随机事件与概率单元检测带答案解析
- 格式:docx
- 大小:183.63 KB
- 文档页数:13
一、选择题1.下列事件中,是随机事件的是()A.从一只装有红球的袋子里摸出黄球B.抛出的蓝球会下落C.抛掷一枚质地均匀的骰子,向上一面点数是2D.抛掷一枚质地均匀的骰子,向上一面点数是102.下列事件属于不可能事件的是()A.从装满白球的袋子里随机摸出一个球是白球B.随时打开电视机,正在播新闻C.通常情况下,自来水在10℃结冰D.掷一枚质地均匀的骰子,朝上的一面点数是23.下列说法正确的是()A.一颗质地硬币已连续抛掷了5次,其中抛掷出正面的次数为1次,则第6次一定抛掷出为正面B.某种彩票中奖的概率是2%,因此买100张该种彩票一定会中奖C.天气预报说2020年元旦节紫云下雨的概率是50%,所以紫云2020年元旦节这天将有一半时间在下雨D.某口袋中有红球3个,每次摸出一个球是红球的概率为100%4.一个不透明的袋子中装有20个红球,2个黑球,1个白球,它们除颜色外都相同,若从中任意摸出1个球,则()A.摸出黑球的可能性最小B.不可能摸出白球C.一定能摸出红球D.摸出红球的可能性最大5.下列事件中,能用列举法求得事件发生的概率的是()A.投一枚图钉,“钉尖朝上”B.一名篮球运动员在罚球线上投篮,“投中”C.把一粒种子种在花盆中,“发芽”D.同时抛掷两枚质地均匀的骰子,“两个骰子的点数相同”6.下列说法正确的是()A.一枚质地均匀的硬币已连续抛掷了50次,正面朝上的次数较多,那么抛掷第51次时正面朝上的可能性更大;B.天气预报说明天下雨的概率是50%,意思是说明天将有一半时间在下雨;C.相等的圆心角所对的弧相等是必然事件;D.过平面内任意三点可以画一个圆是随机事件.7.下列事件中必然事件有()①当x是非负实数时,≥0;②打开数学课本时刚好翻到第12页;③13个人中至少有2人的生日是同一个月;④在一个只装有白球和绿球的袋中摸球,摸出黑球.A.1个B.2个C.3个D.4个8.在一个不透明的口袋中装有红、黄、蓝三种颜色的球,如果口袋中有 5 个红球,且摸出红球的概率为13,那么袋中总共球的个数为()A.15 个B.12 个C.8 个D.6 个9.“长度分别为6cm、8cm、10cm的三根木条首尾顺次相接,组成一个直角三角形.”这个事件是()A.必然事件 B.不可能事件 C.随机事件 D.无法确定10.下列说法中,正确的是( )A.不可能事件发生的概率为0B.随机事件发生的概率为1 2C.“明天要降雨的概率为12”,表示明天有半天时间都在降雨D.投掷一枚质地均匀的硬币100次,正面朝上的次数一定为50次11.下列说法错误..的是()A.任意抛掷一个啤酒瓶盖,落地后印有商标一面向上的可能性大小是1 2B.一个转盘被分成8块全等的扇形区域,其中2块是红色,6块是蓝色. 用力转动转盘,当转盘停止后,指针对准红色区域的可能性大小是1 4C.一个不透明的盒子中装有2个白球,3个红球,这些球除颜色外都相同. 从这个盒子中随意摸出一个球,摸到白球的可能性大小是2 5D.100件同种产品中,有3件次品. 质检员从中随机取出一件进行检测,他取出次品的可能性大小是3 10012.下列说法中错误的是()A.掷一枚普通的正六面体骰子,出现向上一面点数是2的概率是1 6B.从装有10个红球的袋子中,摸出1个白球是不可能事件C.为了解一批日光灯的使用寿命,可采用抽样调查的方式D.某种彩票的中奖率为1%,买100张彩票一定有1张中奖二、填空题13.在一个有10万人的小镇随机调查了1000人,其中有100人看中央电视台的早间新闻.在该镇随便问一个人,他看早间新闻的概率大约是_______.14.任意掷一枚骰子,面朝上的点数大于2的可能性是_____.15.同时抛掷两个质地均匀的正方形骰子,骰子的六个面上分别刻有1到6的点数,则两个骰子向上的一面的点数和为6的概率为______.16.如图,在4×4正方形网格中,有4个涂成黑色的小方格,现在任意选取一个白色的小方格涂成黑色,则使得黑色部分的图形构成轴对称图形的概率为_____.17.在甲,乙两个不透明口袋中各装有10个和3个形状大小完全相同的红色小球,则从中摸到红色小球的概率是P甲_____P乙(填“>”,“<”或“=”);18.有四张质地、大小、反面完全相同的不透明卡片,正面分别写着数字1,2,3,4,现把它们的正面向下,随机摆放在桌面上,从中任意抽出一张,则抽出的数字是奇数的概率是_______.19.从一副扑克牌中级抽取一张,①抽到王牌;②抽到Q;③抽到梅花.上述事件,概率最大的是_____.20.把一副普通扑克牌中的数字2,3,4,5,6,7,8,9,10的9张牌洗均匀后正面向下放在桌面上,从中随机抽取一张,抽出的牌上的数恰为3的倍数的概率是_____.三、解答题21.在一个不透明的盒子里装有除颜色外完全相同的红、白、黑三种颜色的球,其中红球3个,白球5个,黑球若干个.若从中任意摸出一个白球的概率是1 3 .(1)求盒子中黑球的个数;(2)求任意摸出一个球是黑球的概率;(3)能否通过改变盒子中球的数量,使得任意摸出一个球是红球的概率为14,若能,请写出你的修改方案.22.(1)如图,在△ABC中,AB=AC,AB的垂直平分线交BC的延长线于E,交AC于F,∠A=50°,AB+BC=16cm,则△BCF的周长和∠EFC分别为多少?(2)(生活应用题)某公司对一批某一品牌的衬衣的质量抽检结果如下表:①从这批衬衣中任抽1件是次品的概率约为多少?②如果销售这批衬衣600件,那么至少需要准备多少件正品衬衣供买到次品的顾客调换? 23.如图,有一枚质地均匀的正二十面体形状的骰子,其中的1个面标有“1”,2个面标有“2”, 3个面标有“3”,4个面标有“4”,5个面标有“5”,其余的面标有“6”.将这枚骰子掷出后:(1)数字几朝上的概率最小?(2)奇数面朝上的概率是多少?24.将表示下列事件发生的概率的字母标在下图中:P;(1)投掷一枚骰子,掷出7点的概率1(2)在数学测验中做一道四个选项的选择题(单选题),由于不知道那个是正确选项,现P;任选一个,做对的概率2P;(3)袋子中有两个红球,一个黄球,从袋子中任取一球是红球的概率3P;(4)太阳每天东升西落4P.(5)在1---100之间,随机抽出一个整数是偶数的概率525.“初中生骑电动车上学”的现象越来越受到社会的关注,某校利用“五一”假期,随机抽查了本校若干名学生和部分家长对“初中生骑电动车上学”现象的看法,统计整理制作了的统计图,请回答下列问题:(1)这次抽查的家长总人数是多少?(2)请补全条形统计图和扇形统计图;(3)从这次接受调查的学生中,随机抽查一个学生,则抽到持哪一类态度学生的可能性大?26.甲、乙两个不透明的口袋,甲口袋中装有3个分别标有数字1,2,3的小球,乙口袋中装有2个分别标有数字4,5的小球,它们的形状、大小完全相同,现随机从甲口袋中摸出一个小球记下数字,再从乙口袋中摸出一个小球记下数字.(1)请用列表或树状图的方法(只选其中一种),表示出两次所得数字可能出现的所有结果;(2)求出两个数字之和能被3整除的概率.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据随机事件,必然事件,不可能事件的概念对各项判断即可.【详解】A.从一只装有红球的袋子里摸出黄球,是不可能事件,故选项错误;B.抛出的篮球会下落,是必然事件,故选项错误;C.抛一枚质地均匀的骰子,向上一面点数是2,是随机事件,故选项正确;D.抛一枚质地均匀的骰子,向上一面点数是10,是不可能事件,故选项错误;故选:C.【点睛】本题考查了随机事件,解题关键是正确理解随机事件,必然事件,不可能事件的概念.2.C解析:C【分析】把一个在一定的条件下,不可能发生的事,称为不可能事件,根据定义判断.【详解】A、从装满白球的袋子里随机摸出一个球是白球是必然事件;B、随时打开电视机,正在播新闻是随机事件;C、通常情况下,自来水在10℃结冰是不可能事件;D、掷一枚质地均匀的骰子,朝上的一面点数是2是随机事件;故选:C.【点睛】此题考查不可能事件的定义,熟记定义,掌握必然事件,随机事件,不可能事件的发生可能性大小是解题的关键.3.D解析:D【分析】概率是反映事件发生机会的大小的概念,只是表示发生的机会的大小,机会大也不一定发生.【详解】解:A、一颗质地硬币已连续抛掷了5次,其中抛掷出正面的次数为1次,则第6次一定抛掷出为正面,是随机事件,错误;B、某种彩票中奖的概率是2%,因此买100张该种彩票不一定会中奖,错误;C、下雨的概率是50%,是说明天下雨的可能性是50%,而不是明天将有一半时间在下雨,错误;D、正确.故选:D.【点睛】正确理解概率的含义是解决本题的关键.注意随机事件的条件不同,发生的可能性也不等.4.D解析:D【分析】根据概率公式先分别求出摸出黑球、白球和红球的概率,再进行比较,即可得出答案.【详解】解:∵不透明的袋子中装有20个红球,2个黑球,1个白球,共有23个球,∴摸出黑球的概率是223,摸出白球的概率是1 23,摸出红球的概率是20 23,∵123<223<2023,∴从中任意摸出1个球,摸出红球的可能性最大;故选:D.【点睛】本题考查了可能性大小的比较:只要总情况数目相同,谁包含的情况数目多,谁的可能性就大;反之也成立;若包含的情况相当,那么它们的可能性就相等.5.D解析:D【分析】利用列举法求概率的意义分析得出答案.【详解】解:A、投一枚图钉,“针尖朝上”,无法利用列举法求概率,故此选项错误;B、一名篮球运动员在罚球线上投篮,“投中”,无法利用列举法求概率,故此选项错误;C、把一粒种子种在花盆中,“发芽”,无法利用列举法求概率,故此选项错误;D、同时掷两枚质地均匀的骰子,“两个骰子的点数相同“,可以利用列举法求概率,故此选项正确.故选:D.【点睛】此题主要考查了概率的意义,正确理解列举法求概率的意义是解题关键.6.D解析:D【分析】利用概率的意义和必然事件的概念的概念进行分析.【详解】A. 一枚质地均匀的硬币已连续抛掷了50次,正面朝上的次数较多,那么抛掷第51次时正面朝上和反面朝上的可能性相同,故选项A错误;B. 概率是针对数据非常多时,趋近的一个数,所以降水概率为50%,那么明天也不一定会降水,故此选项错误;C. 在同圆或等圆中,相等的圆心角所对的弧相等是必然事件,故选项C错误;D. 过平面内任意三点可以画一个圆是随机事件,此选项正确.故选D.【点睛】本题考查了概率的意义,概率是反映事件发生机会的大小的概念,只是表示发生的机会的大小,机会大也不一定发生.7.B解析:B【解析】【分析】根据必然事件、不可能事件、随机事件的概念判断即可.【详解】①当x是非负实数时,0,是必然事件;②打开数学课本时刚好翻到第12页,是随机事件;③13个人中至少有2人的生日是同一个月,是必然事件;④在一个只装有白球和绿球的袋中摸球,摸出黑球,是不可能事件.必然事件有①③共2个.故选B.【点睛】本题考查了必然事件、不可能事件、随机事件的概念,理解概念是解决基础题的主要方法.用到的知识点为:必然事件指在一定条件下一定发生的事件;不可能事件指在一定条件下一定不发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.8.A解析:A【解析】【分析】根据红球的概率公式列出方程求解即可.【详解】解:根据题意设袋中共有球m个,则513 m所以m=15.故袋中有15个球.故选:A.【点睛】本题考查了随机事件概率的求法,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.9.A解析:A【解析】【分析】根据勾股定理逆定理和必然事件的概念即可求解.【详解】“长度分别为6cm、8cm、10cm的三根木条首尾顺次相接,组成一个直角三角形.”这个事件是必然事件,故选A.【点睛】本题考查了勾股定理的逆定理及随机事件,解题的关键是掌握勾股定理逆定理和随机事件与必然事件的概念.10.A解析:A【解析】【分析】直接利用概率的意义分别分析得出答案.【详解】A、不可能事件发生的概率为0,正确;B、随机事件发生的概率为:0<P<1,故此选项错误;C、“明天要降雨的概率为12”,表示明天有50%的可能降雨,故此选项错误;D、掷一枚质地均匀的硬币100次,正面朝上的次数一定为50次,错误.故选A.此题主要考查了概率的意义,正确掌握概率的意义是解题关键.11.A解析:A【解析】【分析】根据多次重复试验中事件发生的频率估计事件发生的概率即可.【详解】A.啤酒盖的正反两面不均匀,任意抛掷一个啤酒瓶盖,落地后印有商标一面向上的可能性大小不是12,故本选项错误;B.一个转盘被分成8块全等的扇形区域,其中2块是红色,6块是蓝色.用力转动转盘,当转盘停止后,指针对准红色区域的可能性大小是14,故本选项正确;C.一个不透明的盒子中装有2个白球,3个红球,这些球除颜色外都相同.从这个盒子中随意摸出一个球,摸到白球的可能性大小是25,故本选项正确;D.100件同种产品中,有3件次品.质检员从中随机取出一件进行检测,他取出次品的可能性大小是3100,故本选项正确;故选A.【点睛】此题考查了概率公式,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.12.D解析:D【分析】根据概率的意义、随机事件、调查方法的选择和概率公式对各选项作出判断即可.【详解】A、掷一枚普通的正六面体骰子,共有6种等可能的结果,则出现向上一面点数是2的概率是16,所以A选项的说法正确;B、从装有10个红球的袋子中,摸出的应该都是红球,则摸出1个白球是不可能事件,所以B选项的说法正确;C、为了解一批日光灯的使用寿命,可采用抽样调查的方式,而不应采用普查的方式,所以C选项的说法正确;D、某种彩票的中奖率为1%,是中奖的频率接近1%,所以买100张彩票可能中奖,也可能没中奖,所以D选项的说法错误;【点睛】本题考查概率的意义、随机事件、调查方法的选择和概率的公式,掌握概率的意义是解题的关键.二、填空题13.10【分析】由随机调查了1000人其中100人看中央电视台的早间新闻直接利用概率公式求解即可求得答案【详解】解:∵随机调查了1000人其中100人看中央电视台的早间新闻∴在该镇随便问一个人他看中央电解析:10%【分析】由随机调查了1000人,其中100人看中央电视台的早间新闻,直接利用概率公式求解即可求得答案.【详解】解:∵随机调查了1000人,其中100人看中央电视台的早间新闻,∴在该镇随便问一个人,他看中央电视台早间新闻的概率大约是:10=10%100,故答案为:10%.【点睛】本题考查了概率的知识.用到的知识点为:概率=所求情况数与总情况数之比.14.【分析】根据掷得面朝上的点数大于2情况有4种进而求出概率即可【详解】解:掷一枚均匀的骰子时有6种情况出现点数大于2的情况有4种掷得面朝上的点数大于2的概率是=;故填:【点睛】此题考查了概率的求法:如解析:2 3【分析】根据掷得面朝上的点数大于2情况有4种,进而求出概率即可.【详解】解:掷一枚均匀的骰子时,有6种情况,出现点数大于2的情况有4种,掷得面朝上的点数大于2的概率是46=23;故填:23.【点睛】此题考查了概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.15.【解析】【分析】列举出所有情况看两个骰子向上的一面的点数和为6的情况利用概率公式即可得答案【详解】列表得:∴两个骰子向上的一面的点数和为6的概率为故答案为:【点睛】此题考查了列表法或树状图法求概率列解析:5 36【解析】【分析】列举出所有情况,看两个骰子向上的一面的点数和为6的情况,利用概率公式即可得答案.【详解】列表得:∴两个骰子向上的一面的点数和为6的概率为536,故答案为:5 36.【点睛】此题考查了列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.树状图法适用于两步或两步以上完成的事件.解题时还要注意是放回实验还是不放回实验.用到的知识点为:概率 所求情况数与总情况数之比.熟记概率公式是解题关键.16.【解析】【分析】由在4×4正方形网格中任选取一个白色的小正方形并涂黑共有12种等可能的结果使图中黑色部分的图形构成轴对称图形的有3种情况直接利用概率公式求解即可求得答案【详解】解:如图若要使得黑色部解析:1 4【解析】【分析】由在4×4正方形网格中,任选取一个白色的小正方形并涂黑,共有12种等可能的结果,使图中黑色部分的图形构成轴对称图形的有3种情况,直接利用概率公式求解即可求得答案.【详解】解:如图,若要使得黑色部分的图形构成轴对称图形有如图所示的三种可能,∴使得黑色部分的图形构成轴对称图形的概率为31=124,故答案为:14.【点睛】本题考查的是概率公式,熟记随机事件A的概率P(A)=事件A可能出现的结果数所有可能出现的结果数的商是解答此题的关键.17.=【解析】【分析】根据必然事件的定义及其概率可得答案【详解】由题意知从甲口袋的10个小球中摸出一个小球是红色小球是必然事件概率为1;从乙口袋的3个小球中摸出一个小球是红色小球是必然事件概率为1;∴P解析:=【解析】【分析】根据必然事件的定义及其概率可得答案.【详解】由题意知,从甲口袋的10个小球中摸出一个小球,是红色小球是必然事件,概率为1;从乙口袋的3个小球中摸出一个小球,是红色小球是必然事件,概率为1;∴P甲=P乙,故答案为:=.【点睛】本题主要考查概率公式,解题的关键是掌握随机事件A的概率P(A)=事件A可能出现的结果数所有可能出现的结果数.P(必然事件)=1.P(不可能事件)=0.18.【解析】试题分析:抽出的数字可能是1234总共有4种结果其中是奇数的结果有2种所以抽出的数字是奇数的概率是故答案为考点:概率的计算解析:【解析】试题分析:抽出的数字可能是1,2,3,4,总共有4种结果,其中是奇数的结果有2种,所以抽出的数字是奇数的概率是12.故答案为12.考点:概率的计算.19.③抽到梅花【解析】【分析】根据概率公式先求出各自的概率再进行比较即可得出答案【详解】∵一副扑克牌有54张王牌有2张抽到王牌的可能性是;Q牌有4张抽到Q牌的可能性是;梅花有13张抽到梅花牌的可能性是;解析:③抽到梅花.【解析】【分析】根据概率公式先求出各自的概率,再进行比较,即可得出答案.【详解】∵一副扑克牌有54张,王牌有2张,抽到王牌的可能性是21=5427;Q牌有4张,抽到Q牌的可能性是42= 5427;梅花有13张,抽到梅花牌的可能性是13 54;∴概率最大的是抽到梅花;故答案为:③抽到梅花.【点睛】本题考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比.20.【解析】试题分析:已知数字为3的倍数的扑克牌一共有3张且共有9张扑克牌根据概率公式可得抽出的牌上的数恰为3的倍数的概率P==考点:概率公式解析:.【解析】试题分析:已知数字为3的倍数的扑克牌一共有3张,且共有9张扑克牌,根据概率公式可得抽出的牌上的数恰为3的倍数的概率P==.考点:概率公式.三、解答题21.(1)7个黑球;(2)715;(3)能,方案见解析.【分析】(1)利用概率公式求出总数,进而可得出盒子中黑球的个数;(2)直接利用概率公式得出答案;(3)利用概率公式计算得出符合题意的方法.【详解】解:(1)()153573÷-+=(个), 答:盒子中有7个黑球; (2)任意摸出一个球共出现15种等可能的结果,其中摸到黑球的有7种,P (摸到黑球)715=; (3)能,方案:往盒子中放入一个同样大小的红球,任意摸出一个球共出现16种等可能的结果,其中摸到红球的有4种.P (摸到红球)3111154+==+(方案不唯一) 【点睛】 此题主要考查了概率公式,正确掌握概率求法是解题关键.如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=m n. 22.(1)16;40°;(2)①0.06;②准备36件正品衬衣供顾客调换.【分析】(1)△BCF 的周长=BC+CF+BF .根据线段垂直平分线性质,BF=AF .所以CF+BF=AC=AB ;根据等腰三角形性质,∠EFC=∠AFD=12∠AFB ,已知∠A 度数,求∠AFB 即可. (2) ①根据概率的求法,找准两点:1、符合条件的情况数目;2、全部情况的总数;二者的比值就是其发生的概率;②需要准备调换的正品衬衣数=销售的衬衫数×次品的概率,依此计算即可.【详解】(1)∵DE 垂直平分AB ,∴FA=FB.∴△BCF 的周长=BC+CF+BF=BC+CF+AF=BC+AC=BC+AB=16cm ,∵FA=FB ,∴∠A=∠ABF=50°,∴∠AFB=180°−50°−50°=80°∴∠EFC=∠AFD=12∠AFB=40° (2) ①抽查总体数m=50+100+200+300+400+500=1550,次品件数n=0+4+16+19+24+30=93, P(抽到次品)=931550=0.06. ②根据(1)的结论:P(抽到次品)=0.06,则600×0.06=36(件).答:准备36件正品衬衣供顾客调换.【点睛】此题考查线段垂直平分线的性质和等腰三角形的性质,概率公式,解答本题的关键在于掌握各性质定理和看懂图中数据.23.(1)数字1朝上的概率最小;(2)9 20.【解析】【分析】(1)根据概率的计算公式,先求出标有“6”的面数,然后把标有各种数字的面数分别于总面数相比可求得各个数字朝上的概率;比较大小,可得答案;(2)根据标有奇数字的面数之和与总面数的比即可求得奇数面朝上的概率.【详解】解:(1)∵骰子有20个面,根据题意∴标有“6”的面数为5面∴(6)51 == 204P朝上,(5)51==204P朝上,(1)1=20P朝上,(2)21 == 2010P朝上,(3)3=20P朝上,(4)41==205P朝上,∴数字1朝上的概率最小(2)∵奇数包括了1,3,5∴()1359 ==2020P++奇数朝上【点睛】本题主要考察概率知识,熟练掌握概率的计算公式是解题的关键,用到的知识点为:概率=所求情况数与总情况数之比.24.【解析】试题分析:(1)根据骰子没有7点,所以这种情况不可能发生,可知概率为0;(2)选择题的答案是4选1,因此其概率为14;(3)袋子中摸到红球的概率为23;(4)太阳的东升西落是必然事件,因此其概率为1;(5)由1---100之间有50个偶数可知随机抽取一个数为偶数的概率为501 1002=.试题考点:概率25.(1)这次调查了100个家长;(2)图形见解析;(3)持“赞成”态度的学生估计约有300个.【解析】试题分析:(1)根据“无所谓”的人数除以占的百分比得到调查的总家长数;(2)由调查家长的总数求出“反对”的人数,补全条形统计图,求出“反对”与“赞成”的百分比,补全扇形统计图即可;(3)求出学生中“赞成”的百分比,乘以1200即可得到结果.试题(1)根据题意得:20÷20%=100(个),则这次调查了100个家长;(2)家长“反对”的人数为100﹣(10+20)=70(个);占的百分比为70÷100=70%;“赞成”占的百分比为10÷100=10%;补全统计图,如图所示:(3)根据题意得:1200×=300(个),则持“赞成”态度的学生估计约有300个,考点:1、条形统计图;2、扇形统计图;3、用样本估计总体26.(1)树状图见解析;(2)1 3 .【解析】试题分析:先根据题意画树状图,再根据所得结果计算两个数字之和能被3整除的概率.试题(1)树状图如下:(2)∵共6种情况,两个数字之和能被3整除的情况数有2种,。
九年级下册数学单元测试卷-第31章随机事件的概率-冀教版(含答案)一、单选题(共15题,共计45分)1、下列说法中,正确的是()A.对载人航天器“神舟十号”的零部件的检查适合采用抽样调查的方式B.某市天气预报中说“明天降雨的概率是80%”,表示明天该市有80%的地区降雨 C.掷一枚硬币,正面朝上的概率为 D.若0.1,0.01,则甲组数据比乙组数据稳定2、下列说法正确的是( )A.13名同学中,至少有两人的出生月份相同是必然事件B.“抛一枚硬币正面朝上概率是0.5”表示每抛硬币2次有1次出现正面朝上C.如果一件事发生的机会只有十万分之一,那么它就不可能发生 D.从1、2、3、4、5、6中任取一个数是奇数的可能性要大于偶数的可能性3、下列事件中,属于确定事件的是()A.掷一枚硬币,着地时反面向上B.买一张福利彩票中奖了C.投掷3枚骰子,面朝上的三个数字之和为18 D.五边形的内角和为540度4、一个不透明的袋子中装有5个黑球和3个白球,这些球的大小、质地完全相同,随机从袋子中摸出4个球,则下列事件是必然事件的是()A.摸出的四个球中至少有一个球是白球B.摸出的四个球中至少有一个球是黑球C.摸出的四个球中至少有两个球是黑球D.摸出的四个球中至少有两个球是白球5、如图,将一个可以自由旋转的转盘等分成甲、乙、丙、丁四个扇形区域,若指针固定不变,转动这个转盘一次(如果指针指在等分线上,那么重新转动,直至指针指在某个扇形区域内为止),则指针指在甲区域内的概率是 ( )A.1B.C.D.6、一个质地均匀的小正方体的六个面上分别标有数字1,2,3,4,5,6.如果任意抛掷小正方体两次,那么下列说法正确的是( ).A.得到的数字和必然是4B.得到的数字和可能是3C.得到的数字和不可能是2D.得到的数字和有可能是17、下列事件发生的概率为0的是()A.掷一枚均匀的硬币两次,至少有一次反面朝上;B.今年冬天如皋会下雪;C.掷两个均匀的骰子,朝上面的点数之和为1;D.一个转盘被分成3个扇形,按红、白、黄排列,转动转盘,指针停在红色区域8、向如图所示的等边三角形区域扔沙包(区域中每一个小等边三角形除颜色外完全相同),假设沙包击中每一个小等边三角形是等可能的,扔沙包一次,击中阴影区域的概率等于A. B. C. D.9、外观相同的卡片分别标有数字1、2、3,从中随机一次抽出两张,这两张卡片上的数字恰好都小于3的概率是()A. B. C. D.10、一个不透明的布袋里装有7个只有颜色不同的球,其中3个红球,4个白球,从布袋中随机摸出一个球,摸出的球是红球的概率是()A. B. C. D.11、在一个不透明的盒子里装着除颜色外完全相同的黑、白两种小球共40个.小颖做摸球实验.她将盒子里面的球搅匀后从中随机摸出一个球记下颜色后放回,不断重复上述过程,多次试验后,得到表中的数据数据,并得出了四个结论,其中正确的是()摸球的次数n 100 200 300 500 800 1000 3000摸到白球的次数m 70 128 171 302 481 599 903摸到白球的频率0.75 0.64 0.57 0.604 0.601 0.599 0.602 A.试验1500次摸到白球的频率比试验800次的更接近0.6 B.从该盒子中任意摸出一个小球,摸到白球的频率约为0.6 C.当试验次数n为2000时,摸到白球的次数m一定等于1200 D.这个盒子中的白球定有28个12、5月19日为中国旅游日,衢州推出“读万卷书,行万里路,游衢州景”的主题系列旅游惠民活动,市民王先生准备在优惠日当天上午从孔氏南宗家庙、烂柯山、龙游石窟中随机选择一个地点;下午从江郎山、三衢石林、开化根博园中随机选择一个地点游玩,则王先生恰好上午选中孔氏南宗家庙,下午选中江郎山这两个地的概率是()A. B. C. D.13、如图,有两个可以自由转动的转盘(每个转盘均被等分),同时转动这两个转盘,待转盘停止后,两个指针同时指在偶数上的概率是()A. B. C. D.14、下列事件是必然事件的是( )A.明年国庆节宁波的天气是晴天B.小华上学的路上遇到同班同学C.任意掷一枚均匀的硬币,正面朝上D.在学校操场上抛出的篮球会下落15、下列事件中,属于必然事件的是()A.某校初二年级共有480人,则至少有两人的生日是同一天B.经过路口,恰好遇到红灯C.打开电视,正在播放动画片D.抛一枚硬币,正面朝上二、填空题(共10题,共计30分)16、在一个口袋中有4个完全相同的小球,它们的标号分别为1,2,3,4,一人从中随机摸出一球记下标号后放回,再从中随机摸出一个小球记下标号,则两次摸出的小球的标号之和大于4的概率是________17、一水塘里有鲤鱼、鲢鱼共10000尾,一渔民通过多次捕捞试验后发现,鲤鱼出现的频率为0.36,则水塘有鲢鱼________ 尾.18、在一个不透明的空袋子里,放入仅颜色不同的2个红球和1个白球,从中随机摸出1个球后不放回,再从中随机摸出1个球,两次都摸到红球的概率是________.19、一个不透明的袋子中装有仅颜色不同的4个红球和1个黄球,从袋子中随机摸出两个球,则摸出的两个球的颜色相同的概率是________.20、某农科院在相同条件下做了某种玉米种子发芽率的试验,结果如下:则该玉米种子发芽的概率估计值为________(结果精确到0.1).21、如图,在两个同心圆中,四条直径把大圆分成八等份,若往圆面投掷飞镖,则飞镖落在黑色区域的概率是________.22、不透明袋子中有1个红球、2个黄球,这些球除颜色外无其他差别,从袋子中随机摸出1个球后放回,再随机摸出1个球,两次摸出的球都是黄球的概率是________.23、一只不透明的布袋中有三种小球(除颜色以外没有任何区别),分别是2个红球,3个白球和5个黑球,搅匀之后,每次摸出一只小球不放回.在连续2次摸出的都是黑球的情况下,第3次摸出黑球的概率是________24、同时掷两个质地均匀的骰子,观察向上一面的点数,两个骰子的点数相同的概率为________.25、一个不透明袋子中装有1个绿球,2个红球,3个黄球,这些球除颜色外无其他差别,在袋子中随机摸出一个球,则摸到红球的概率为________.三、解答题(共5题,共计25分)26、有四张正面分别写有数字:20,15,10,5的卡片,背面完全相同,将卡片洗匀后背面朝上.放在桌面上小明先随机抽取一张,记下牌面上的数字(不放回),再从剩下的卡片中随机抽取一张,记下牌面上的数字.如果卡片上的数字分别对应价值为20元,15元,10元,5元的四件奖品,请用列表或画树状图法求小明两次所获奖品总值不低于30元的概率?27、在一个不透明的盒子中装有三张卡片,分别标有数字1,2,5,这些卡片除数字不同外其余均相同.现从盒子中随机抽取一张卡片记下数字后放回,洗匀后再随机抽取一张卡片。
随机事件的概率检测题与详解答案A 级——保大分专练1.在投掷一枚硬币的试验中,共投掷了100次,“正面朝上”的频数为51,则“正面朝上”的频率为( )A .49B .0.5C .0.51D .0.49解析:选C 由题意,根据事件发生的频率的定义可知,“正面朝上”的频率为51100=0.51. 2.(2019·泉州模拟)从含有质地均匀且大小相同的2个红球、n 个白球的口袋中随机取出一球,若取得红球的概率是25,则取得白球的概率等于( )A .15B .25C .35D .45解析:选C ∵取得红球与取得白球为对立事件, ∴取得白球的概率P =1-25=35.3.甲:A 1,A 2是互斥事件;乙:A 1,A 2是对立事件,那么( ) A .甲是乙的充分不必要条件 B .甲是乙的必要不充分条件 C .甲是乙的充要条件D .甲既不是乙的充分条件,也不是乙的必要条件解析:选B 两个事件是对立事件,则它们一定互斥,反之不一定成立.4.从一箱产品中随机地抽取一件,设事件A ={抽到一等品},事件B ={抽到二等品},事件C ={抽到三等品},且已知P (A )=0.65,P (B )=0.2,P (C )=0.1,则事件“抽到的不是一等品”的概率为( )A .0.7B .0.65C .0.35D .0.3解析:选C 事件“抽到的产品不是一等品”与事件A 是对立事件.因为P (A )=0.65,所以由对立事件的概率公式得“抽到的产品不是一等品”的概率P =1-P (A )=1-0.65=0.35.故选C.5.若A ,B 互为对立事件,其概率分别为P (A )=4x ,P (B )=1y,且x >0,y >0,则x +y 的最小值为( )A .7B .8C .9D .10解析:选C 由题意知4x +1y=1,则x +y =(x +y )·⎝ ⎛⎭⎪⎫4x +1y =5+⎝ ⎛⎭⎪⎫4y x +x y ≥9,当且仅当4y x =x y,即x =2y 时等号成立.故选C.6.掷一个骰子的试验,事件A 表示“出现小于5的偶数点”,事件B 表示“出现小于5的点数”.若B 表示B 的对立事件,则在一次试验中,事件A +B 发生的概率为( )A .13 B .12 C .23D .56解析:选C 掷一个骰子的试验有6种可能结果.依题意,得P (A )=26=13,P (B )=46=23,∴P (B )=1-P (B )=1-23=13.因为B 表示事件“出现5点或6点”,因此事件A 与B 互斥,从而P (A +B )=P (A )+P (B )=13+13=23.7.某网店根据以往某品牌衣服的销售记录,绘制了日销售量的频率分布直方图,如图所示,由此估计日销售量不低于50件的概率为________.解析:用频率估计概率知日销售量不低于50件的概率为1-(0.015+0.03)×10=0.55. 答案:0.558.容量为20的样本数据,分组后的频数如下表:解析:数据落在区间[10,40)的频率为2+3+420=920=0.45.答案:0.459.“键盘侠”一词描述了部分网民在现实生活中胆小怕事、自私自利,却习惯在网络上大放厥词的一种现象.某地新闻栏目对该地区群众对“键盘侠”的认可程度进行调查:在随机抽取的50人中,有14人持认可态度,其余持反对态度,若该地区有9 600人,则可估计该地区对“键盘侠”持反对态度的有________人.解析:在随机抽取的50人中,持反对态度的频率为1-1450=1825,则可估计该地区对“键盘侠”持反对态度的有9 600×1825=6 912(人).答案:6 91210.一只袋子中装有大小相同的7个红玻璃球和3个绿玻璃球,从中无放回地任意抽取两次,每次只取一个,取得两个红球的概率为715,取得两个绿球的概率为115,则取得两个同颜色的球的概率为________;至少取得一个红球的概率为________.解析:由于“取得两个红球”与“取得两个绿球”是互斥事件,取得两个同色球,只需两互斥事件有一个发生即可,因而取得两个同色球的概率为P =715+115=815.由于事件A “至少取得一个红球”与事件B “取得两个绿球”是对立事件,则至少取得一个红球的概率为P (A )=1-P (B )=1-115=1415.答案:815 141511.某人去开会,他乘火车、轮船、汽车、飞机去的概率分别为0.3,0.2,0.1,0.4. (1)求他乘火车或乘飞机去的概率; (2)求他不乘飞机去的概率;(3)若他乘上面的交通工具去的概率为0.5,请问他有可能是乘何种交通工具去的? 解:设“乘火车”“乘轮船”“乘汽车”“乘飞机”分别表示事件A ,B ,C ,D ,则 (1)P (A ∪D )=P (A )+P (D )=0.3+0.4=0.7.(2)设“不乘飞机”为事件E ,则P (E )=1-P (D )=1-0.4=0.6.(3)因为P (A ∪B )=P (A )+P (B )=0.5,P (C ∪D )=P (C )+P (D )=0.5,故他有可能是乘火车或轮船去,也有可能是乘汽车或飞机去.12.(2018·北京高考)电影公司随机收集了电影的有关数据,经分类整理得到下表:(1)从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影的概率. (2)随机选取1部电影,估计这部电影没有获得好评的概率.(3)电影公司为增加投资回报,拟改变投资策略,这将导致不同类型电影的好评率发生变化.假设表格中只有两类电影的好评率数据发生变化,那么哪类电影的好评率增加0.1,哪类电影的好评率减少0.1,使得获得好评的电影总部数与样本中的电影总部数的比值达到最大?(只需写出结论)解:(1)由题意知,样本中电影的总部数是140+50+300+200+800+510=2 000, 获得好评的第四类电影的部数是200×0.25=50, 故所求概率为502 000=0.025.(2)由题意知,样本中获得好评的电影部数是140×0.4+50×0.2+300×0.15+200×0.25+800×0.2+510×0.1 =56+10+45+50+160+51 =372,故所求概率估计为1-3722 000=0.814.(3)增加第五类电影的好评率,减少第二类电影的好评率.B 级——创高分自选1.若随机事件A ,B 互斥,A ,B 发生的概率均不等于0,且P (A )=2-a ,P (B )=4a -5,则实数a 的取值范围是( )A.⎝ ⎛⎭⎪⎫54,2B.⎝ ⎛⎭⎪⎫54,32C.⎣⎢⎡⎦⎥⎤54,32 D.⎝ ⎛⎦⎥⎤54,43 解析:选D 由题意可得⎩⎪⎨⎪⎧0<P A <1,0<P B <1,P A P B 1,即⎩⎪⎨⎪⎧0<2-a <1,0<4a -5<1,3a -3≤1,解得54<a ≤43.2.现有10个数,它们能构成一个以1为首项,-3为公比的等比数列,若从这10个数中随机抽取一个数,则它小于8的概率是________.解析:由题意得a n =(-3)n -1,易知前10项中奇数项为正,偶数项为负,所以小于8的项为第一项和偶数项,共6项,即6个数,所以所求概率P =610=35.答案:353.某河流上的一座水力发电站,每年六月份的发电量Y (单位:万千瓦时)与该河上游在六月份的降雨量X (单位:毫米)有关.据统计,当X =70时,Y =460;X 每增加10,Y 增加5.已知近20年X 的值为140,110,160,70,200,160,140, 160,220,200,110,160,160, 200,140,110, 160,220,140,160.(1)完成如下的频率分布表:近20年六月份降雨量频率分布表(2)求今年六月份该水力发电站的发电量低于490(万千瓦时)或超过530(万千瓦时)的概率.解:(1)在所给数据中,降雨量为110毫米的有3个,为160毫米的有7个,为200毫米的有3个.故近20年六月份降雨量频率分布表为:(2)根据题意,Y=460+10×5=2+425,故P(“发电量低于490万千瓦时或超过530万千瓦时”) =P(Y<490或Y>530)=P(X<130或X>210)=P(X=70)+P(X=110)+P(X=220)=120+320+220=310.故今年六月份该水力发电站的发电量低于490(万千瓦时)或超过530(万千瓦时)的概率为310.。
第6章事件的概率一、选择题1•在大量重复试验中,关于随机事件发生的频率与概率,下列说法正确的是()A.随着试验次数的增加,频率一般会越来越接近概率B.频率与试验次数无关C.概率是随机的,与频率无关D.频率就是概率2.某市大约有100万人口,随机抽查了2000人,具有大专以上学历的有120人,则在该市随便调查一个人,他具有大专以上学历的概率为()A.6%B. 12%C. 20%D.以上都不正确3.小红把一枚硬币抛掷10次,结果有4次正面朝上,那么()A.正面朝上的频数是0.4B.反面朝上的频数是6C.正血朝上的频率是4D•反面朝上的频率是64.小明、小雪、丁丁和东东在公园玩飞行棋,四人轮流掷骰子,小明掷骰子7次就掷出了4次6,则小明掷到数字6的概率是()•1 ' 4A. -B. -C. -D.不能确定7 6 75.为了看图钉落地后钉尖着地的概率有多大,小明做了大量重复试验,发现钉尖着地的次数是实验总次数的40%,下列说法错误的是()A.钉尖着地的频率是0.4B.随着试验次数的增加,钉尖着地的频率稳定在0.4附近C.钉尖着地的概率约为0.4D.前20次试验结束后,钉尖着地的次数一定是8次6.在一个不透明的盒子中,红色、白色、黑色的球共有40个,除颜色外其他完全相同,老师在课堂上组织同学通过多次试验后发现其屮摸到红色、白色的频率基木稳定在45%和15%,则盒子屮黑色球的个数可能是()A. 16B. 18C. 20D. 227.下列说法正确的是()A."买一张电影票,座位号为偶数〃是必然事件B.若甲、乙两组数据的方差分别为s侖=0.3、s ^=0.1,则甲组数据比乙组数据稳定C.一组数据2, 4, 5, 5, 3, 6的众数是5D.若某抽奖活动的中奖率为* ,则参加6次抽奖一定有1次能屮奖8.在围棋盒中有x颗白色棋子和y颗黑色棋子,从盒中随机取出一颗棋子,取得白色棋子的概率是如再往盒中放进3颗黑色棋子,収得白色棋子的概率变为扌,则原来盒里有白色棋子()A. 1颗B. 2颗C.3颗D.4颗9.一个口袋中有红球、白球共20只,这些球除颜色外都相同,将口袋中的球搅拌均匀,从中随机摸出一只球,记下它的颜色后再放回,不断重复这一过程,共摸了50次,发现有30次摸到红球,则估计这个口块中有红球大约多少只?()A. 8 只B. 12 只C. 18 只D. 30 只20.—只盒子中有红球m个,白球8个,黑球n个,每个球除颜色外都相同,从中任取一个球,取得白球的概率与不是白球的概率相同,那么m与n的关系是()A. m=3, n=5B. m=n=4C. m+n=4 D・ m+n二8□.在一个口袋屮有4个完全相同的小球,把它们分别标号为1, 2, 3, 4,随机地摸出一个小球不放回,再随机地摸出一个小球,则两次摸出的小球的标号的和为奇数的概率是()A —R =.「丄几3 3 6 612.2016年4月14 0,永远的科比狂砍60分完美谢幕,打破NBA球员退役战得分纪录,成为NBA历史单场60+年纪最大的球员,其中罚球12罚10中,命中率大约是83.3%,下列说法错误的是()A.科比罚球投篮12次,不一定全部命中B.科比罚球投篮120次,一定命中200次C.科比罚球投篮1次,命中的可能性较大D.科比罚球投篮1次,不命中的可能性较小二、填空题13.—次抽奖活动设置了翻奖牌(图展示的分别是翻奖牌的正反两面),抽奖时,你只能看到正面,你可以在9个数字屮任意选中一个数字,可见抽中一副球拍的概率是那么请你根据题意写出一个事件,使这个事件发生的概率是这个事件是______________ .翻奖牌正面 翻奖牌反面14. _______________________________________________________________ 从・2、1、 *这三个数中任取两个不同的数相乘,积是无理数的概率是 ________________________________ .15. 在一个不透明的袋子中有四个完全相同的小球,分别标号为1, 2, 3, 4.随机摸取一个小球不放回, 再随机摸収一个小球,两次摸出的小球的标号的和等于4的概率是 __________ .一个口袋有15个白球和若干个黑球,在不允许将球倒出来数的前提下,小明为估计口袋中黑球的个 数,釆用了如下的方法:从袋中一次摸出10个球,求出白球数与10的比值,再把球放回口袋中摇匀,不 断重复上述过程5次,得到的白球数与10的比值分别是0・4, 0.3, 0.2, 0.3, 0.3,根据上述数据,小明估 计口袋中大约有 个黑球.17. 某班级中有男生和女生各若干,若随机抽取一人,抽到男生的概率是扌,则抽到女生的概率是18. ____________________________________________________ 从实数-1、-2、1中随机选取两个数,积为负数的概率是 ___________________________________________ •19. 在一个透明的布袋中,红色、黑色、白色的玻璃球共有80个,它们除颜色外其他完全相同,小李通过 多次摸球试验后,发现其中摸到红色球、黑色球的频率分别为15%和45%,则口袋中白色球的数目很可能 是 _________ 个.20. 在两个不透明的口袋中分别装有三个颜色分别为红色、白色、绿色的小球,这三个小球除颜色外其余 都相同,若分别从两个口袋屮随机取出一个小球,则取出的两个小球颜色相同的概率是 ___________ • 21. 不透明袋子中装有9个球,其中有2个红球、3个绿球和4个蓝球,这些球除颜色外无其他差别.从 袋子中随机取出1个球,则它是红球的概率是 _________ •三、解答题22. 为了备战初三物理、化学实验操作考试.某校对初三学生进行了模拟训练.物理、化学各有4个不同 的操作实验题目,物理用番号①、②、③、④代表,化学用字母a 、b 、c 、d 表示.测试时每名学生每 科只操作一个13 斗 678 9 鹹参与建建参与一张唱片 一副球拍 一张唱片一张唱片 建溺参与实验,实验的题目由学生抽签确定.小张同学对物理的①、②和化学的b、c实验准备得较好,请用树形图或列表法求他两科都抽到准备得较好的实验题目的概率.23•—个不透明的袋子中装有三个完全相同的小球,分别标有数字3、4、5.从袋子中随机取一个小球,用小球上的数字作为十位的数字,然后放回;再取出一个小球,用小球上的数字作为个位上的数字,这样组成一个两位数,试问:按这种方法能组成哪些位数?十位上的数字与个位上的数字Z和为9的两位数的概率是多少?用列表法或画树状图法加以说明.24.甲转盘的三个等分区域分别写有数字1、2、3,乙转盘的四个等分区域分别写有数字4、5、6、7.现分别转动两个转盘,通过画树形图或者列表法求指针所指数字Z和为偶数的概率.25.小明、小林是三河中学九年级的同班同学,在四月份举行的自主招生考试中,他俩都被同一所高中提前录取,并将被编入A、B、C三个班,他俩希望能再次成为同班同学.(1)请你用画树状图法或列举法,列出所有可能的结果;(2)求两人再次成为同班同学的概率.一、选择题 AABBDACBBDBB 二、填空题13.抽中一张唱片3 14.- 3 15 14 6 16. 35 1 「17.貞 18. ■= 19. 3220. | °21 — 乙丄• Q 三、解答题22.解:画树状图得:____ ___ 二 开始—物理 ① 化学a 方c 〃 ②abed ③ /Ax abed ■ ----- J ④ /Ax abed・・•共有16种等可能的结果,他两科都抽到准备得较好的实验题目的有4种情况, ・•・他两科都抽到准备得较好的实验题冃的概率为:£ = j23. 解:画树状图如下:4 5 /1\ /1\ 3 斗 5 3 4 5 共有9种等可能的结果数,即按这种方法能组成的两位数有33, 34, 35, 43, 44, 45, 53, 54, 55; 其屮十位上的数字与个位上的数字Z 和为9的两位数有45和54两个,25. (1)解:画树状图如下:参考答案3/1\ 3 4 5 33 34 35 43 斗4 45 53 54 55AP (十位与个位数字之和为9)29124.解:画树状图为:4 5 6 7共有12种等可能的结果数,其中指针所指数字之和为偶数的结果数为6, 所以指针所指数字之和为偶数的概率二 2 1 12 6开始由树形图可知所以可能的结果为AA, AB, AC, BA, BB, BC, CA, CB, CC (2)解:由(1)可知两人再次成为同班同学的概率=r 3。
第25章随机事件的概率检测题(时间:90分钟满分:120分)班级学号成绩一、选择题(每小题3分,共30分)1. 下列说法:(1)必然事件发生的概率为1;(2)不可能事件发生的概率为0;(3)不确定事件发生的概率大于0且小于1;(4)不确定事件发生的概率为0,其中错误的有()A. 1个B. 2个C. 3个D. 4个2. 掷一枚质地均匀的硬币10次,下列说法正确的是()A.每2次必有1次正面向上B.可能有5次正面向上C.必有5次正面向上D.不可能有10次正面向上3. 从1,2,﹣3三个数中,随机抽取两个数相乘,积是正数的概率是()A.0 B.13C.23D.14. 在一个不透明的口袋中装有4个红球和若干个白球,它们除颜色外其他完全相同.通过多次摸球试验后发现,摸到红球的频率稳定在25%附近,则口袋中白球可能有()A. 16个B. 15个C. 13个D. 12个5. 一个口袋中共有2个红球,n个黄球,这n+2个球除颜色外都相同,若从中任意摸出一个球是红球的概率等于0.2,则n的值为()A.8 B.9 C.10 D.11第7题图第8题图6. 从1,2,3,4中任取一个数作为十位上的数字,再从2,3,4中任取一个数作为个位上的数字,那么组成的两位数是3的倍数的概率是( )A .41 B .31 C .125D .32 7.如图所示是从一副扑克牌中取出的两组牌,分别是黑桃1,2,3,4和红桃1,2,3,4,将它们背面朝上分别重新洗牌后,从两组牌中各摸出一张,那么摸出的两张牌面数字之和等于7的概率是( )A.B.C. D.8. 学生甲与学生乙玩一种转盘游戏.如图所示是两个完全相同的转盘,每个转盘被分成面积相等的四个区域,分别用数字“1”,“2”,“3”,“4”表示.固定指针,同时转动两个转盘,任其自由停止,若两指针所指数字的积为奇数,则甲获胜;若两指针所指数字的积为偶数,则乙获胜;若指针指向扇形的分界线,则都重转一次.在该游戏中乙获胜的概率是( )A .14B .12 C .34 D .569. 同时抛掷A,B两个均匀的小立方体(每个面上分别标有数字1,2,3,4,5,6),设两立方体朝上的数字分别为x,y,并以此确定点P(x,y),那么点P落在抛物线y=-x2+3x上的概率为( ) A .118 B . 112C . 19D .1610. 如图,在平面直角坐标系中,点A 1,A 2在x 轴上,点B1,B2在y轴上,其坐标分别为A1(1,0),A2(2,0),B1(0,1),B2(0,2),分别以A1,A2,B1,B2其中的任意两点与点O为顶点作三角形,所作三角形是等腰三角形的概率是( ) A . 34 B . 13C .23 D .12二、填空题(每小题4分,共32分)11.掷两枚硬币,一枚硬币正面朝上,另一枚硬币反面朝上的概率是.12. 一副扑克牌52张(不含大、小王),分为黑桃、红心、方块及梅花4种花色,每种花色各有13张,分别标有字母A ,K ,Q ,J 和数字10,9,8,7,6,5,4,3,2.从这副牌中任意抽取一张,则这张牌标有字母的概率是.13. 平行四边形ABCD 中,AC ,BD 是两条对角线,现从以下四个关系式:①AB=BC ;②AC=BD ;③AC ⊥BD ;④AB ⊥BC 中任取一个作为条件,则可判定平行四边形ABCD 是菱形的概率为.14. 在如图所示的矩形纸片上随机扎针,则针头扎在阴影区域的概率为.15. 根据第六届世界合唱比赛的活动细则,每个参赛的合唱团在比赛时须演唱4首歌曲.爱乐合唱团已确定了2首歌曲,还需在A ,B 两首歌曲中确定一首,在C ,D 两首歌曲中确定另一首,则同时确定A ,C 为参赛歌曲的概率是.16. 一个不透明的布袋中有分别标着数字1,2,3,4的四个乒乓球,现从袋中随机摸出两个,则这两个乒乓球上的数字之和大于5的概率为.17. 形状大小一样、背面相同的四张卡片,其中三张卡片正面分别标有数字“2”,“3”,“4”,小明和小亮各抽一张,前一个人随机抽一张记下数字后放回,混合均匀,后一个人再随机抽一张记下数字算一次.如果两人抽一次的数字之和是8的概率为163,则第四张卡片正面标的数字是 .18. 有三张正面分别标有数字3,4,5的不透明卡片,它们除数字不同外其余完全相同,现将它们背面朝上,洗匀后从中任取一张,记下数字后将卡片背面朝上放回,又洗匀后从中再任取一张,则两次抽得卡片上数字的差的绝对值大于1的概率是.三、解答题(共56分)19.(10分)有四张完全一样的空白纸片,在各张纸片的一个面上分别写上数字1,2,3,4.小明把这四张纸片写有数字的一面朝下,先洗匀随机抽出一张,放回洗匀后再随机抽出一张,求抽出的两张纸片上的数字之积小于6的概率.游戏规则三人手中各持有一枚质地均匀的硬币,他们同时将手中的硬币抛落到水平地面为一个回合.落地后,三枚硬币中,恰有两枚正面向上或者反面向上的两人先下棋;若三枚硬币均为正面向上或反面向上,则不能确定其中两人先下棋.20.(10分)小明、小亮和小强三人准备下象棋,他们约定用“抛硬币”的游戏方式来确定哪两个人先下,规则如右图:(1)请你完成表示游戏一个回合所有可能出现的结果的树状图; (2)求一个回合能确定两人先下棋的概率.21.(12分)袋中装有大小相同的2个红球和2个绿球.(1)先从袋中摸出1个球后放回,混合均匀后再摸出1个球.①求第一次摸到绿球,第二次摸到红球的概率.②求两次摸到的球中有1个绿球和1个红球的概率.(2)先从袋中摸出1个球后不放回,再摸出1个球,则两次摸到的球中有1个绿球和1个红球的概率是多少?请直接写出结果.22.(12分)如图,有两个可以自由转动的转盘A,B,转盘A被均匀分成4等份,每份标有数字1,2,3,4四个数字;转盘B被均匀分成6等份,每份标有数字1,2,3,4,5,6六个数字.有人为甲乙两人设计了一个游戏,其规则如下:同时转动转盘A与B,转盘停止后,指针各指向一个数字(如果指针恰好指在分割线上,那么重转一次,直到指针指向一个数字为止),用所指的两个数字作乘积,如果所得的积是偶数,那么甲胜;如果所得的积是奇数,那么乙胜.你认为这样的游戏规则是否公平?请说明理由.23.(12分)在一次数学活动中,黑板上画着如图所示的图形,活动前老师在准备的四张纸片上分别写有如下四个等式中的一个等式:①AB=DC ;②∠ABE=∠DCE ;③AE=DE ;④∠A=∠D.小明同学闭上眼睛从四张纸片中随机抽取一张,再从剩下的纸片中随机抽取一张.请结合图形解答下列问题:(1)当抽得①和②时,用①,②作为条件能判定△BEC 是等腰三角形吗?说说你的理由; (2)请你用树状图或表格表示抽取两张纸片上的等式所有可能出现的结果(用序号表示),并求以已经抽取的两张纸片上的等式为条件,使△BEC 不能..构成等腰三角形的概率.参考答案一.1. A 2.B 3.B 4.D 5. A 6.B 7.B 8.C 9.A 10.D 二. 11.12 12.134 13.21 14.41 15.41 16.31 17. 5或6 18.92三.19. 共有16种等可能的结果,其中数字之积小于6的结果有8种,所以抽出的两张纸片上的数字之积小于6的概率为168=21. 20.解:(1)树状图如下:(2)由(1)中的树状图,可知P (确定两人先下棋)=34.21. (1)①41;②21.(2)32.正面反面 正面反面正面反面正面 反面 正面 反面 正面 反面正面 反面小明 小亮 小强 不确定确 定确定确定确定确定确定不确定结果22.提示:不公平.理由如下:因为P(奇数)=14,P(偶数)=34,所以P(偶数)>P(奇数),所以游戏规则不公平.23.提示:(1)能.理由:由AB=DC,∠ABE=∠DCE,∠AEB=∠DEC,可得△ABE≌△DCE.所以BE=CE,所以△BEC是等腰三角形.(2)树状图:先抽取的纸片序号由图可知,所有可能出现的结果为:①②,①③,①④,②①,②③,②④,③①,③②,③④,④①,④②,④③,共有12种结果,它们出现的可能性相等,不能构成等腰三角形的结果有4种,所以使△BEC不能构成等腰三角形的概率为13.①②③④②①③④③①②④④①②③后抽取的纸片序号。
关于概率的单元试题及答案1.明年国际儿童节是6月1日,这个事件是()A.必然事件B.不确定事件C.随机事件D.可能事件2.下列说法正确的是()A.可能性是99%的事件在一次实验中一定会发生B.可能性是1%的事件在一次实验中一定不会发生C.可能性是1%的事件在一次实验中有可能发生D.不可能事件就是随机事件3.下列说法错误的是()A.必然发生的事件发生的概率为1B.不可能发生的事件发生的概率为0C.随机事件发生的概率大于0且小于1D.随机事件发生的概率为04.下列事件中是必然事件的是()A.小婷上学一定坐公交车B.买一张电影票.座位号正好是偶数C.刘红期末考试数学成绩一定得满分D.将豆油滴入水中,豆油会浮在在水面5.一个口袋里有1个红球、2个白球、3个黑球,从中任意取出一个球.该球是黑色的,这个事件是()A.随机事件B.必然事件C.不可能事件D.夏上都不对6.从一副扑克中抽出5张红桃、4张梅花、3张黑桃,放在一起洗匀岳.从中一次随机抽出10张,恰好红桃、梅花、黑桃3种牌都抽到,这个事件是()A.随机事件B.不可能事件C.必然事件D.以上都不对7.如图,一个可以自由转动的转盘被等分成6个扇形区域.并涂上了相应的颜色,转动转盘,转盘停止后,指针指向蓝色区域的概率是()A.B.C.D.8.气象台预报“本市明天降水概率是80%”.对此信息,下列说法正确的是()A.该市明天将有80%的地区降水B.该市明天将有80%的时间降水C.明天肯定下雨D.明天降水的可能性忧较大9.有五只灯泡,其中两只是次品,从中任取一只恰为合格品的概率为()A.20%B.40%C.50%D.60%10.下列说法正确的是()A.一颗质地均匀的骰子已连续抛掷了2000次,其中,抛掷出5点的次数最少,则第2001次一定抛掷出5点B.某种彩票中奖的概率是1%,因此买100张这种彩票一定会中奖C.天气预报说明天下雨的概率是50%,所以明天将有一半时间在下雨D.抛掷一枚图钉,钉尖触地和钉尖朝上的概率不相等11.冰柜里有四种饮料:5瓶特种可乐、12瓶普通可乐、9瓶橙汁、6瓶啤酒,其中特种可乐和普通可乐是含有咖啡因的饮料,那么从冰柜里随机取一瓶饮料,该饮料含有咖啡因的概率是()A.B.C.D.l2.投掷一枚普通的正方体骰子,四位同学各自发表了以下见解:①出现“点数为奇数”的毹率等于出现“点数为偶数”的概率;②只要连掷6次,一定会“出现一点”;③投掷前默念几次“出现6点”,投掷结果“出现6点”的可能性就会加大;④连续投掷3次,出爱的点数之和不可能等于19.其中正确的见解有()A.1个B.2个C.3个D.4个二、填空题(每题2分,共20分)13.在杰一枚均匀的正方体骰子时,掷得的点数为_________是一件必然事件.14.七年级(3)班有男生24人,女生27人,从中任选1人是男生的事件是________事件.(填“必然”、“不可能”或“随机”)15.从1、3、5、7四个数中任抽一个,抽出的这个数是奇数的事件是_____事件.(填“确定”或“不确定”)16.有同品种工艺品12件,其中一等品8件,二等品3件,三等品1件,从中任意取一件,很可能接到________等品.17.一次数学翻验时,有8道选择题.每道题均给出四个备选答案.其中只有一个是正确的.某同学不假思索任选答案÷那么他_______全部选对正确答案.(填“很可能”、“不可能”或。
高一数学必修第二册第十章《概率》单元练习题卷9(共22题)一、选择题(共10题)1.若事件A与B相互独立,则P(B∣A)与P(B)的大小关系是( )A.P(B∣A)=P(B)B.P(B∣A)<P(B)C.P(B∣A)>P(B)D.不能确定2.甲、乙两人同时报考同一所大学,甲被录取的概率是0.6,乙被录取的概率是0,7.如果两人是否被录取互不影响,那么至少有1人被该大学录取的概率是( )A.0.42B.0.46C.0.58D.0.883.设某厂产品的次品率为2%,估算该厂8000件产品中合格品的件数大约为( )A.160B.7840C.7998D.78004.同时掷两个质地均匀的骰子,向上点数之积为12的概率是( )A.13B.19C.118D.1365.我国古代数学名著《数书九章》有“米谷粒分”题:粮仓开仓收粮,有人送来米1534石,验得米内夹谷,抽样取米一把,数得254粒内夹谷28粒,则这批米内夹谷约为( )A.134石B.169石C.338石D.1365石6.甲、乙两人进行乒乓球比赛,比赛规则为“3局2胜”,即以先赢2局者为胜.根据经验,每局比赛中甲获胜的概率为0.6,则本次比赛甲获胜的概率是( )A.0.216B.0.36C.0.432D.0.6487.经检验,某厂的产品合格率为98%,估算该厂8000件产品中次品的件数为( )A.7840B.160C.16D.7848.甲和乙两个箱子中各装有10个大小相同的球,其中甲箱中有6个红球、4个白球,乙箱中有8个红球、2个白球.现掷一枚质地均匀的骰子,如果点数为1或2,则从甲箱子随机摸出1个球;如果点数为3,4,5,6,则从乙箱子中随机摸出1个球,那么摸出红球的概率为( )A.730B.1115C.715D.7109.袋中装有3个白球和4个黑球,从中任取3个球,则:①恰有1个白球和全是白球;②至少有 1 个白球和全是黑球;③至少有 1 个白球和至少有 2 个白球;④至少有 1 个白球和至少有 1 个黑球.在上述事件中,是对立事件的为 ( ) A .① B .② C .③ D .④10. 下列叙述随机事件的频率与概率的关系中,说法正确的是 ( ) A .频率就是概率B .频率是随机的,与试验次数无关C .概率是稳定的,与试验次数无关D .概率是随机的,与试验次数有关二、填空题(共6题)11. 某学校组织学生参加劳动实践活动,其中 4 名男生和 2 名女生参加农场体验活动,体验活动结束后,农场主与 6 名同学站成一排合影留念,则 2 名女生互不相邻,且农场主站在中间的概率等于 .(用数字作答)12. 若随机事件 A ,B 互斥,且 A ,B 发生的概率均不为 0,P (A )=2−a ,P (B )=3a −4,则实数a 的取值范围为 .13. 从 3 男 3 女共 6 名学生中任选 2 名(每名同学被选中的机会相等),则 2 名都是女同学的概率等于 .14. 甲、乙、丙三位同学上课后独立完成自我检测题,甲及格的概率为 45,乙及格的概率为 25,丙及格的概率为 23,则三人中至少有一人及格的概率为 .15. 若掷一颗质地均匀的骰子,则出现向上的点数大于 4 的概率是 .16. 从 1,2,3,4,5 中任意取出两个不同的数,其和为 5 的概率是 .三、解答题(共6题)17. 在人群流量较大的街道,有一中年人吆喝“送钱”,只见他手拿一黑色小布袋,袋中有 3 只黄色,3 只白色的乒乓球(其体积、质地完全相同),旁边立着一块小黑板写道:摸球方法:从袋中随机摸出 3 个球,若摸得同一颜色的 3 个球,摊主送给摸球者 5 元钱;若摸得非同一颜色的 3 个球,摸球者付给摊主 1 元钱. (1) 摸出的 3 个球为白球的概率是多少?(2) 摸出的 3 个球为 2 个黄球 1 个白球的概率是多少?(3) 假定一天中有 100 人次摸奖,试从概率的角度估算一下这个摊主一个月(按 30 天计)能赚多少钱?18.设S为满足下列两个条件的实数所构成的集合:∈S.① 1∉S;②若a∈S,则11−a解答下列问题:(1) 若数列{2⋅(−1)n}中的项都在S中,求S中所含元素个数最少的集合S∗;(2) 在集合S∗中,任取三个元素a,b,c,求使a⋅b⋅c=−1的概率;(3) 集合S中所含元素的个数一定是3n(n∈N∗)吗?若是,请给出证明;若不是,请说明理由.19.从含有两件正品a1,a2和一件次品b1的3件产品中每次任取1件,连续取两次.(1) 若每次取出后不放回,连续取两次,求取出的产品中恰有一件是次品的概率;(2) 若每次取出后又放回,求取出的两件产品中恰有一件是次品的概率.20.2019年,我国施行个人所得税专项附加扣除办法,涉及子女教育、继续教育、大病医疗、住房贷款利息或者住房租金、赡养老人等六项专项附加扣除.某单位老、中、青员工分别有72,108,120人,现采用分层抽样的方法,从该单位上述员工中抽取25人调查专项附加扣除的享受情况.(1) 应从老、中、青员工中分别抽取多少人?(2) 抽取的25人中,享受至少两项专项附加扣除的员工有6人,分别记为A,B,C,D,E,F.享受情况如下表,其中“○”表示享受”ד表示不享受.现从这6人中随机抽取2人接受采访.(i)试用所给字母列举出所有可能的抽取结果;(ii)设M为事件"抽取的2人享受的专项附加扣除至少有一项相同",求事件M发生的概率.21.某市政府为减轻汽车尾气对大气的污染,保卫蓝天,鼓励广大市民使用电动交通工具出行,决定为电动车(含电动自行车和电动汽车)免费提供电池检测服务.现从全市已挂牌照的50000辆电动车中随机抽取100辆委托专业机构免费为它们进行电池性能检测,电池性能分为需要更换、尚能使用、较好、良好四个等级,并分成电动自行车和电动汽车两个群体分别进行统计,统计结果如图所示.(1) 采用分层随机抽样的方法从电池性能较好的电动车中随机抽取9辆,再从这9辆车中随机抽取2辆,求至少有1辆为电动汽车的概率;(2) 为进一步提高市民对电动车的使用热情,市政府准备为所有电动车车主发放补助,标准如下:①每辆电动自行车补助300元;②每辆电动汽车补助500元;③对电池需要更换的电动车每辆额外补助400元.试求抽取的100辆电动车执行此方案的预算,并用样本估计总体,估计市政府执行此方案的预算.22.有A,B,C,D四位贵宾,应分别坐在a,b,c,d四个席位上,现在这四人均未留意,在四个席位上随便就座时.(1) 求这四人恰好都坐在自己的席位上的概率;(2) 求这四人恰好都没坐在自己的席位上的概率;(3) 求这四人恰好有1位坐在自己的席位上的概率.答案一、选择题(共10题)1. 【答案】A【知识点】事件的相互独立性2. 【答案】D【知识点】事件的相互独立性3. 【答案】B【解析】8000×(1−2%)=7840(件).【知识点】频率与概率4. 【答案】B【解析】同时掷两个质地均匀的骰子,共有6×6=36种不同的结果,其中向上点数之积为12的基本事件有(2,6),(3,4),(4,3),(6,2)共4个,所以P=436=19.【知识点】古典概型5. 【答案】B【知识点】古典概型6. 【答案】D【知识点】事件的相互独立性7. 【答案】B【解析】该厂产品的不合格率为2%,按照概率的意义,8000件产品中次品的件数约为8000×2%=160.【知识点】频率与概率8. 【答案】B【解析】由题可知,摸出红球有两种情况,第一种:从甲箱中摸出红球,概率为610×26=15,第二种:从乙箱中摸出红球,概率为810×46=815,所以摸出红球的概率为15+815=1115,故选:B.【知识点】古典概型9. 【答案】B【解析】至少有 1 个白球和全是黑球不同时发生,且一定有一个发生.故②中两事件是对立事件.③④不是互斥事件,①是互斥事件,但不是对立事件,因此是对立事件的只有②. 【知识点】事件的关系与运算10. 【答案】C【解析】频率指在相同条件下重复试验,事件 A 出现的次数除以总数,它是变化的.概率指在大量重复进行同一个实验时,事件 A 发生的频率总接近于某个常数,这个常数就是事件 A 发生的概率,它是不变的. 故选C .【知识点】频率与概率二、填空题(共6题) 11. 【答案】 11105【知识点】古典概型12. 【答案】 (43,32]【解析】由题意可得 {0<P (A )<1,0<P (B )<1,P (A )+P (B )≤1,所以 {0<2−a <1,0<3a −4<1,2a −2≤1,解得 43<a ≤32.【知识点】事件的关系与运算13. 【答案】 15【解析】记三名男生分别为 A 1,A 2,A 3,三名女生分别为 B 1,B 2,B 3,从 6 名学生中任选 2 名共有 15 种不同的结果,其中 2 名都是女生的结果有 3 种,故概率为 315=15. 【知识点】古典概型14. 【答案】 2425【解析】设甲及格为事件 A ,乙及格为事件 B ,丙及格为事件 C ,则 P (A )=45,P (B )=25,P (C )=23,所以 P(A)=15,P(B)=35,P(C)=13,则 P(ABC)=P(A)P(B)P(C)=15×35×13=125, 所以所求概率 P =1−P(ABC)=2425. 【知识点】独立事件积的概率15. 【答案】 13【解析】掷一颗质地均匀的骰子,基本事件总数 n =6, 则出现向上点数大于 4 包含的基本事件个数 m =2, 所以出现向上点数大于 4 的概率为 P =m n=26=13.【知识点】古典概型16. 【答案】0.2【知识点】古典概型三、解答题(共6题) 17. 【答案】(1) 把 3 个黄色乒乓球标记为 A ,B ,C ,3 个白色的乒乓球标记为 1,2,3.从 6 个球中随机摸出 3 个的基本事件为:ABC ,AB1,AB2,AB3,AC1,AC2,AC3,A12,A13,A23,BC1,BC2,BC3,B12,B13,B23,C12,C13,C23,123,共 20 个. 事件 E =‘‘摸出的 3 个球为白球",事件 E 包含的基本件有 1 个,即摸出 1,2,3 号 3 个球, 所以 P (E )=120=0.05.(2) 事件 F =‘‘摸出的 3 个球为 2 个黄球 1 个白球", 事件 F 包含的基本事件有 9 个, 所以 P (F )=920=0.45.(3) 事件 G =‘‘摸出的 3 个球为同一颜色"=‘‘摸出的 3 个球为白球或摸出的 3 个球为黄球", 事件 G 包含的基本事件有 2 个, 所以 P (G )=220=0.1,假定一天中有 100 人次摸奖,由摸出的 3 个球为同一颜色的概率可估计事件 G 发生 10 次,不发生 90 次.则摊主一天可赚 90×1−10×5=40 元,每月可赚 30×40=1200 元. 【知识点】古典概型18. 【答案】(1) 因为 a n =2⋅(−1)n , 所以 a 1=−2,a 2=2,a 3=−2, 即 S 中必有元素 2,−2, 因为 2∈S , 所以11−2=−1∈S ;因为 −1∈S , 所以 11−(−1)=12∈S ; 因为 12∈S , 所以11−12=2∈S ,所以 S 中至少含有元素 2,−1,12, 同理,由 −2∈S ,可得,13∈S ,32∈S ,所以 S 中至少含有元素 −2,13,32,综上,S 中所含元素个数最少的集合 S ∗={2,−1,12,−2,13,32}.(2) 在 S ∗ 中任取 3 个元素 a ,b ,c ,共有 C 63=20(种)取法,而使 a ⋅b ⋅c =−1 的只有 2,−1,12 和 −2,13,32 两种取法, 所以使 a ⋅b ⋅c =−1 的概率为220=110.(3) 一定是 3n (n ∈N ∗).理由如下: 因为由 a ∈S 且 1∉S ⇒a ≠1, 所以由 a ∈S ⇒11−a ∈S ⇒11−11−a∈S ⇒1−1a∈S ⇒11−(1−1a)∈S ⇒a ∈S ,即当 a ∈S 时,11−a ∈S ,1−1a ∈S . 下面证明:a ,11−a ,1−1a 互不相等,若 a =11−a ,则 a −a 2=1,即 a 2−a +1=0,无解,所以 a ≠11−a ;若a=1−1a ,则a2−a+1=0,无解,所以a≠1−1a;若11−a =1−1a,则a2−a+1=0,无解,所以11−a∉1−1a.综上,a,11−a ,1−1a互不相等,所以集合S中所含元素的个数一定是3n(n∈N∗).【知识点】古典概型、元素和集合的关系19. 【答案】(1) 每次取一件,取后不放回地连续取两次,样本空问Ω={(a1,a2),(a1,b1),(a2,a1),(a2,b1),(b1,a1),(b1,a2)},其中小括号内左边的字母表示第1次取出的产品,右边的字母表示第2次取出的产品,由6个样本点组成,而且这些样本点的出现是等可能的.用A表示“取出的两件中恰好有一件次品”这一事件,则A={(a1,b1),(a2,b1),(b1,a1),(b1,a2)}.事件A由4个样本点组成,所以P(A)=46=23.(2) 有放回地连续取出两次,样本空间Ω={(a1,a1),(a1,a2),(a1,b1),(a2,a1),(a2,a2),(a2,b1),(b1,a1),(b1,a2),(b1,b1)},共9个样本点,由于每一件产品被取到的机会均等,因此这些样本点的出现是等可能的.用B表示“恰有一件次品”这事件,则B={(a1,b1),(a2,b1),(b1,a1),(b1,a2)}.事件B由4个样本点组成,因而P(B)=49.【知识点】古典概型20. 【答案】(1) 由已知,得老、中、青员工人数之比为6:9:10,由于采用分层抽样的方法从中抽取25位员工,因此应从老、中、青员工中分别抽取6人,9人,10人.(2) (i)从已知的6人中随机抽取2人的所有可能结果为(A,B),(A,C),(A,D),(A,E),(A,F),(B,C),(B,D),(B,E),(B,F),(C,D),(C,E),(C,F),(D,E),(D,F),(E,F)共15种.(ii)由题中表格知,符合题意的所有可能结果为(A,B),(A,D),(A,E),(A,F),(B,D),(B,E),(B,F),(C,E),(C,F),(D,F),(E,F),共11种.所以事件M发生的概率为1115.【知识点】古典概型、分层抽样21. 【答案】(1) 根据分层随机抽样的原理,电动自行车应抽取2020+25×9=4(辆),分别记为a1,a2,a3,a4,电动汽车应抽取2520+25×9=5(辆),分别记为b1,b2,b3,b4,b5.从9辆电动车中抽取2辆,共有36种抽法,其中2辆均为电动自行车的有a1a2,a1a3,a1a4,a2a3,a2a4,a3a4,共6种.设“从这9辆车中随机抽取2辆,至少有1辆为电动汽车”为事件A,则P(A)=1−P(A)=1−636=56.(2) 由题图可知,抽取的这100辆电动车中电动自行车有60辆,电动汽车有40辆,其中电池需要更换的电动自行车有8辆,电动汽车有1辆.由补助方案可知,这100辆电动车共需补助60×300+40×500+9×400=41600(元).由样本估计总体,市政府执行此方案的预算为41600100×50000=20800000(元).【知识点】古典概型、概率的应用22. 【答案】(1) 将A,B,C,D四位贵宾就座情况用下面图形表示出来:如图所示,本题中的样本点的总数为24.设事件A为“这四人恰好都坐在自己的席位上”,则事件A只包含1个样本点,所以P(A)=124.(2) 设事件B为“这四个人恰好都没有坐在自己的席位上”,则事件B包含9个样本点,所以P(B)=924=38.(3) 设事件C为“这四个人恰有1位坐在自己席位上”,则事件C包含8个样本点,所以P(C)=824=13.【知识点】古典概型。
人教版-九年级数学上册《第二十五章 随机事件与概率》同步练习题及答案 学校 班级 姓名 学号 基础巩固练习一、选择题1.下列事件中,是必然事件的是( )A.明天太阳从东方升起B.打开电视机,正在播放体育新闻C.射击运动员射击一次,命中靶心D.经过有交通信号灯的路灯,遇到红灯2.用长分别为3cm ,4cm ,5cm 的三条线段可以围成直角三角形的事件是( )A.必然事件B.不可能事件C.随机事件D.以上都不是3.电脑福利彩票中有两种方式“22选5”和“29选7”,若选种号码全部正确则获一等奖,你认为获一等奖机会大的是( )A.“22选5”B.“29选7”C.一样大D.不能确定4.事件①:射击运动员射击一次,命中靶心;事件②:购买一张彩票,没中奖,则( )A.事件①是必然事件,事件②是随机事件B.事件①是随机事件,事件②是必然事件C.事件①和②都是随机事件D.事件①和②都是必然事件5.下列事件中,必然事件是( )A.掷一枚硬币,正面朝上B.任意三条线段可以组成一个三角形C.投掷一枚质地均匀的骰子,掷得的点数是奇数D.抛出的篮球会下落6.下列图形:从中任取一个是中心对称图形的概率是( )A.14B.12C.34D.1 7.在不透明的袋子装有9个白球和一个红球,它们除颜色外其余都相同,从袋中随意摸出一个球,则下列说法中正确的是( )A.“摸出的球是白球”是必然事件B.“摸出的球是红球”是不可能事件C.摸出的球是白球的可能性不大D.摸出的球有可能是红球8.抛掷一枚质地均匀的硬币,若连续4次均得到“正面朝上”的结果,则对于第5次抛掷结果的预测,下列说法中正确的是( )A.出现“正面朝上”的概率等于1 2B.一定出现“正面朝上”C.出现“正面朝上”的概率大于1 2D.无法预测“正面朝上”的概率9.小燕一家三口在商场参加抽奖活动,每人只有一次抽奖机会:在一个不透明的箱子中装有红、黄、白三种球各1个,这些球除颜色外无其他差别,从箱子中随机摸出1个球,然后放回箱子中轮到下一个人摸球,三人摸到球的颜色都不相同的概率是( )A.127 B.13C.19D.2910.笔筒中有10支型号、颜色完全相同的铅笔,将它们逐一标上1~10的号码,若从笔筒中任意抽出一支铅笔,则抽到编号是3的倍数的概率是( )A.110 B.15C.310D.25二、填空题11.任意掷一枚质地均匀的骰子,比较下列事件发生的可能性大小,将它们的序号按从小到大排列为.①面朝上的点数小于2;②面朝上的点数大于2;③面朝上的点数是奇数.12.甲、乙两人轮流做下面的游戏:掷一枚均匀的骰子(每上面分别标有1,2,3,4,5,6这六个数字),如果朝上的数字大于3,则甲获胜,如果朝上的数字小于3,则乙获胜,你认为获胜的可能性比较大的是.13.如图,在4×4正方形网格中,黑色部分的图形构成一个轴对称图形,现在任选取一个白色的小正方形并涂黑,使图中黑色部分的图形仍然构成一个轴对称图形的概率是.14.已知四个点的坐标分别是(﹣1,1),(2,2),(23,32),(﹣5,﹣15),从中随机选取一个点,其在反比例函数y=1x的图象上的概率是.15.从1,2,3,4,5,6,7,8,9这九个自然数中,任取一个数是奇数的概率是______.16.如图,一只小鸟自由自在的在空中飞翔,然后随意落在如图所示的图形表示的空地上(每个方格除颜色外完全相同),则落在图中阴影部分的概率是.三、解答题17.从分别标有数字1~10的10张卡片中任意选取两张(不放回),下列事件中,哪些是“必然发生”的?哪些是“随机发生”的?哪些是“不可能发生”的?(1)两数之和是整数.(2)两数不相同.(3)两数的积是偶数.(4)两数的积是负数.(5)第一个数是第二个数的2倍.18.世界杯决赛分成8个小组,每小组4个队,小组进行单循环(每个队都与该小组的其他队比赛一场)比赛,选出2个队进入16强,胜一场得3分,平一场得1分,负一场得0分.(1)求每小组共比赛多少场.(2)在小组比赛中,现有一队得到6分,该队出线是一个确定事件,还是不确定事件?19.甲、乙两人玩一种游戏:共20张牌,牌面上分别写有-10,-9,-8,…,-1,1,2,…,10,洗好牌后,将牌背面朝上,每人从中任意抽取3张牌,然后将牌面上的三个数相乘,结果较大者为胜.(1)当抽取到哪三张牌时,不管对方抽到其他怎样的三张牌,你都会赢?(2)当抽取到哪三张牌时,不管对方抽到其他怎样的三张牌,你都会输?(3)结果等于6的可能性有几种?请把每一种都写出来.20.在“谁转出的‘四位数’大”比赛中,小明和小新分别转动标有0-9十个数字的转盘四次,每次将转出的数填入表示四位数的四个方格中的任意一个,比较两人得到的四位数,谁得到的数大谁获胜.已知他们四次转出的数字如下表:(1)小明和小新转出的四位数最大分别是多少?(2)小明可能得到的四位数中“千位数字是9”的有哪几个?小新呢?(3)小明一定能获胜吗?请说明理由.能力提升练习一、选择题1.下列关于概率的描述属于“等可能性事件”的是( )A.交通信号灯有“红、绿、黄”三种颜色,它们发生的概率B.掷一枚图钉,落地后钉尖“朝上”或“朝下”的概率C.小亮在沿着“直角三角形”三边的小路上散步,他出现在各边上的概率D.小明用随机抽签的方式选择以上三种答案,则A 、B 、C 被选中的概率2.从n 个苹果和4个雪梨中,任选1个,若选中苹果的概率是35,则n 的值是( ) A.8 B.6 C.4 D.23.如图,在两个同心圆中,四条直径把大圆分成八等份,若往圆面投掷飞镖,则飞镖落在黑色区域的概率是( )A.15B.310C.13D.124.现有四张扑克牌:红桃A 、黑桃A 、梅花A 和方块A,将这四张牌洗匀后正面朝下放在桌面上,再从中任意抽取一张牌,则抽到红桃A 的概率为( )A.1B.14C.12D.345.正方形地板由9块边长均相等的小正方形组成,米粒随机地撒在如图所示的正方形地板上,那么米粒最终停留在黑色区城的概率是( )A.13B.29C.23D.496.小明把如图所示的3×3的正方形网格纸板挂在墙上玩飞镖游戏(每次飞镖均落在纸板上,且落在纸板的任何一个点的机会都相等),则飞镖落在阴影区域(四个全等的直角三角形的每个顶点都在格点上)的概率是()A. B. C. D.二、填空题7.小芳同学有两根长度为4cm、10cm的木棒,她想钉一个三角形相框,桌上有五根木棒供她选择(如图所示),从中任选一根,能钉成三角形相框的概率是.8.一只蚂蚁在如图所示的七巧板上任意爬行,已知它停在这副七巧板上的任何一点的可能性都相同,那么它停在1号板上的概率是.9.从数-2,-12,0,4中任取一个数记为m,再从余下的三个数中,任取一个数记为n,若k=mn,则正比例函数y=kx的图象经过第三、第一象限的概率是.10.在﹣9,﹣6,﹣3,﹣1,2,3,6,8,11这九个数中,任取一个作为a值,能够使关于x的一元二次方程x2+ax+9=0有两个不相等的实数根的概率是.三、解答题11.足球世界杯比赛分成8个小组,每个小组4个队,小组内进行单循环比赛(每个队都与该小组的其他队比赛一场),选出2个队进入16强.比赛规定胜一场得3分,平一场得1分,负一场得0分.请问:(1)每个小组共比赛多少场?(2)在小组比赛中,有一个队比赛结束后积分为6分,该队出线这一事件是什么事件?12.下列事件,哪些是必然发生的事件?哪些是不可能发生的事件?哪些是随机事件?(1)有一副洗好的只有数字1~10的10张扑克牌。
概率单元测试题及答案大全一、选择题1. 一个袋子里有3个红球和2个蓝球,随机取出一个球,下列哪个事件的概率最大?A. 取出红球B. 取出蓝球C. 取出白球D. 取出黑球答案:A2. 投掷一枚公正的硬币,出现正面的概率是多少?A. 0.2B. 0.5C. 0.8D. 1答案:B3. 如果事件A和事件B是互斥的,且P(A)=0.3,P(B)=0.4,那么P(A∪B)是多少?A. 0.1B. 0.3C. 0.7D. 无法确定答案:C二、填空题4. 一个骰子有6个面,每个面出现的概率是________。
答案:1/65. 如果一个事件的概率为0,那么这个事件是________。
答案:不可能事件6. 一个事件的概率为1,表示这个事件是________。
答案:必然事件三、计算题7. 一个袋子里有5个白球和5个黑球,随机取出2个球,求取出的2个球都是白球的概率。
答案:首先计算取出第一个白球的概率为5/10,然后计算在取出第一个白球后,再取出第二个白球的概率为4/9。
所以,两个都是白球的概率为(5/10) * (4/9) = 2/9。
8. 一个班级有30个学生,其中15个男生和15个女生。
随机选择3个学生,求至少有1个女生的概率。
答案:首先计算没有女生的概率,即选择3个男生的概率为(15/30) * (14/29) * (13/28)。
然后用1减去这个概率,得到至少有1个女生的概率为1 - [(15/30) * (14/29) * (13/28)]。
四、简答题9. 什么是条件概率?请给出一个例子。
答案:条件概率是指在某个事件已经发生的条件下,另一个事件发生的概率。
例如,如果我们知道一个班级中有50%的学生是左撇子,那么在随机选择一个学生是左撇子的条件下,这个学生是数学专业的学生的概率。
10. 请解释什么是独立事件,并给出一个例子。
答案:独立事件是指一个事件的发生不影响另一个事件发生的概率。
例如,投掷一枚公正的硬币两次,第一次的结果不会影响第二次的结果。
第26章随机事件的概率检测题(时间:90分钟,满分:100分)一、选择题(每小题3分,共30分)1.小明和小亮做游戏,先是各自背着对方在纸上写一个正整数,然后都拿给对方看.他们约定:若两人所写的数都是奇数或都是偶数,则小明获胜;若两个人所写的数一个是奇数,另一个是偶数,则小亮获胜.这个游戏()A.对小明有利B.对小亮有利C.游戏公平D.无法确定对谁有利2.随机掷两枚硬币,落地后全部正面朝上的概率是()A. B. C. D.3.某班共有41名同学,其中有2名同学习惯用左手写字,其余同学都习惯用右手写字,老师随机请1名同学解答问题,习惯用左手写字的同学被选中的概率是()A. B. C. D.4.某市决定从桂花、菊花、杜鹃花中随机选取一种作为市花,选到杜鹃花的概率是( ) A.1 B. C. D.05.从只装有4个红球的袋中随机摸出一球,若摸到白球的概率是,摸到红球的概率是,则()A. B. C.14 D.146.连掷两次骰子,它们的点数都是4的概率是()A. B. C. D.3617.口袋中有9个红球和3个白球,则摸出一个球是白球的概率是()A. B. C. D.8.甲、乙、丙三人进行乒乓球比赛,规则是:两人比赛,另一人当裁判,输者将在下一局中担任裁判,每一局比赛没有平局.已知甲、乙各比赛了4局,丙当了3次裁判.问第2局的输者是()A.甲B.乙C.丙D.不能确定9.在一张边长为的正方形纸上做扎针随机试验,纸上有一个半径为的圆形阴影区域,则针头扎在阴影区域内的概率为()A. B. C. D.10.做重复试验:抛掷同一枚啤酒瓶盖次.经过统计得“凸面向上”的频率约为,则可以由此估计抛掷这枚啤酒瓶盖出现“凹面向上”的概率约为()二、填空题(每小题3分,共24分)11.一个质地均匀的小正方体的六个面上分别标有数字:.如果任意抛掷小正方体两次,那么得到的数字和是1的概率为_______.12.一水塘里有鲤鱼、鲫鱼、鲢鱼共10 000尾,一渔民通过多次捕捞试验后发现,鲤鱼、鲫鱼出现的频率分别是和,则这个水塘里大约有鲢鱼_________尾.13.小芳掷一枚硬币次,有次正面朝上,当她掷第次时,正面向上的概率为______.14.有五张分别印有圆、等腰三角形、矩形、菱形、正方形图案的卡片(卡片中除图案不同外,其余均相同),现将有图案的一面朝下任意摆放,从中任意抽取一张,抽到有中心对称图案的卡片的概率是________.15.如图所示,小区公园里有一块圆形地面被黑白石子铺成了面积相等的八部分,阴影部分是黑色石子,小华随意向其内部抛一个小球,则小球落在黑色石子区域内的概率是________.根据以上数据可以估计,17.如图所示,在两个同心圆中,三条直径把大圆分成六等份,若在这个圆面上均匀地撒一把豆子,则豆子落在阴影部分的概率是_________.18.在一个不透明的布袋中装有红色、白色玻璃球共40个,除颜色外其他完全相同.小明通过多次摸球试验后发现,其中摸到红色球的频率稳定在15%左右,则口袋中红色球可能有_____个.三、解答题(共46分) 19.(5分)一只小狗在如图所示的方砖上走来走去,求最终停在阴影方砖上的概率是多少?20.(6分)如图所示,有一个转盘,转盘分成4指针的位置固定,转动转盘后任其自由停止,其中的某个扇形会恰好停在指针所指的位置(指针指向两个扇形的交线时,当作指向右边的扇形),求下列事件的概率:(1)指针指向绿色;(2)指针指向红色或黄色;(3)指针不指向红色.21.(7分)有形状、大小和质地都相同的四张卡片,正面分别写有和一个等式,将这四张A 、B 、C 、D表示);(2)小明和小强按下面规则做游戏:抽取的两张卡片上若等式都不成立,则小明胜,若至少有一个等式成立,则小强胜.你认为这个游戏公平吗?若公平,请说明理由;若不公平,则这个规则对谁有利,为什么?22.(7分)在一个不透明的盒子里,装有三个分别写有数字的小球,它们的形状、大小、质地等完全相同,先从盒子里随机取出一个小球,记下数字后放回盒子,摇匀后再随机取出一个小球,记下数字.请你用画树形图或列表的方法,求下列事件的概率:(1)两次取出小球上的数字相同;(2)两次取出小球上的数字之和大于10.23.(7分)“学雷锋活动日”这天,阳光中学安排七、八、九年级部分学生代表走出校园参与活动,活动内容有:A .打扫街道卫生;B .慰问孤寡老人;C .到社区进行义务文艺演出.学校要求一个年级的学生代表只负责一项活动内容.(1)若随机选一个年级的学生代表和一项活动内容,请你用列表法(或画树形图)表示所有可能出现的结果;(2)求九年级学生代表到社区进行义务文艺演出的概率.24.(7分)小颖和小红两位同学在学习“概率”时,做投掷骰子(质地均匀的正方体)试验,他们共做了60次试验,实验的结果如下:(1)计算“3点朝上”的频率和“5点朝上”的频率.第19题图第17题图(2)小颖说:“根据上述试验,一次试验中出现5点朝上的概率最大”;小红说:“如果投掷600次,那么出现6点朝上的次数正好是100次”.小颖和小红的说法正确吗?为什么?25.(7分)把一副扑克牌中的三张黑桃牌(它们的正面牌数字分别为3、4、5)洗匀后正面朝下放在桌面上.小王和小李玩摸牌游戏,游戏规则如下:先由小王随机抽取一张牌,记下牌面数字后放回,洗匀后正面朝下,再由小李随机抽取一张牌,记下牌面数字.当两张牌的牌面数字相同时,小王赢;当两张牌的牌面数字不同时,小李赢.现请你利用树状图或列表法分析游戏规则对双方是否公平?并说明理由.第26章随机事件的概率检测题参考答案1.C 解析:根据游戏规则,总结果有4种,分别是奇偶,偶奇,偶偶,奇奇,由此可得两人获胜的概率相等,故游戏公平.2.D 解析:随机掷两枚硬币,有四种可能:(正,正),(正,反),(反,正),(反,反);落地后全部正面朝上的情况只有(正,正),所以落地后全部正面朝上的概率是.3.C4.C 解析:因为是随机选取的,故选取桂花、菊花、杜鹃花的可能性是相等的.5.B 解析:因为袋中只有红球,故摸到白球是不可能事件,摸到红球是必然事件.6.D 解析:连掷两次骰子出现的点数情况,共36种:(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(2,2),(2,3),(2,4),(2,5),(2,6),(3,1),(3,2),(3,3),(3,4),(3,5),(3,6),(4,1),(4,2),(4,3),(4,4),(4,5),(4,6),(5,1),(5,2),(5,3),(5,4),(5,5),(5,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6).而点数都是4的只有(4,4)一种.7.B 解析:摸出一个球是白球的概率为8.C 解析:设总共赛了局,则有,说明甲、乙、丙三人共赛了5局.而丙当了3次裁判,说明丙赛了两局,则丙和甲,丙和乙各赛了一局,那么甲和乙同时赛了3局.甲和乙同赛不可能出现在任何相邻的两局中,则甲、乙两人同时比赛在第一、三、五局中,第三局丙当裁判,则第二局中丙输了.9.C 解析:正方形的面积为, 圆形阴影区域的面积为, 针头扎在阴影区域内的概率为.10.D 解析:在大量重复试验下,随机事件发生的频率可以作为概率的估计值,因此抛掷这枚啤酒瓶盖出现“凹面向上”的概率约为.11.0 解析:任意抛掷小正方体两次,得到的数字和可能是2到12中的任何一个数,不可能是1.12. 解析:水塘里鲢鱼的尾数为.13. 解析:掷一枚硬币正面向上的概率为,概率是个固定值,不随试验次数的变化而变化.14. 解析:在圆、等腰三角形、矩形、菱形、正方形5种图形中,只有等腰三角形不是中心对称图形,所以抽到有中心对称图案的卡片的概率是.15. 解析:圆形地面被分成面积相等的八部分,其中阴影占四部分,所以小球落在黑色石子区域内的概率是.16.0.8 解析:由表知,种子发芽的频率在0.8左右摆动,并且随着统计量的增加这种规律逐渐明显,所以可以把0.8作为该玉米种子发芽概率的估计值.17. 解析:由图可知阴影部分的面积是大圆面积的一半,所以豆子落在阴影部分的概率是.18.6 解析:.19.解:因为方砖共有15块,而阴影方砖有5块,所以停在阴影方砖上的概率是.20.解:转一次转盘,它的可能结果有4种:红、红、绿、黄,并且各种结果发生的可能性相等.(1)(指针指向绿色);(2)(指针指向红色或黄色);(3)(指针不指向红色).(2)游戏不公平.这个规则对小强有利.理由如下:∵,=,,∴ 这个规则对小强有利.22.解:树形图如下:(1);(2).23.解:(1)画树形图如下:(2)九年级学生代表到社区进行义务文艺演出的概率为.24.解:(1)“3点朝上”的频率是;“5点朝上”的频率是.(2)小颖的说法是错误的,因为“5点朝上”的频率最大并不能说明“5点朝上”这一事 件发生的概率最大,只有当试验的次数足够大时,该事件发生的频率稳定在事件发生的概 率附近;小红的说法也是错误的,因为事件的发生具有随机性,所以“6点朝上”的次数 不一定是100次.25.解:游戏规则不公平.理由如下:故,.∵ <,∴ 此游戏规则不公平,小李赢的可能性大.开始6 7 6 2 7 6 7 7 6 2 2 2 第22题答图。
一、选择题(本大题共10小题,共50.0分)1.从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为()A. 110B. 15C. 310D. 25【答案】D【解析】【分析】本题考查概率的求法,解题时要认真审题,注意列举法的合理运用,属于基础题.用列举法求出基本事件总数和抽得的第一张卡片上的数大于第二张卡片上的数包含的基本事件个数,由此能求出概率.【解答】解:有放回地从5张标签随机地选取两张标签的基本事件有(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5),(1,1),(2,2),(3,3),(4,4),(5,5),共有25种.抽得的第一张卡片上的数大于第二张卡片上的数包含的基本事件有:(2,1),(3,1),(3,2),(4,1),(4,2),(4,3),(5,1),(5,2),(5,3),(5,4),共有10个基本事件,∴抽得的第一张卡片上的数大于第二张卡片上的数的概率1025=25.故选D.2.从甲、乙等5名学生中随机选出2人,则甲被选中的概率为()A. 15B. 25C. 825D. 925【答案】B【解析】【分析】本题考查概率的求法,是基础题,解题时要认真审题,注意等可能事件概率计算公式的合理运用.从甲、乙等5名学生中随机选出2人,先求出基本事件总数,再求出甲被选中包含的基本事件的个数,同此能求出甲被选中的概率.【解答】解:从甲、乙等5名学生中随机选出2人,设另外三位学生分别为A,B,C,基本事件有(甲、乙),(甲、A)、(甲、B)、(甲、C)、(乙、A)、(乙、B)、(乙、C)、(A,B),(A,C)、(B,C)共10种,甲被选中包含的基本事件的个数有4个,∴甲被选中的概率P=410=25.故选B.3.从装有两个红球和三个黑球的口袋里任取两个球,那么互斥而不对立的两个事件是()A. “至少有一个黑球”与“都是黑球”B. “至少有一个黑球”与“至少有一个红球”C. “恰好有一个黑球”与“恰好有两个黑球”D. “至少有一个黑球”与“都是红球”【答案】C【解析】【分析】本题考查互斥而不对立事件的判断,解题时要认真审题,注意对立事件、互斥事件的定义的合理运用,属于基础题.利用对立事件、互斥事件的定义求解.【解答】解:从装有两个红球和三个黑球的口袋里任取两个球,在A中,“至少有一个黑球”与“都是黑球”能同时发生,不是互斥事件,故A错误;在B中,“至少有一个黑球”与“至少有一个红球”能同时发生,不是互斥事件,故B 错误;在C中,“恰好有一个黑球”与“恰好有两个黑球”不能同时发生,但是还可能恰好有两个红球发生,所以它们是互斥而不对立的两个事件,故C正确;在D中,“至少有一个黑球”与“都是红球”是对立事件,故D错误.故选C.4.掷一枚均匀的硬币3次,出现正面向上的次数恰好为两次的概率为()A. 38B. 14C. 58D. 12【答案】A【解析】【分析】本题考查古典概率的求法,是基础题,解题时注意等可能事件概率计算公式的合理运用.掷一枚均匀的硬币3次,利用列举法求出共有8种不同的情形,再求出满足出现正面向上的次数恰好为两次的基本事件个数,由此能求出出现正面向上的次数恰好为两次的概率.【解答】解:掷一枚均匀的硬币3次,共有8种不同的情形:正正正,正正反,正反正,反正正,正反反,反正反,反反正,反反反,其中满足条件的有3种情形:正正反,正反正,反正正,故所求的概率P=38.故选A.5.已知a∈{0,1,2},b∈{−1,1,3,5},则函数f(x)=ax2−2bx在区间(1,+∞)上为增函数的概率是()A. 512B. 13C. 14D. 16【答案】A【解析】【分析】本题主要考查古典概型的计算与应用,属于中档题,解题时要认真审题,注意列举法的合理运用.先求出基本事件总数n=3×4=12,再求出函数f(x)=ax2−2bx在区间(1,+∞)上为增函数满足条件的基本事件个数,由此能求出函数f(x)=ax2−2bx在区间(1,+∞)上为增函数的概率.【解答】解:∵a∈{0,1,2},b∈{−1,1,3,5},∴基本事件总数n=3×4=12.函数f(x)=ax2−2bx在区间(1,+∞)上为增函数,由条件可知a≥0,①当a=0时,f(x)=−2bx,符合条件的只有:(0,−1),即a=0,b=−1;②当a>0时,需要满足ba≤1,符合条件的有:(1,−1),(1,1),(2,−1),(2,1),共4种.∴函数f(x)=ax2−2bx在区间(1,+∞)上为增函数的概率是P=512.故选A.6.同时掷两个骰子,向上的点数之和是6的概率是()A. 118B. 19C. 536D. 12【答案】C【解析】解:同时掷两枚骰子,基本事件总数n=6×6=36,向上的点数和是6包含的基本事件有:(1,5),(5,1),(2,4),(4,2),(3,3),共有5个,∴向上的点数和是6的概率为p=536.故选:C.【分析】先求出基本事件总数n=6×6=36,再利用列举法求出向上的点数和是6包含的基本事件个数,由此能求出向上的点数和是6的概率.本题考查概率的求法,是基础题,解题时要认真审题,注意列举法的合理运用.7.某小组有3名男生和2名女生,从中任选2名学生参加演讲比赛,那么下列两个事件是对立事件的是()A. “至少1名男生”与“至少1名女生”B. “恰好1名男生”与“恰好2名女生”C. “至少1名男生”与“全是男生”D. “至少1名男生”与“全是女生”【答案】D【解析】【分析】本题考查命题真假的判断,考查互斥事件、对立事件的定义等基础知识,考查运算求解能力,属于基础题.逐项分析选项中两个命题的关系.【解答】解:某小组有3名男生和2名女生,从中任选2名学生参加演讲比赛,在A中,“至少1名男生”与“至少有1名是女生”能同时发生,不是互斥事件,故A 错误;在B中,“恰好有1名男生”与“恰好2名女生”是互斥不对立事件,故B错误;在C中,“至少1名男生”与“全是男生”能同时发生,不是互斥事件,故C错误;在D中,“至少1名男生”与“全是女生”是对立事件,故D正确.故选D.8.从装有3个红球和3个白球的口袋里任取3个球,那么互斥而不对立的两个事件是()A. 至少2个白球,都是红球B. 至少1个白球,至少1个红球C. 至少2个白球,至多1个白球D. 恰好1个白球,恰好2个红球【答案】A【解析】【分析】本题考查了互斥事件和对立事件的概念,属于基础题.分析出从装有3个红球和3个白球的口袋内任取3个球的所有不同情况,然后利用互斥事件和对立事件的概念逐一核对四个选项即可得到答案.【解答】解:从装有3个红球和3个白球的口袋内任取3个球,取球情况有:3个球都是红球;3个球中1个红球2个白球;3个球中2个红球1个白球;3个球都是白球.选项A中“至少2个白球“,与”都是红球“互斥而不对立,选项B中“至少有一个白球”与“至少有一个红球”的交事件是“有1白球2个红球”或“有2白球1个红球”;选项C中“至少有2个白球”与“至多1个白球”是对立事件;选项D中“恰有一个白球”和“恰有两个红球”既不互斥也不对立.故选:A.9.给出以下结论:①互斥事件一定对立.②对立事件一定互斥.③互斥事件不一定对立.④事件A与B互斥,则有P(A)=1−P(B).其中正确命题的个数为()A. 0个B. 1个C. 2个D. 3个【答案】C【解析】【分析】本题考查互斥事件与对立事件的关系及概率的关系,属于基础题.根据互斥事件和对立事件的关系,对题目中的命题进行分析、判断即可.【解答】解:①互斥事件不一定是对立事件,∴①错误;②对立事件一定是互斥事件,∴②正确;③互斥事件不一定是对立事件,∴③正确;④事件A与B互斥时,则有P(A)≤1−P(B),∴④错误;综上,正确的命题个数是2个.故选C.10.先后2次抛掷一枚骰子,将得到的点数分别记为a,b,两次点数互不影响,设三条线段的长分别为a,b和5,求这三条线段能围成等腰三角形(含等边三角形)的概率为()A. 736B. 1136C. 49D. 718【答案】D【解析】【分析】本题考查古典概型、列举法等基础知识,属于中档题.先后2次抛掷一枚骰子,得到的点数分别记为a,b,利用列举法求出(a,b)有36种,满足条件a,b,5的值分别作为三条线段的长,利用列举法求出三条线段能围成等腰三角形共有14种,由此能求出三条线段能围成等腰三角形的概率.解:先后2次抛掷一枚骰子,得到的点数分别记为a,b,则(a,b)有36种,分别为:(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(2,2),(2,3),(2,4),(2,5),(2,6),(3,1),(3,2),(3,3),(3,4),(3,5),(3,6),(4,1),(4,2),(4,3),(4,4),(4,5),(4,6),(5,1),(5,2),(5,3),(5,4),(5,5),(5,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6),满足条件a,b,5的值分别作为三条线段的长,三条线段能围成等腰三角形共有14种,分别为:(1,5),(5,1),(2,5),(5,2),(3,5),(5,3),(4,5),(5,4),(5,5),(6,5),(5,6),(3,3),(4,4),(6,6),所以三条线段能围成等腰三角形的概率p=1436=718.故选:D.二、不定项选择题(本大题共3小题,共12.0分)11.下列说法中正确的是()A. 若事件A与事件B是互斥事件,则P(A⋂B)=0B. 若事件A与事件B是对立事件:则P(A⋃B)=1C. 一个人打靶时连续射击三次,则事件“至少两次中靶”与事件“至多有一次中靶”是对立事件D. 把红、橙、黄3张纸牌随机分给甲、乙、丙3人,每人分得1张,则事件“甲分得的不是红牌”与事件“乙分得的不是红牌”是互斥事件【答案】ABC【解析】【分析】本题考查互斥事件和对立事件,属于一般题.由互斥事件和对立事件的概念可逐一判断结论.【解答】解:若事件A与事件B是互斥事件,则P(A⋂B)=0,故A正确;事件A与事件B是对立事件:则P(A⋃B)=1,故B正确;一个人打靶时连续射击三次,则事件“至少两次中靶”与事件“至多有一次中靶”是对立事件,故C正确;把红、橙、黄、3张纸牌随机地分发给甲、乙、丙三个人,每人分得1张,事件“甲分得的不是红牌”与事件“乙分得的不是红牌”可能同时发生,故它们不是互斥事件,D错误;综上,故选A、B、C.12.下列选项中,说法正确的是()A. 若向量a⃗//b⃗⃗,则存在唯一的实数λ使a⃗=λb⃗⃗;B. 对标有不同编号的6件正品和4件次品的产品进行检测,不放回地依次摸出2件.在第一次摸出正品的条件下,第二次也摸到正品的概率是59;C. 甲乙两队进行排球比赛,已知在一局比赛中甲队获胜的概率是23,没有平局.若采用三局两胜制比赛,即先胜两局者获胜且比赛结束,甲队获胜的概率等于2027;D. 已知向量a⃗⃗,b⃗⃗为非零向量,则“a⃗⃗,b⃗⃗的夹角为钝角”的充要条件是“a⃗⋅b⃗⃗<0”.【解析】【分析】本题考查命题的判断;考查两个方面的内容;A、D是向量的考查;B、C是概率的考查,为中档题.根据两个方面的知识分别分析即可.【解答】解:对于A,当两个向量都是0⃗⃗时,λ不唯一;对于D,当向量a⃗⃗,b⃗⃗为反向向量时,满足a⃗⋅b⃗⃗<0,此时夹角为180°不是钝角;对于B,根据条件概率的公式,设“第一次摸出正品”为事件A,“第二次摸出正品”为事件B,则P(AB)=610×59,P(A)=610,∴在第一次摸出正品的条件下,第二次也摸到正品的概率为:P(B|A)=P(AB)P(A)=610×59610=59.故B正确;对于C,甲队获胜分2种情况:①第1、2两局中连胜2场,概率为P1=23×23=49;②第1、2两局中甲队失败1场,而第3局获胜,概率为P2=C21·23(1−23)×23=827,因此,甲队获胜的概率为P=P1+P2=2027.故C正确;故答案为BC.13.下列叙述正确的是()A. 频率反映的是事件发生的频繁程度,概率反映的是事件发生的可能性大小B. 做n次随机试验,事件A发生m次,则事件A发生的频率mn就是事件的概率C. 百分率是频率,但不是概率D. 频率是不能脱离具体的n次试验的试验值,而概率是确定性的不依赖于实验次数的理论值。