__________.【答案】11【分析】先根据约束条件画出可行域,再利用几何意义求最值,z=2y-x表示直线在y轴上的截距,只需求出可行域直线在y轴上的截距最大值即可.【详解】变量,满足约束条件在坐标系中画出图象,三条线的交点分别是A(0,1),B(7,1),C(3,7),在△ABC中满足z=2y-x的最大值是点C,代入得最大值等于11.故填:11.【点睛】本题主要考查了简单的线性规划,以及利用几何意义求最值,属于基础题.14.若,则__________.【答案】【解析】15.已知函数,,则实数的取值范围是__________.【答案】【解析】【分析】判断出函数为奇函数,并且导数为正数,为递增函数,利用奇偶性和单调性化简题目所给的不等式,由此求得的取值范围.【详解】由于,故函数为奇函数,由于故函数为上的增函数.由得,故.故的取值范围是.【点睛】本小题考查函数的奇偶性,考查利用导数求函数的单调性,考查抽象不等式的解法.对于有关函数的题目,首先想到的是函数的性质,如单调性、奇偶性和周期性等等.对于抽象函数的不等式,往往要结合函数的单调性来求解.利用导数可以判断出函数的单调性.属于中档题.16.已知抛物线的焦点为,直线与抛物线交于不同的两点,.若,则的面积的最大值是__________.【答案】【解析】【分析】根据抛物线焦点的坐标求得的值.联立直线的方程和抛物线的方程,消去得到关于的一元二次方程,这个方程的判别式大于零,利用韦达定理求得弦长的表达式,利用点到直线距离公式求得到直线的距离,由此求得三角形面积的表达式,在利用导数求得面积的最大值.【详解】由于抛物线的焦点为,故,抛物线方程为,联立得,.由于直线和抛物线有两个交点,故判别式,解得.由弦长公式得.焦点到直线的距离为.故三角形的面积为,由于,故上式可化为.令,,故当时,函数递增,当时,函数递减,故当时取得最大值,此时=. 【点睛】本小题主要考查抛物线的标准方程,考查直线和抛物线的位置关系,考查与抛物线有关的三角形的面积公式.由于抛物线的参数只有一个,故只要一个条件就可以求得的值.直线和抛物线形成的弦长公式可以利用韦达定理计算出来.求得面积的表达式后,由于表达式是高次的,故利用导数求得它的最大值. 三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分17.在数列中,,.(1)求的通项公式;(2)数列是等差数列,为前项和,若,,求.【答案】(1);(2).【解析】【分析】(1)已知,由等比数列的定义可知数列是首项为1,公比为3的等比数列,则的通项公式易求;(2)由(1)得:,由此求得公差,代入等差数列前公式计算即可.【详解】(1)因为所以数列是首项为1,公比为3的等比数列,所以.(2)由(1)得:,则,,所以 .【点睛】本题考查等差数列,等比数列的基本量计算,属基础题.18.为了解某班学生喜好体育运动是否与性别有关,对本班50人进行了问卷调查得到了如下的列联表:已知按喜好体育运动与否,采用分层抽样法抽取容量为10的样本,则抽到喜好体育运动的人数为6. (1)请将上面的列联表补充完整;(2)能否在犯错概率不超过0.01的前提下认为喜好体育运动与性别有关?说明理由.附:【答案】(1)见解析;(2)在犯错误率不超过0.01的前提下认为喜好体育运动与性别有关.【解析】【分析】(1)根据分层抽样比计算出全班喜欢体育运动的人数和不喜欢体育运动的人数,可将列联表补充完整;(2)根据公式计算K2,对照临界值表作结论.【详解】(1)设喜好体育运动人数为,则 .所以列联表补充如下:(2)因为所以可以在犯错误率不超过0.01的前提下认为喜好体育运动与性别有关.【点睛】本题考查分层抽样的统计原理,独立性检验的运用,考查学生分析解决问题的能力,是基础题.19.如图,三棱柱中,平面,为正三角形,是边的中点,.(1)求证:平面平面;(2)求二面角的余弦值.【答案】(1)证明见解析;(2)【解析】【分析】(1)先证明平面,根据面面垂直的性质定理可以得到平面平面.(2)以为坐标原点,为轴,为轴建立空间直角坐标系,利用平面和平面的法向量,计算二面角的余弦值.【详解】(1)证明:因为三棱柱中平面,所以平面,又平面,所以平面平面因为为正三角形,为的中点,所以,又平面平面,所以平面,又平面所以平面平面.(2)解:以为坐标原点,为轴,为轴建立空间直角坐标系,则,,,,所以,设平面的法向量则即令,则得同理可求得平面的法向量设二面角的大小为,所以.【点睛】本小题主要考查面面垂直的判定定理,考查利用空间向量的方法计算二面角的余弦值,属于中档题.20.已知椭圆的焦点,,过点并垂直于轴的直线与椭圆的一个交点为,并且,椭圆上不同的两点,满足条件:,,成等差数列.(1)求椭圆的方程;(2)求弦中点的横坐标.【答案】(1);(2)4【解析】【分析】(1)利用椭圆的焦点坐标得到,利用椭圆的定义得到,利用求得,由此求得椭圆的方程.(2)利用,,成等差数列列出方程,将的坐标代入,可求得的值,由此求得中点的横坐标.【详解】(1)由题意可知.所以,又,所以,所以椭圆方程为:.(2)由点在椭圆上,得.由,,成等差数列,得①点在椭圆上,得所以②同理可得③将②③代入①式,得:所以设中点坐标为,则横坐标:.【点睛】本小题主要考查椭圆标准方程的求法,考查直线和椭圆的位置关系,还考查了等差中项的性质.属于中档题.21.已知函数.(1)若,求的单调区间;(2)设函数,求证:.【答案】(1)在单调递增;(2)证明见解析.【解析】【分析】(1)当时,利用的二阶导数,求得函数的单调区间.(2)先求得的表达式,化简得到.将要证明的不等式的左边利用倒序相乘的方法,证得不等式成立.【详解】(1)当时,(),令,则,当时,,单调递减,当时,,单调递增.所以所以在单调递增.(2)证明:,当时,所以由此得故()【点睛】本小题考查利用导数求函数的单调区间,考查利用导数证明不等式,要有一定分析问题和运算的能力,属于难题.22.[选修4-4:坐标系与参数方程]在直角坐标系中,曲线的参数方程为(为参数),直线的参数方程为(为参数).(1)求和的直角坐标方程;(2)若曲线截直线所得线段的中点坐标为,求的斜率.【答案】(1)当时,的直角坐标方程为,当时,的直角坐标方程为.(2)【解析】分析:(1)根据同角三角函数关系将曲线的参数方程化为直角坐标方程,根据代入消元法将直线的参数方程化为直角坐标方程,此时要注意分与两种情况.(2)将直线参数方程代入曲线的直角坐标方程,根据参数几何意义得之间关系,求得,即得的斜率.详解:(1)曲线的直角坐标方程为.当时,的直角坐标方程为,当时,的直角坐标方程为.(2)将的参数方程代入的直角坐标方程,整理得关于的方程.①因为曲线截直线所得线段的中点在内,所以①有两个解,设为,,则.又由①得,故,于是直线的斜率.点睛:直线的参数方程的标准形式的应用过点M0(x0,y0),倾斜角为α的直线l的参数方程是.(t是参数,t可正、可负、可为0) 若M1,M2是l上的两点,其对应参数分别为t1,t2,则(1)M1,M2两点的坐标分别是(x0+t1cos α,y0+t1sin α),(x0+t2cos α,y0+t2sin α).(2)|M1M2|=|t1-t2|.(3)若线段M1M2的中点M所对应的参数为t,则t=,中点M到定点M0的距离|MM0|=|t|=.(4)若M0为线段M1M2的中点,则t1+t2=0.23.设函数.(1)当时,求不等式的解集;(2)若,求的取值范围.【答案】(1).(2).【解析】分析:(1)先根据绝对值几何意义将不等式化为三个不等式组,分别求解,最后求并集,(2)先化简不等式为,再根据绝对值三角不等式得最小值,最后解不等式得的取值范围.详解:(1)当时,可得的解集为.(2)等价于.而,且当时等号成立.故等价于.由可得或,所以的取值范围是.点睛:含绝对值不等式的解法有两个基本方法,一是运用零点分区间讨论,二是利用绝对值的几何意义求解.法一是运用分类讨论思想,法二是运用数形结合思想,将绝对值不等式与函数以及不等式恒成立交汇、渗透,解题时强化函数、数形结合与转化化归思想方法的灵活应用,这是命题的新动向.。
第1页,总16页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………四川省南充市2018-2019学年高三理数第一次高考适应性考试试卷考试时间:**分钟 满分:**分姓名:____________班级:____________学号:___________题号 一 二 三 总分 核分人 得分注意事项:1、填写答题卡的内容用2B铅笔填写2、提前 15 分钟收取答题卡第Ⅰ卷 客观题第Ⅰ卷的注释评卷人 得分一、单选题(共12题)1. 已知集合 ,,则( )A .B .C .D .2. ( ) A . B . C . 2 D . -23. 下列命题中的假命题是( ) A . ,B .,C .,D .,4. 是第四象限角,,则( )A .B .C .D .5. 在的展开式中含有常数项,则正整数 的最小值是( )A . 4B . 5C . 6D . 76. 点, 是圆上的不同两点,且点, 关于直线 对称,答案第2页,总16页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※………○…………内…………○…………装…………○…………订…………○…………线…………○…………则该圆的半径等于( ) A . B .C . 1D . 37. 已知函数,则函数的图像大致是( )A .B .C .D .8. 设离散型随机变量 可能的取值为1,2,3,4, ,又 的数学期望为 ,则( )A .B . 0C .D .9. 将边长为2的正 沿高折成直二面角,则三棱锥的外接球的表面积是( )A .B .C .D .10.的内角 , , 的对边分别为 , , ,若 , , 成等差数列,,的面积为 ,则( )A .B .C .D .11. 在实数的原有运算法则(“ ” “”仍为通常的乘法和减法)中,我们补充定义新运算 “如下:当时, ;当时,,则当时,函数的最大值等于( )A . -1B . 1C . 6D . 1212. 已知双曲线与函数的图像交于点 .若函数在点处的切线过双曲线左焦点,则双曲线的离心率是( )A .B .C .D .。
2018届四川省南充市高三第一次高考适应性考试(一诊)数学(文)试题一、单选题1.已知集合{}0,1,2,{|12}A B x x ==-<<,则A B ⋂=( ) A. {}0 B. {}1 C. {}0,1 D. {}0,1,2 【答案】C【解析】集合{}0,1,2,{|12}A B x x ==-<<,{}0,1A B ⋂=.故选C.2.若复数212bii -+的实部和虚部互为相反数,那么实数b 等于( )A. 23-B. 23C. D. 2【答案】A 【解析】()()()()()()2122244222121212555bi i b b i b ibi b i i i ----++--===-++-, 因为该复数的实部和虚部互为相反数,因此224b b -=+,因此23b =-。
故选A.3.已知平面向量a =()1,3-,()4,2b =- ,若a b λ- 与a垂直,则λ=( )A. -1B. 1C. -2D. 2 【答案】B 【解析】试题分析:a bλ- 与a垂直()2·0?0101001a b a a a b λλλλ∴-=∴-=∴-=∴=【考点】1.向量的坐标运算;2.向量垂直的位置关系4.已知变量x 与变量y 之间具有相关关系,并测得如下一组数据则变量x 与y 之间的线性回归方程可能为( )A. 0.7.3ˆ2yx =- B. 0.710.ˆ3y x =-+ C. 10.0.7ˆ3y x =-+ D. 10.3.7ˆ0yx =- 【答案】B【解析】根据表中数据,得;()168101294x =+++=, ()1653244y =+++=,且变量y 随变量x 的增大而减小,是负相关,排除A,D.验证9x =时, 0.7910.4ˆ3y=-⨯+=,C 成立; 10.390.72ˆ9y=-⨯+=-,不满足. 即回归直线y ˆ=−0.7x +10.3过样本中心点(x ,y ).故选:B.点睛:求解回归方程问题的三个易误点:① 易混淆相关关系与函数关系,两者的区别是函数关系是一种确定的关系,而相关关系是一种非确定的关系,函数关系是一种因果关系,而相关关系不一定是因果关系,也可能是伴随关系.② 回归分析中易误认为样本数据必在回归直线上,实质上回归直线必过(),x y 点,可能所有的样本数据点都不在直线上.③ 利用回归方程分析问题时,所得的数据易误认为准确值,而实质上是预测值(期望值).5.已知数列{}n a 满足: 11,0n a a =>, ()22*11n n a a n N +-=∈,那么使5n a <成立的n 的最大值为( )A. 4B. 5C. 24D. 25 【答案】C【解析】∵2211n n a a +-=∴{2n a }是首项为21a =1,公差为1的等差数列. 则2,n a n =又n a >0,∴n a =∵5n a <即25n < ∴使5n a <成立的n 的最大值为24 故选C.6.已知函数()()2sin (0)f x x ωϕω=+>的部分图象如图所示,则函数()f x 的一个单调递增区间是( )A. 75,1212ππ⎛⎫-⎪⎝⎭ B. 7,1212ππ⎛⎫-- ⎪⎝⎭ C. ,36ππ⎛⎫- ⎪⎝⎭ D. 1117,1212ππ⎛⎫⎪⎝⎭【答案】D【解析】根据函数()()2sin (0)f x x ωϕω=+>的部分图象, 可得11225,44312T πππω⋅=⋅=-求得2ω=,∴函数()()22.f x sin x ϕ=+ 再把5,212π⎛⎫⎪⎝⎭代入函数的解析式,可得5226sin πϕ⎛⎫+= ⎪⎝⎭, ∴51,,63sin ππϕϕ⎛⎫+=∴=-⎪⎝⎭故函数()223f x sin x π⎛⎫=- ⎪⎝⎭.令222,232k x k k Z πππππ--+∈剟求得51212k x k ππππ-+剟, 当1k =时,函数()f x 的一个单调递增区间是1117,1212ππ⎛⎫⎪⎝⎭. 故选:D.7.若01m <<,则( )A. ()()11m m log m log m +>-B. ()10m log m +>C. ()211m m ->+ D. ()()113211m m ->- 【答案】D【解析】01m <<时, y m log x =为减函数,且有11m m +>-,则有()()11m m log m log m +<-,A 不正确;01m <<时, y m log x =为减函数,且有11m +>,所以()110m m log m log +<=,B 不正确;01m <<时, ()2111m m -<<+,C 不正确;01m <<时, ()y 1xm =-为减函数, 1132<,所以()()113211m m ->-,D 正确.故选D.8.已知一个棱长为2的正方体,被一个平面截后所得几何体的三视图如图所示,则该截面的面积为()A. 92B. 4C. 3D.【答案】A【解析】如图所示,正方体ABCD-A1B1C1D1中,E,F分别为AB,AD的中点,则该几何体是正方体ABCD-A1B1C1D1截取三棱台AEF-A1B1D1后剩余的部分.则截面为FEB1D1.,为等腰梯形,上底FE=,下底B1D1=,腰为1E B=.=则面积为:9222⨯=.故选A.9.若函数()324f x x x ax=+--在区间()1,1-内恰有一个极值点,则实数a的取值范围为()A. ()1,5 B. [)1,5 C. (]1,5 D. ()(),15,-∞⋃+∞【答案】B【解析】由题意,()2'32f x x x a=+-,则()()'1'10f f-<,即()()150a a --<, 解得15a <<,另外,当1a =时, ()()()2321131f x x x x x =+-=+-'在区间(−1,1)恰有一个极值点13x =, 当5a =时,函数()()()2325135f x x x x x =+-=-+'在区间(−1,1)没有一个极值点,实数a 的取值范围为[)1,5. 故选:B.10.已知,,,A B C D 是同一球面上的四个点,其中ABC ∆是正三角形, AD ⊥平面ABC , 26AD AB ==,则该球的体积为( )A. B. 48π C. 24π D. 16π 【答案】A【解析】由题意画出几何体的图形如图, 把,,,A B C D 扩展为三棱柱,上下底面中心连线的中点与A 的距离为球的半径,26AD AB ==, 3OE ABC = ,是正三角形,所以AE ==AO ==所求球的体积为:34.3π= 故选A.点睛:关于球与柱体(椎体)的组合体的问题,是近年高考的常考内容,且常与几何体的体积、表面积等结合在一起考查。
2018年四川省南充市高考数学一诊试卷(理科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={(x,y)|y=f(x)},B={(x,y)|x=1},则A∩B中元素的个数为()A.必有1个B.1个或2个C.至多1个D.可能2个以上2.(5分)已知复数z满足,则复数z的虚部是()A.B.C.D.3.(5分)已知向量是互相垂直的单位向量,且,则=()A.﹣1 B.1 C.6 D.﹣64.(5分)已知变量x与变量y之间具有相关关系,并测得如下一组数据:则变量x与y之间的线性回归直线方程可能为()A.=0.7x﹣2.3 B.=﹣0.7x+10.3 C.=﹣10.3x+0.7 D.=10.3x﹣0.7 5.(5分)设f(x)=asin(πx+α)+bcos(πx+β),其中a,b,α,β都是非零实数,若f(2017)=﹣1,那么f(2018)=()A.1 B.2 C.0 D.﹣16.(5分)若0<m<1,则()A.log m(1+m)>log m(1﹣m)B.log m(1+m)>0C.1﹣m>(1+m)2D.7.(5分)已知一个棱长为2的正方体,被一个平面截后所得几何体的三视图如图所示,则该截面的面积为()A.B.4 C.3 D.8.(5分)函数f(x)=x3+x2﹣ax﹣4在区间(﹣1,1)内恰有一个极值点,则实数a的取值范围为()A.(1,5) B.[1,5) C.(1,5]D.(﹣∞,1)∪(5,+∞)9.(5分)如图,将45°直角三角板和30°直角三角板拼在一起,其中45°直角三角板的斜边与30°直角三角板的30°角所对的直角边重合.若,则x+y=()A.B.C.D.10.(5分)已知A,B,C,D是同一球面上的四个点,其中△ABC是正三角形,AD⊥平面ABC,AD=2AB=6,则该球的体积为()A. B.48πC.24πD.16π11.(5分)已知抛物线C:x2=4y,直线l:y=﹣1,PA,PB为抛物线C的两条切线,切点分别为A,B,则“点P在l上”是“PA⊥PB”的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件12.(5分)已知函数f(x)=1﹣(x>e,e=2.71828…是自然对数的底数)若f(m)=2ln﹣f(n),则f(mn)的取值范围为()A.[,1)B.[,1)C.[,1)D.[,1]二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)的展开式中有理项系数之和为.14.(5分)函数y=的单调递增区间是.15.(5分)若圆O1:x2+y2=5与圆O2:(x+m)2+y2=20(m∈R)相交于A,B两点,且两圆在点A处的切线互相垂直,则线段AB的长度是.16.(5分)定义域为R的偶函数f(x)满足对∀x∈R,有f(x+2)=f(x)﹣f (1),且当x∈[2,3]时,f(x)=﹣2x2+12x﹣18,若函数y=f(x)﹣log a(|x|+1)在(0,+∞)上至少有三个零点,则a的取值范围是.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)已知数列{a n}的前n项和为S n,且S n=2a n﹣2.(1)求数列{a n}的通项公式;(2)若数列{}的前n项和为T n,求T n.18.(12分)一个盒子中装有大量形状大小一样但重量不尽相同的小球,从中随机抽取50个作为样本,称出它们的重量(单位:克),重量分组区间为[5,15],(15,25],(25,35],(35,45],由此得到样本的重量频率分布直方图(如图).(1)求a的值,并根据样本数据,试估计盒子中小球重量的众数与平均值;(2)从盒子中随机抽取3个小球,其中重量在[5,15]内的小球个数为X,求X 的分布列和数学期望.(以直方图中的频率作为概率)19.(12分)如图,正方形ABCD与等边三角形ABE所在的平面互相垂直,M,N分别是DE,AB的中点.(1)证明:MN∥平面BCE;(2)求锐二面角M﹣AB﹣E的余弦值.20.(12分)已知椭圆的左焦点为F,左顶点为A.(1)若P是椭圆上的任意一点,求的取值范围;(2)已知直线l:y=kx+m与椭圆相交于不同的两点M,N(均不是长轴的端点),AH⊥MN,垂足为H且,求证:直线l恒过定点.21.(12分)已知a∈R,函数f(x)=ln(x+1)﹣x2+ax+2.(1)若函数f(x)在[1,+∞)上为减函数,求实数a的取值范围;(2)令a=﹣1,b∈R,已知函数g(x)=b+2bx﹣x2.若对任意x1∈(﹣1,+∞),总存在x2∈[﹣1,+∞),使得f(x1)=g(x2)成立,求实数b的取值范围.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.(10分)在平面直角坐标系xOy中,曲线C的参数方程为(α为参数),在以原点为极点,x轴正半轴为极轴的极坐标系中,直线l的极坐标方程为.(1)求C的普通方程和l的倾斜角;(2)设点P(0,2),l和C交于A,B两点,求|PA|+|PB|.23.已知函数f(x)=|x+1|.(1)求不等式f(x)<|2x+1|﹣1的解集M;(2)设a,b∈M,证明:f(ab)>f(a)﹣f(﹣b).2018年四川省南充市高考数学一诊试卷(理科)参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={(x,y)|y=f(x)},B={(x,y)|x=1},则A∩B中元素的个数为()A.必有1个B.1个或2个C.至多1个D.可能2个以上【解答】解:集合A={(x,y)|y=f(x)},B={(x,y)|x=1},则A∩B={(x,y)|y=f(x),且x=1},当x=1时,f(1)的值存在,A∩B={(1,f(1))},有一个元素;当x=1时,f(1)的值不存在,A∩B=∅,没有元素;∴A∩B中元素的个数至多一个.故选:C.2.(5分)已知复数z满足,则复数z的虚部是()A.B.C.D.【解答】解:由,得==,∴z=,∴复数z的虚部是﹣.故选:C.3.(5分)已知向量是互相垂直的单位向量,且,则=()A.﹣1 B.1 C.6 D.﹣6【解答】解:向量是互相垂直的单位向量,且,则=0﹣+5=﹣1+5×(﹣1)=﹣6.故选:D.4.(5分)已知变量x与变量y之间具有相关关系,并测得如下一组数据:则变量x与y之间的线性回归直线方程可能为()A.=0.7x﹣2.3 B.=﹣0.7x+10.3 C.=﹣10.3x+0.7 D.=10.3x﹣0.7【解答】解:根据表中数据,得;=(6+5+10+12)=,=(6+5+3+2)=4,且变量y随变量x的增大而减小,是负相关,所以,验证=时,=﹣0.7×+10.3≈4,即回归直线=﹣0.7x+10.3过样本中心点(,).故选:B.5.(5分)设f(x)=asin(πx+α)+bcos(πx+β),其中a,b,α,β都是非零实数,若f(2017)=﹣1,那么f(2018)=()A.1 B.2 C.0 D.﹣1【解答】解:f(x)=asin(πx+α)+bcos(πx+β),其中a,b,α,β都是非零实数,若f(2017)=asin(2017π+α)+bcos(2017π+β)=﹣asinα﹣bcosβ=﹣1,则asinα+bcosβ=1,那么f(2018)=asin(2018π+α)+bcos(2018π+β)=asinα+bcosβ=1,故选:A.6.(5分)若0<m<1,则()A.log m(1+m)>log m(1﹣m)B.log m(1+m)>0C.1﹣m>(1+m)2D.【解答】解:①∵0<m<1,∴函数y=log m x是(0,+∞)上的减函数,又∵1+m>1﹣m>0,∴log m(1+m)<log m(1﹣m);∴A不正确;②∵0<m<1,∴1+m>1,∴log m(1+m)<0;∴B不正确;③∵0<m<1,∴0<1﹣m<1,1+m>1,∴1﹣m>(1+m)2;∴C不正确;④∵0<m<1,∴0<1﹣m<1,∴函数y=(1﹣m)x是定义域R上的减函数,又∵<,∴>;∴D正确;故选:D.7.(5分)已知一个棱长为2的正方体,被一个平面截后所得几何体的三视图如图所示,则该截面的面积为()A.B.4 C.3 D.【解答】解:由三视图还原原几何体如图,截面是等腰梯形FHDE,∵正方体的棱长为2,∴FH=,DE=,梯形的高为.∴该截面的面积为S=.故选:A.8.(5分)函数f(x)=x3+x2﹣ax﹣4在区间(﹣1,1)内恰有一个极值点,则实数a的取值范围为()A.(1,5) B.[1,5) C.(1,5]D.(﹣∞,1)∪(5,+∞)【解答】解:由题意,f′(x)=3x2+2x﹣a,则f′(﹣1)f′(1)<0,即(1﹣a)(5﹣a)<0,解得1<a<5,另外,当a=1时,函数f(x)=x3+x2﹣x﹣4在区间(﹣1,1)恰有一个极值点,当a=5时,函数f(x)=x3+x2﹣5x﹣4在区间(﹣1,1)没有一个极值点,故选:B.9.(5分)如图,将45°直角三角板和30°直角三角板拼在一起,其中45°直角三角板的斜边与30°直角三角板的30°角所对的直角边重合.若,则x+y=()A.B.C.D.【解答】.解:由题意得,若设AD=DC=1,则AC=,AB=2 ,BC=,由题意知,,△BCD中,由余弦定理得DB2=DC2+CB2﹣2DC•CB•cos(45°+90°)=1+6+2×1×=7+2∵∠ADC=90°,∴DB2=x2+y2,∴x2+y2=7+2①.如图,作,,则CC′=x﹣1,C′B=y,Rt△CC′B中,由勾股定理得BC2=CC'2+C′B2,即6=(x﹣1)2+y2,②由①②可得x=1+,y=.那么:x+y=1+2故选:B.10.(5分)已知A,B,C,D是同一球面上的四个点,其中△ABC是正三角形,AD⊥平面ABC,AD=2AB=6,则该球的体积为()A. B.48πC.24πD.16π【解答】解:由题意画出几何体的图形如图,把A、B、C、D扩展为三棱柱,上下底面中心连线的中点与A的距离为球的半径,AD=2AB=6,OE=3,△ABC是正三角形,所以AE=.AO=.所求球的体积为:==32.故选A.11.(5分)已知抛物线C:x2=4y,直线l:y=﹣1,PA,PB为抛物线C的两条切线,切点分别为A,B,则“点P在l上”是“PA⊥PB”的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件【解答】解:由x2=4y,对其求导得.设A,B,则直线PA,PB的斜率分别为k PA=,k PB=.由点斜式得PA,PB的方程分别为:y﹣=.=(x﹣x2),联立解得P,因为P在l上,所以=﹣1,所以k PA•k PB==﹣1,所以PA⊥PB.反之也成立.所以“点P在l上”是“PA⊥PB”的充要条件.故选:C.12.(5分)已知函数f(x)=1﹣(x>e,e=2.71828…是自然对数的底数)若f(m)=2ln﹣f(n),则f(mn)的取值范围为()A.[,1)B.[,1)C.[,1)D.[,1]【解答】解:由f(m)=2ln﹣f(n)得f(m)+f(n)=1⇒,f(mn)=1﹣=1﹣,又∵lnn+lnm+2=[(lnn+1)+(lnm+1)]()=4+≥4+4=8,∴lnn+lnm≥6,f(mn)=1﹣≥,且m、n>e,∴lnn+lnm>0,f(mn)=1﹣<1,∴≤f(mn)<1,故选:B.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)的展开式中有理项系数之和为32.【解答】解:由,得通项,∴当r=0、2、4、6时,T r为有理项,+1此时有理项系数之和为=.故答案为:32.14.(5分)函数y=的单调递增区间是[0,] .【解答】解:化简可得y=sinxcos+cosxsin=sin(x+),由2kπ﹣≤x+≤2kπ+可得2kπ﹣≤x≤2kπ+,k∈Z,当k=0时,可得函数的一个单调递增区间为[﹣,],由x∈[0,]可得x∈[0,],故答案为:[0,].15.(5分)若圆O1:x2+y2=5与圆O2:(x+m)2+y2=20(m∈R)相交于A,B两点,且两圆在点A处的切线互相垂直,则线段AB的长度是4.【解答】解:由题O1(0,0)与O2:(﹣m,0),根据圆心距大于半径之差而小于半径之和,可得<|m|<.再根据题意可得O1A⊥AO2,∴m2=5+20=25,∴m=±5,∴利用,解得:AB=4.故答案为:4.16.(5分)定义域为R的偶函数f(x)满足对∀x∈R,有f(x+2)=f(x)﹣f (1),且当x∈[2,3]时,f(x)=﹣2x2+12x﹣18,若函数y=f(x)﹣log a(|x|+1)在(0,+∞)上至少有三个零点,则a的取值范围是(0,).【解答】解:∵f(x+2)=f(x)﹣f(1),且f(x)是定义域为R的偶函数,令x=﹣1可得f(﹣1+2)=f(﹣1)﹣f(1),又f(﹣1)=f(1),∴f(1)=0 则有f(x+2)=f(x),∴f(x)是最小正周期为2的偶函数.当x∈[2,3]时,f(x)=﹣2x2+12x﹣18=﹣2(x﹣3)2,函数的图象为开口向下、顶点为(3,0)的抛物线.∵函数y=f(x)﹣log a(|x|+1)在(0,+∞)上至少有三个零点,令g(x)=log a(|x|+1),则f(x)的图象和g(x)的图象至少有3个交点.∵f(x)≤0,∴g(x)≤0,可得0<a<1,要使函数y=f(x)﹣log a(|x|+1)在(0,+∞)上至少有三个零点,则有g(2)>f(2),可得log a(2+1)>f(2)=﹣2,即log a3>﹣2,∴3<,解得<a<,又0<a<1,∴0<a<,故答案为:(0,).三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)已知数列{a n}的前n项和为S n,且S n=2a n﹣2.(1)求数列{a n}的通项公式;(2)若数列{}的前n项和为T n,求T n.【解答】解:(1)当n=1时,a1=S1=2a1﹣2,解得a1=2.当n≥2时,S n=2a n﹣1﹣2,﹣1所以a n=S n﹣S n﹣1=2a n﹣2﹣(2a n﹣1﹣2),即=2,所以数列{a n}是以首项为2,公比为2的等比数列,故a n=2n(n∈N*).(2)=(n+1)•()n,则T n=2•()+3•()2+4•()3+…+(n+1)•()n,T n=2•()2+3•()3+4•()4+…+(n+1)•()n+1,上面两式相减,可得T n=1+()2+()3+()4+…+()n﹣(n+1)•()n+1,=1+﹣(n+1)•()n+1,化简可得T n=3﹣(n+3)•()n.18.(12分)一个盒子中装有大量形状大小一样但重量不尽相同的小球,从中随机抽取50个作为样本,称出它们的重量(单位:克),重量分组区间为[5,15],(15,25],(25,35],(35,45],由此得到样本的重量频率分布直方图(如图).(1)求a的值,并根据样本数据,试估计盒子中小球重量的众数与平均值;(2)从盒子中随机抽取3个小球,其中重量在[5,15]内的小球个数为X,求X 的分布列和数学期望.(以直方图中的频率作为概率)【解答】解:(1)由题意得,(0.02+0.032+a+0.018)×10=1解得a=0.03;又由最高矩形中点的横坐标为20,可估计盒子中小球重量的众数约为20,而50个样本小球重量的平均值为:=0.2×10+0.32×20+0.3×30+0.18×40=24.6(克)故估计盒子中小球重量的平均值约为24.6克.(2)利用样本估计总体,该盒子中小球的重量在[5,15]内的0.2;则X~B(3,),X=0,1,2,3;P(X=0)=×()3=;P(X=1)=×()2×=;P(X=2)=×()×()2=;P(X=3)=×()3=,∴X的分布列为:即E(X)=0×=.19.(12分)如图,正方形ABCD与等边三角形ABE所在的平面互相垂直,M,N分别是DE,AB的中点.(1)证明:MN∥平面BCE;(2)求锐二面角M﹣AB﹣E的余弦值.【解答】(1)证明:取AE中点P,连结MP,NP.由题意可得MP∥AD∥BC,因为MP⊄平面BCE,BC⊂平面BCE,所以MP∥平面BCE,同理可证NP∥平面BCE.因为MP∩NP=P,所以平面MNP∥平面BCE,又MN⊂平面MNP,所以MN∥平面BCE.(2)解:取CD的中点F,连接NF,NE.由题意可得NE,NB,NF两两垂直,以N为坐标原点,NE,NB,NF所在直线为x轴,y轴,z轴,建立空间直角坐标系.令AB=2,则.所以.设平面MAB的法向量则令x=2,则因为是平面ABE的一个法向量所以所以锐二面角M﹣AB﹣E的余弦值为.20.(12分)已知椭圆的左焦点为F,左顶点为A.(1)若P是椭圆上的任意一点,求的取值范围;(2)已知直线l:y=kx+m与椭圆相交于不同的两点M,N(均不是长轴的端点),AH⊥MN,垂足为H且,求证:直线l恒过定点.【解答】解:(1)设P(x0,y0),又A(﹣2,0),F(﹣1,0)所以=,因为P点在椭圆上,所以,即,且﹣2≤x0≤2,所以=,函数在[﹣2,2]单调递增,当x0=﹣2时,f(x0)取最小值为0;当x0=2时,f(x0)取最大值为12.所以的取值范围是[0,12].(2)由题意:联立得,(3+4k2)x2+8kmx+4m2﹣12=0由△=(8km)2﹣4×(3+4k2)(4m2﹣12)>0得4k2+3>m2①设M(x1,y1),N(x2,y2),则.==0,所以(x1+2)(x2+2)+y1y2=0即,4k2﹣16km+7m2=0,所以或均适合①.当时,直线l过点A,舍去,当时,直线过定点.21.(12分)已知a∈R,函数f(x)=ln(x+1)﹣x2+ax+2.(1)若函数f(x)在[1,+∞)上为减函数,求实数a的取值范围;(2)令a=﹣1,b∈R,已知函数g(x)=b+2bx﹣x2.若对任意x1∈(﹣1,+∞),总存在x2∈[﹣1,+∞),使得f(x1)=g(x2)成立,求实数b的取值范围.【解答】解:(1)函数f(x)在[1,+∞)上为减函数⇒f′(x)=﹣2x+a≤0在[1,+∞)上恒成立⇒a≤2x﹣在[1,+∞)上恒成立,令h(x)=2x﹣,由h′(x)>0(或利用增函数减减函数)⇒h(x)在[1,+∞)上为增函数⇒h(x)min=h(1)=,所以a≤;(2)若对任意x1∈[﹣1,+∞),总存在x2∈[﹣1,+∞),使得f(x1)=g(x2)成立,则函数f(x)在(﹣1,+∞)上的值域是函数g(x)在[﹣1,+∞)上的值域的子集.对于函数f(x),因为a=﹣1,所以f(x)=ln(x+1)﹣x2﹣x+2,定义域(﹣1,+∞)f′(x)=﹣2x﹣1=令f′(x)=0得x1=0x2=(舍去).当x变化时,f(x)与f′(x)的变化情况如下表:所以f(x)max=f(0)=2⇒所以f(x)的值域为(﹣∞,2)对于函数g(x)=﹣x2+2bx+b=﹣(x﹣b)2+b+b2①当b≤﹣1时,g(x)的最大值为g(﹣1)=﹣1﹣b⇒g(x)值域为(﹣∞,﹣1﹣b]由﹣1﹣b≥2⇒b≤3;②当b>﹣1时,g(x)的最大值为g(b)=b2+b⇒g(x)值域为(﹣∞,b2+b]由b2+b≥2⇒b≥1或b≤﹣2(舍去),综上所述,b的取值范围是(﹣∞,﹣3]∪[1.+∞).请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.(10分)在平面直角坐标系xOy中,曲线C的参数方程为(α为参数),在以原点为极点,x轴正半轴为极轴的极坐标系中,直线l的极坐标方程为.(1)求C的普通方程和l的倾斜角;(2)设点P(0,2),l和C交于A,B两点,求|PA|+|PB|.【解答】解:(1)由消去参数α,得即C的普通方程为由,得ρsinθ﹣ρcosθ①将代入①得y=x+2所以直线l的斜率角为.(2)由(1)知,点P(0,2)在直线l上,可设直线l的参数方程为(t为参数)即(t为参数),代入并化简得设A,B两点对应的参数分别为t1,t2.则,所以t1<0,t2<0所以.23.已知函数f(x)=|x+1|.(1)求不等式f(x)<|2x+1|﹣1的解集M;(2)设a,b∈M,证明:f(ab)>f(a)﹣f(﹣b).【解答】(1)解:①当x≤﹣1时,原不等式化为﹣x﹣1<﹣2x﹣2解得:x<﹣1;②当时,原不等式化为x+1<﹣2x﹣2解得:x<﹣1,此时不等式无解;③当时,原不等式化为x+1<2x,解得:x>1.综上,M={x|x<﹣1或x>1};(2)证明:设a,b∈M,∴|a+1|>0,|b|﹣1>0,则f(ab)=|ab+1|,f(a)﹣f(﹣b)=|a+1|﹣|﹣b+1|.∴f(ab)﹣[f(a)﹣f(﹣b)]=f(ab)+f(﹣b)﹣f(a)=|ab+1|+|1﹣b|﹣|a+1| =|ab+1|+|b﹣1|﹣|a+1|≥|ab+1+b﹣1|﹣|a+1|=|b(a+1)|﹣|a+1|=|b|•|a+1|﹣|a+1|=|a+1|•(|b|﹣1|)>0,故f(ab)>f(a)﹣f(﹣b)成立.赠送初中数学几何模型【模型五】垂直弦模型:图形特征:运用举例:1.已知A、B、C、D是⊙O上的四个点.(1)如图1,若∠ADC=∠BCD=90°,AD=CD,求证AC⊥BD;(2)如图2,若AC⊥BD,垂足为E,AB=2,DC=4,求⊙O的半径.O DAB CEAOD CB2.如图,已知四边形ABCD 内接于⊙O ,对角线AC ⊥BD 于P ,设⊙O 的半径是2。
四川省南充市2018届高三第一次高考适应性考试(一诊)
数学理试题
第Ⅰ卷(共60分)
一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1. 已知集合,则中元素的个数为()
A. 必有1个
B. 1个或2个
C. 至多1个
D. 可能2个以上
【答案】C
【解析】集合A={(x,y)|y=f(x),x∈D},B={(x,y)|x=1},
当1∈D时,直线x=1与函数y=f(x),有一个交点,
当1∉D时,直线x=1与函数y=f(x),没有交点,
所以A∩B中元素的个数为1或0.
故答案为:C.
2. 已知复数满足,则复数的虚部是()
A. B. C. D.
【答案】C
【解析】由条件知道
,由虚部的概念得到。
故答案为C。
3. 已知向量是互相垂直的单位向量,且,则()
A. B. 1 C. 6 D.
【答案】D
【解析】向量是互相垂直的单位向量,故,
故答案为:D。
4. 已知变量与变量之间具有相关关系,并测得如下一组数据
则变量与之间的线性回归方程可能为()
A. B. C. D.
【答案】B
【解析】根据表中数据,得;
,
,
且变量y随变量x的增大而减小,是负相关,排除A,D.
验证时,,C成立;
,不满足.
即回归直线yˆ=−0.7x+10.3过样本中心点(,).
故选:B.
点睛:求解回归方程问题的三个易误点:
①易混淆相关关系与函数关系,两者的区别是函数关系是一种确定的关系,而相关关系是一种非确定的关系,函数关系是一种因果关系,而相关关系不一定是因果关系,也可能是伴随关系.
②回归分析中易误认为样本数据必在回归直线上,实质上回归直线必过点,可能所有的样本数据点都不在直线上.
③利用回归方程分析问题时,所得的数据易误认为准确值,而实质上是预测值(期望值).
5. 设,其中都是非零实数,若,那么()
A. 1
B. 2
C. 0
D.
【答案】A
【解析】∵函数f(x)=asin(πx+α)+bcos(πx+β),其中a,b,α,β都是非零实数,
f(2017)=﹣1,∴f(2017)=asin(2017π+α)+bcos(2017π+β)=-asinα-bcosβ=-1,
∴f(2018)=asin(2018π+α)+bcos(2018π+β)=asinα+bcosβ=1.
故答案为:A。
6. 若,则()
A. B.
C. D.
【答案】D
【解析】时,为减函数,且有,则有,A不正确;
时,为减函数,且有,所以,B不正确;
时,,C不正确;
时,为减函数,,所以,D正确.
故选D.
7. 已知一个棱长为2的正方体,被一个平面截后所得几何体的三视图如图所示,则该截面的面积为()
A. B. 4 C. 3 D.
【答案】A
【解析】如图所示,正方体ABCD-A1B1C1D1中,E,F分别为AB,AD的中点,
则该几何体是正方体ABCD-A1B1C1D1截取三棱台AEF-A1B1D1后剩余的部分.
则截面为FEB1D1.,为等腰梯形,上底FE=,下底B1D1=,腰为.
得梯形的高为.
则面积为:.
故选A.
8. 若函数在区间内恰有一个极值点,则实数的取值范围为()
A. B. C. D.
【答案】B
【解析】由题意,,
则,
即,
解得,
另外,当时,在区间(−1,1)恰有一个极值点,
当时,函数在区间(−1,1)没有一个极值点,
实数的取值范围为.
故选:B.
9. 如图,将直角三角板和直角三角板拼在一起,其中直角三角板的斜边与直角三角板的角所对的直角边重合.若,则()
A. B. C. D.
【答案】B
【解析】
由题意得,若设AD=DC=1,则AC=,AB=2,BC=,由题意知,
△BCD中,由余弦定理得DB2=DC2+CB2﹣2DC•CB•cos(45°+90°)=1+6+2×1××=7+2,
∵,∠ADC=90°,∴DB2=x2+y2,∴x2+y2=7+2①.
如图,作=x ,=y,则=+,CC′=x﹣1,C′B=y,
Rt△CC′B中,由勾股定理得BC2=CC'2+C′B2,即6=(x﹣1)2+y2,②
由①②可得x=1+,y=,
故答案选B
10. 已知是同一球面上的四个点,其中是正三角形,平面,,则该球的体积为()
A. B. C. D.
【答案】A
【解析】
由题意画出几何体的图形如图,
把扩展为三棱柱,
上下底面中心连线的中点与A的距离为球的半径,
,是正三角形,
所以.
.
所求球的体积为:
故选A.
点睛:关于球与柱体(椎体)的组合体的问题,是近年高考的常考内容,且常与几何体的体积、表面积等结合在一起考查。
解决关于外接球的问题的关键是抓住外接的特点,即球心到多面体的顶点的距离都等于球的半径,同时要作一圆面起衬托作用.
11. 已知抛物线,直线,为抛物线的两条切线,切点分别为,则“点在上”是“”的()
A. 充分不必要条件
B. 必要不充分条件
C. 充要条件
D. 既不充分也不必要条件
【答案】C
【解析】设,由导数不难知道直线P A,PB的斜率分别为.进一步得
.①
PB:.②,由联立①②可得点,
(1)因为P在l上,所以=−1,所以,
所以P A⊥PB;∴甲是乙的充分条件
(2)若P A⊥PB,,
即,从而点P在l上.∴甲是乙的必要条件,
故选C.
点睛:定点、定值问题通常是通过设参数或取特殊值来确定“定点”是什么、“定值”是多少,或者将该问题涉及的几何式转化为代数式或三角问题,证明该式是恒定的. 定点、定值问题同证明问题类似,在求定点、定值之前已知该值的结果,因此求解时应设参数,运用推理,到最后必定参数统消,定点、定值显现.
12. 已知函数(是自然对数的底数).若,则的取值范围为()
A. B. C. D.
【答案】C
【解析】由f(m)=2ln﹣f(n)得f(m)+f(n)=1⇒f(mn)=1﹣=1﹣,又∵lnn+lnm+2=[(lnn+1)+(lnm+1)]()=4+≥4+4=8,
∴lnn+lnm≥6,f(mn)=1﹣≥,且m、n>e,∴lnn+lnm>0,f(mn)=1﹣<1,∴≤f (mn)<1,
故选:C.
点睛:这个题目考查了对数的运算法则和不等式在求范围和最值中的应用;一般解决二元问题,方法有:不等式的应用;二元化一元的应用;变量集中的应用;都是解决而原问题的常见方法。
其中不等式只能求出一边的范围,求具体范围还是要转化为函数。
第Ⅱ卷(共90分)
二、填空题(每题5分,满分20分,将答案填在答题纸上)
13. 的展开式中有理项系数之和为__________.
【答案】32
【解析】(1+)6的展开式的通项公式为T r+1=,令为整数,可得r=0,2,4,6,
故展开式中有理项系数之和为,
故答案为:32.。