八年级(上)期中数学测试B卷(含答案)
- 格式:doc
- 大小:127.50 KB
- 文档页数:4
八年级(上)期中数学试卷一、选择题(每小题3分,共30分)1.(3分)“第七届世界军人运动会”已于2019年10月18日到27日在武汉举行,本届军运会会徽名为“和平友谊纽带”,寓意中国通过本届军运会,向国际社会传递了和平发展的理念,如下字体的四个汉字中,是轴对称图形的是()A.B.C.D.2.(3分)下列图形不具有稳定性的是()A.B.C.D.3.(3分)已知三角形的两边长分别为1和4,第三边长为整数,则该三角形的周长为()A.7B.8C.9D.104.(3分)将一副直角三角板按如图所示的位置放置,使含30°角的三角板的一条直角边和含45°角的三角板的一条直角边放在同一条直线上,则∠α的度数是()A.45°B.60°C.75°D.85°5.(3分)如图,点B、F、C、E在一条直线上,AB∥ED,AC∥FD,那么添加下列一个条件后,仍无法判定△ABC ≌△DEF的是()A.∠A=∠D B.AC=DF C.AB=ED D.BF=EC6.(3分)如图,用一条宽度相等的足够长的纸条打一个结(如图1所示),然后轻轻拉紧、压平就可以得到如图2所示的正五边形ABCDE.图2中,∠BAC的大小是()A.72°B.36°C.30°D.54°7.(3分)如图,在四边形ABCD中,AD∥BC,∠ADC+∠ABC=180°,BC=3.分别以点A,C为圆心,大于AC长为半径画弧,两弧交于点E,作射线BE交AD于点F,交AC于点O.若点O是AC的中点,△CDF的周长为8,则DF的长为()A.2B.3C.4D.58.(3分)一个大正方形中如图摆放有两个小正方形,它们的面积分别是S1,S2,则S1,S2的大小关系是()A.S1>S2B.S1<S2C.S1=S2D.无法确定9.(3分)如图,△ABC中,AD⊥BC交BC于D,AE平分∠BAC交BC于E,F为BC的延长线上一点,FG⊥AE 交AD的延长线于G,AC的延长线交FG于H,连接BG,下列结论:①∠DAE=∠F;②∠AGH=∠BAE+∠ACB;③S△AEB:S△AEC=AB:AC,其中正确的结论有()个.A.0B.1C.2D.310.(3分)如图,△ABC中,BC=10,AC﹣AB=4,AD是∠BAC的角平分线,CD⊥AD,则S△BDC的最大值为()A.40B.28C.20D.10二、填空题(每题3分,共18分)11.(3分)点A(1,2)与点B关于x轴对称,则点B的坐标是.12.(3分)在△ABC中,∠A=50°,∠B=30°,点D在边AB上,连接CD,若AC=AD,则∠BCD的大小是.13.(3分)一个多边形的内角和比它的外角和多540°,并且这个多边形的各个内角都相等,则这个多边形每个内角是.14.(3分)如图,在小正三角形组成的网格中,已有6个小正三角形涂黑,还需涂黑n个小正三角形,使它们与原来涂黑的小正三角形组成的新图案恰有3条对称轴,则n的最小值是.15.(3分)如图,△ABC为等腰直角三角形,∠ACB=90°,∠BDC=90°,CD=4,那么△ADC的面积为.三、解答题(共72分)17.(8分)已知一个等腰三角形的周长是18cm,其中一边长是4cm,求这个三角形的边长.18.(8分)如图,点D是AB上一点,DF交AC于点E,DE=FE,FC∥AB.求证:AE=CE.19.(8分)如图△ABC中,AB,AC的垂直平分线分别交BC于D,E,垂足分别是M,N (1)若BC=10,求△ADE的周长.(2)若∠BAC=100°,求∠DAE的度数.20.(8分)图①,图②都是由四条边长均为1的小四边形构成的网络,每个小四边形的顶点称为格点.点O,M,N,A,B均在格点上,请仅用无刻度直尺在网格中完成下列画图(保留连线痕迹)(1)在图①中,画出△OMP≌△ONP,要求点P在格点上;(2)在图②中,画一个Rt△ABC,∠ACB=90°,要求点C在格点上.21.(8分)△ABC和△CDE都是等腰直角三角形,其中∠ACB=∠DCE=90°,AC=BC,DC=EC,连接BD,BE,AE.(1)求证:BD=AE;(2)若∠AEB=50°,求∠EBD的度数.22.(10分)请按要求完成下面三道小题(本题作图不要求尺规作图)(1)如图1,AB=AC.这两条线段一定关于∠BAC的所在直线对称,请画出该直线.(2)如图2,已知线段AB和点C.求作线段CD,使它与AB成轴对称,且A与C是对称点,对称轴是线段AC 的.(3)如图3,任意位置(不成轴对称)的两条线段AB,CD,AB=CD.你能从(1),(2)问中获得的启示,对其中一条线段作两次轴对称使它们重合吗?如果能,请画出图形并简要描述操作步骤;如果不能,请说明理由.23.(10分)已知在四边形ABCD中,∠ABC+∠ADC=180°,AB=BC,点E,F分别在射线DA,DC上,满足EF=AE+CF.(1)如图1,若点E,F分别在线段DA,DC上,求证:∠EBF=90°﹣∠ADC;(2)如图2,若点E,F分别在线段DA延长线与DC延长线上,请直接写出∠EBF与∠ADC的数量关系.24.(12分)【实验操作】如图①,在△ABC中,AB=AC,现将AB边沿∠ABC的平分线BD翻折,点A落在BC边的点A1处;再将线段CA1沿CD翻折到线段CA2,连接DA2.【探究发现】若点B,D,A2三点共线,则∠ADB的大小是,∠BAC的大小是,此时三条线段AD,BD,BC之间的数量关系是【应用拓展】(1)如图②,将图①中满足【实验操作】与【探究发现】的△ABC的边AB延长至E,使得AE=BC,连接CE,直接写出∠BCE的度数.(2)如图③,在△MNP中,∠MNP=60°,∠MPN=70°,Q为NP上一点,且∠NMQ=20°,求证:MN+NQ =MQ+QP.参考答案与试题解析一、选择题(每小题3分,共30分)1.【解答】解:A、不是轴对称图形,故本选项不合题意;B、是轴对称图形,故本选项符合题意;C、不是轴对称图形,故本选项不合题意;D、不是轴对称图形,故本选项不合题意.故选:B.2.【解答】解:根据三角形的稳定性可得,B、C、D都具有稳定性.不具有稳定性的是A选项.故选A.3.【解答】解:设第三边为x,根据三角形的三边关系,得:4﹣1<x<4+1,即3<x<5,∵x为整数,∴x的值为4.三角形的周长为1+4+4=9.故选:C.4.【解答】解:如图,∵∠ACD=90°、∠F=45°,∴∠CGF=∠DGB=45°,则∠α=∠D+∠DGB=30°+45°=75°,故选:C.5.【解答】解:选项A、添加∠A=∠D不能判定△ABC≌△DEF,故本选项正确;选项B、添加AC=DF可用AAS进行判定,故本选项错误;选项C、添加AB=DE可用AAS进行判定,故本选项错误;选项D、添加BF=EC可得出BC=EF,然后可用ASA进行判定,故本选项错误.故选:A.6.【解答】解:∵∠ABC==108°,△ABC是等腰三角形,∴∠BAC=∠BCA=36°.故选:B.7.【解答】解:如图,连接FC,则AF=FC.∵AD∥BC,∴∠F AO=∠BCO.在△FOA与△BOC中,,∴△FOA≌△BOC(ASA),∴AF=BC=3=CF,且AF∥BC,∴四边形ABCF是平行四边形,∴∠ABC=∠AFC,∵∠ADC+∠ABC=180°,∠AFC+∠CFD=180°,∴∠CDF=∠CFD,∴CF=CD=AF=3,∵△CDF的周长为8,∴DF=2,故选:A.8.【解答】解:如图,设大正方形的边长为x,根据等腰直角三角形的性质知,AC=BC,BC=CE=CD,∴AC=2CD,CD=.∴S2的边长为,S2的面积为,S1的边长为,S1的面积为,∴S1>S2,故选:A.9.【解答】解:如图,AE交GF于M,①∵AD⊥BC,FG⊥AE,∴∠ADE=∠AMF=90°,∵∠AED=∠MEF,∴∠DAE=∠F;故①正确;②∵∠DAE=∠F,∠FDG=∠FME=90°,∴∠AGH=∠MEF,∵AE平分∠BAC交BC于E,∴∠BAE=∠CAE,∵∠MEF=∠CAE+∠ACB,∴∠AGH=∠CAE+∠ACB,∴∠AGH=∠BAE+∠ACB;故②正确;③∵AE平分∠BAC交BC于E,∴,∵S△AEB:S△AEC=,∴S△AEB:S△AEC=AB:CA;故③正确,故选:D.10.【解答】解:如图:延长AB,CD交点于E,∵AD平分∠BAC,∴∠CAD=∠EAD,∵CD⊥AD,∴∠ADC=∠ADE=90°,在△ADE和△ADC中,,∴△ADE≌△ADC(ASA),∴AC=AE,DE=CD;∵AC﹣AB=4,∴AE﹣AB=4,即BE=4;∵DE=DC,∴S△BDC=S△BEC,∴当BE⊥BC时,S△BDC面积最大,即S△BDC最大面积=××10×4=10.故选:D.二、填空题(每题3分,共18分)11.【解答】解:点A与点B关于x轴对称,点A的坐标为(1,2),则点B的坐标是(1,﹣2).故答案为:(1,﹣2).12.【解答】解:∵在△ABC中,∠A=50°,∠B=30°,∴∠ACB=180°﹣50°﹣30°=100°,∵AD=AC,∴∠ADC=∠ACD=(180°﹣50°)=65°,∴∠BCD=∠ACB﹣∠ACD=100°﹣65°=35°,故答案为:35°;13.【解答】解:设这个多边形的边数为n,则有(n﹣2)•180°=360°+540°,解得n=7.∵这个多边形的每个内角都相等,∴它每一个内角的度数为900°÷7=()°.故答案为:()°.14.【解答】解:如图所示,n的最小值为3,故答案为:3.15.【解答】解:如图,作DM⊥AC于M.DN⊥BC于N.∵∠BDC=90°,BC=5,CD=4,∴BD==3,∵S△BCD=•BC•DN=•BD•DC,∴DN=,∴CN=,∵DM⊥AC,∴∠DMC=∠MCN=∠CND=90°,∴四边形DMCN是矩形,∴DM=CN=,∴S△ADC=•AC•DM=×5×=8,故答案为8.三、解答题(共72分)17.【解答】解:∵等腰三角形的周长为18cm,三角形的一边长4cm,∴若4cm是底边长,则腰长为:=7(cm),∵4cm,7cm,7cm能组成三角形,∴此时其它两边长分别为7cm,7cm;若4cm为腰长,则底边长为:18﹣4﹣4=10(cm),∵4+4=8<10,∴不能组成三角形,故舍去.∴这个三角形的边长分别为4cm,7cm,7cm.18.【解答】证明:∵FC∥AB,∴∠A=∠FCE,且DE=EF,∠AED=∠CEF∴△AED≌△CEF(AAS)∴AE=CE19.【解答】解:(1)∵AB、AC的垂直平分线分别交BC于D、E,垂足分别是M、N,∴AD=BD,AE=CE,∴△ADE的周长=AD+DE+AE=BD+DE+CE=BC=10.(2)∵∠BAC=100°,∴∠B+∠C=180°﹣∠BAC=80°,∵AD=BD,AE=CE,∴∠BAD=∠B,∠CAE=∠C,∴∠BAD+∠CAE=80°,∴∠DAE=∠BAC﹣(∠BAD+∠CAE)=100°﹣80°=20°.20.【解答】解:(1)如图所示,射线OP即为所求.(2)如图所示,点C即为所求;21.【解答】证明:(1)∵∠ACB=∠DCE=90°,∴∠DCB=∠ECA,且AC=BC,DC=EC,∴△DBC≌△ECA(SAS)∴BD=AE;(2)∵△DBC≌△ECA,∴∠CDB=∠CEA,∵∠AEB=50°=∠CEA+∠CEB,∴∠CDB+∠CEB=50°,∵∠CDB+∠BDE+∠CEB+∠BED=90°∴∠BDE+∠BED=40°,∴∠EBD=180°﹣(∠BDE+∠BED)=140°.22.【解答】解:(1)如图1,作∠ABC的平分线所在直线a,则a即为所求.(答案不唯一)故答案为:角平分线;(2)如图2所示:①连接AC;②作线段AC的垂直平分线,即为对称轴b;③作点B关于直线b的对称点D;④连接CD即为所求.故答案为:垂直平分线;(3)如图3所示,连接BD;作线段BD的垂直平分线,即为对称轴c;作点C关于直线c的对称点E;连接BE;作∠ABE的角平分线所在直线d即为对称轴,故其中一条线段作2次的轴对称即可使它们重合.23.【解答】证明:(1)如图1,延长DA,使AH=CF,连接BH,∵∠ABC+∠BCD+∠ADC+∠DAB=360°,∠ABC+∠ADC=180°,∴∠DAB+∠BCD=180°,且∠DAB+∠HAB=180°,∴∠BCD=∠HAB,且AB=BC,AH=CF,∴△HAB≌△FCB(SAS)∴BH=BF,∠HBA=∠CBF,∵EF=AE+CF,∴EF=AE+AH=EH,且BH=BF,BE=BE,∴△BEH≌△BEF(SSS)∴∠EBF=∠EBH,∴∠EBF=∠EBH=∠EBA+∠CBF,∴∠EBF=∠ABC=(180°﹣∠ADC)=90°﹣∠ADC;(2)在CD的延长线上截取CH=AE,连接BH,∵∠ABC+∠BCD+∠ADC+∠DAB=360°,∠ABC+∠ADC=180°,∴∠DAB+∠BCD=180°,且∠DAB+∠EAB=180°,∴∠BCD=∠EAB,且AB=BC,AE=CH,∴△AEB≌△CHB(SAS)∴BE=BH,∠EBA=∠HBC,∵EF=AE+CF,∴EF=CH+CF=HF,且BF=BF,BE=BH,∴△EBF≌△HBF(SSS)∴∠EBF=∠HBF,∵∠EBF+∠HBF+∠EBA+∠ABH=360°,∴2∠EBF+∠HBC+∠ABH=360°,∴2∠EBF+∠ABC=360°,∴2∠EBF+180﹣∠ADC=360°,∴∠EBF=90°+∠ADC.24.【解答】解:【探究发现】∵将AB边沿∠ABC的平分线BD翻折,点A落在BC边的点A1处;再将线段CA1沿CD翻折到线段CA2,∴∠ADB=∠A1DB,∠CDA1=∠CDA2,∠ABD=∠DBC,∠DCA1=∠DCA2,AD=A1D=A2D,∵点B,D,A2三点共线,∴∠A2DC=∠ADB,∴∠ADB=∠A1DB=∠CDA1=∠CDA2,∵∠ADB+∠A1DB+∠CDA1=180°,∵AB=AC,∴∠ABC=∠ACB,∴∠ACB=2∠DBC,∵∠ADB=∠DBC+∠ACB=3∠DBC=60°,∴∠DBC=20°,∴∠ACB=40°,∴∠BAC=180°﹣∠ABC﹣∠ACB=100°,∵∠DCA1=∠DCA2=40°∴∠BCA2=80°,∠BA2C=180°﹣80°﹣20°=80°,∴∠BCA2=∠BA2C,∴BC=A2B=BD+A2D=BD+AD,故答案为:60°,100°,BC=BD+AD;【应用拓展】(1)如图,将AB边沿∠ABC的平分线BD翻折,点A落在BC边的点A1处;再将线段CA1沿CD 翻折到线段CA2,以A2C为边作等边三角形A2CF,连接BF,由【探究发现】可知:∠ABC=∠ACB=∠A2CD=40°,A1C=A2C,A2B=BC,AB=BA1,∠BCA2=∠BA2C=80°,∴∠CBE=140°,∵AE=BC,AB=A1B,∴BE=A1C,∵△A2CF是等边三角形,∴∠A2CF=∠CA2F=60°,A2F=A2C=CF,∴A2F=CF=BE,∠BA2F=140°=∠BCF=∠EBC,且BC=BC,∴△EBC≌△FCB(SAS),∴∠FBC=∠ECB,∵A2F=BE,∠BA2F=140°=∠EBC,BC=A2B∴△EBC≌△F A2B(SAS)∴∠BCE=∠A2BF,∴∠BCE=∠A2BF=∠FBC,且∠A2BC=20°∴∠BCE=10°;(2)如图3,将△MNQ沿MN翻折,得到△MNC,延长MC交直线PN于点E,将△MPQ沿MP翻折,得到△MP A,延长MA,交直线NP于点B,延长MN使NF=NQ,连接EF,∵∠MNP=60°,∠MPN=70°,∴∠NMP=50°,且∠NMQ=20°,∴∠MQP=80°,∵将△MNQ沿MN翻折,得到△MNC,将△MPQ沿MP翻折,得到△MP A,∴∠NMQ=∠NMC=20°,∠CNM=∠MNQ=60°,CN=NQ,∠QMP=∠PMA=30°,MQ=AM,QP=AP,∠QPM=∠MP A=70°,∠MQP=∠MAP=80°,∴∠APB=180°﹣∠QPM﹣∠MP A=40°,∠EMB=100°∵∠MAP=∠B+∠APB,∴∠B=40°=∠APB,∴AP=AB,∠MEB=180°﹣∠B﹣∠EMB=40°,∴∠B=∠MEB=40°,∴ME=MB=AM+AB=MQ+PQ,∵∠ENF=∠MNQ=60°=∠MNC,∴∠CNE=∠ENF=60°,且CN=NQ=NF,EN=EN,∴△EFN≌△ECN(SAS)∴∠CEN=∠FEN=40°,∴∠MEF=80°,∴∠MFE=180°﹣∠EMF﹣∠MEF=80°,∴∠MEF=∠MFE=80°,∴MF=EM,∴MN+NF=MQ+PQ,∴MN+NQ=MQ+PQ.。
.已知函数,当自变量答案第2页,共17页.....如图,在平面直角坐标系中,函数的图象分别为直线,过点12x =-l l 、答案第4页,共17页(1)求b ,m的值;(2)垂直于x轴的直线交直线于C ,D 两点,若线段CD 长为6,求点D 的坐标.22.一个有进水管与出水管的容器,从某时刻开始4分钟内只进水不出水,在随后的8分钟内既进水又出水,12分钟后关闭进水管,放空容器中的水,每分钟的进水量和出水量是两个常数.容器内水量y (单位:升)与时间x (单位:分钟)之间的关系如图所示.(1)每分钟进水多少升?(2)当4<x ≤12时,求y 关于x 的函数解析式;(3)容器中储水量不低于15 升的时长是多少分钟?23.在平面直角坐标系xOy 中,点A 、B 分别在y 轴和x 轴上,已知点A (0,4).以AB 为直角边在AB 左侧作等腰直角△ABC ,∠CAB =90°.(1)当点B 在x 轴正半轴上,且AB =8时①求AB 解析式;12,l l,时,相应函数值增加,答案第6页,共17页b答案第8页,共17页答案第10页,共17页答案第12页,共17页故原方程组的解为;(2)解:由得:,解得,把代入②,得,解得:故原方程组的解为;(3)解:由得:,解得,把代入①,得,解得:故原方程组的解为;(4)解:由得:,解得,把代入②,得,解得:故原方程组的解为.【点睛】本题考查了解二元一次方程组,掌握代入消元法和加减消元法是解答本题的关键.19.a 的值为3,b 的值为2【分析】首先联立两个方程组不含a 、b 的两个方程求得方程组的解,然后代入两个方程组含a 、b 的两个方程从而得到一个关于a ,b 的方程组求解即可.【详解】解方程组得:,则有,解得:.28x y =⎧⎨=⎩32338x y x y +=⎧⎨+=⎩①②3⨯-②①721y =3y =3y =338x +⨯==1x -13x y =-⎧⎨=⎩203216x y x y -=⎧⎨+=⎩①②+①②416x =4x =4x =420y -=2y =42x y =⎧⎨=⎩35198367x y x y +=⎧⎨-=⎩①②35⨯+⨯①②49392x =8x =8x =88367y ⨯-=1y =-81x y =⎧⎨=-⎩212y x x y =-⎧⎨+=⎩11x y =⎧⎨=⎩51a b a b +=⎧⎨-=⎩32a b =⎧⎨=⎩答案第14页,共17页答案第16页,共17页则,,;(2)由可知,点在直线上运动,作点AHB CGA ∆∆()AAS 4AG HB ∴==43CG AH ==C ∴(4,443)--AGC BHA ∆≅∆4AG =C 4x =-O的最小值为此时,.【点睛】本题主要考查等腰直角三角形的性质、利用轴对称求最短线路.AC OC +222248AO AO OO ''=+=+=2OB AH CG ===(2,0)B ∴。
2023-2024学年安徽省合肥市第四十二中学八年级(上)期中数学试卷一、选择题:本题共10小题,每小题4分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.平面直角坐标系中,点所在象限是()A.第一象限B.第二象限C.第三象限D.第四象限2.若点P是第二象限内的点,且点P到x轴的距离是4,到y轴的距离是5,则点P的坐标是()A. B. C. D.3.若一个三角形的两边长分别为5和8,则第三边长可能是()A.14B.10C.3D.24.函数中自变量x的取值范围是()A. B. C. D.且5.在平面直角坐标系中,已知函数的图象过点,则该函数的图象可能是()A. B.C. D.6.函数图象向上平移3个单位后,对应函数为()A. B. C. D.7.在一个三角形中,若三个内角的度数之比是,则这个三角形是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形8.已知下列命题:①同位角相等;②有一个内角是直角的三角形是直角三角形;③若,,则,其中逆命题属于假命题的有()A.0个B.1个C.2个D.3个9.已知直线与x轴的交点在,之间包括A,B两点,则的a取值范围()A. B. C. D.10.如图,点A、B的坐标分别为、,点P是第一象限内直线上一个动点,当点P 的横坐标逐渐增大时,四边形OAPB的面积()A.逐渐增大B.逐渐减少C.先减少后增大D.不变二、填空题:本题共4小题,每小题5分,共20分。
11.若点在y轴上,则点P的坐标是__________.12.已知点在直线上,则的值为__________.13.对于一次函数,当时,,则一次函数的解析式为__________.14.如图,三角形ABC的面积为1,,E是AC的中点,AD与BE相交于点P,那么:三角形ADC的面积__________.四边形EPDC的面积为__________.三、解答题:本题共9小题,共90分。
解答应写出文字说明,证明过程或演算步骤。
金普新区2024-2025学年度第一学期期中质量检测试卷八年级数学2024.11(本试卷共23道题 满分120分考试时间共120分钟)注意:所有试题必须在答题卡上作答,在本试卷上作答无效。
第一部分 选择题(共30分)一、选择题(本题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列长度的三条线段能组成三角形的是( )A .1,3,2B .2,5,8C .3,4,5D .5,5,102.下列计算正确的是( )A .B .C .D .3.在平面直角坐标系中,与点关于y 轴对称的点的坐标为( )A .B .C .D .4.中国体育代表团在2024年巴黎奥运会取得优异成绩,下列图标中,是轴对称图形的是()A .B .C .D .5.下列各图形中,分别是四位同学所画的中BC 边上的高AE ,其中正确的是()A .B .C .D .6.榫卯结构是我国古代建筑,家具及其他木制器械的主要结构方式.如图,将两块全等的木楔()水平钉入长为16 cm 的长方形木条中(点B ,C ,F ,E 在同一条直线上).若,则木楔BC 的长为( )(第6题)248a a a⋅=()428bb =2246a a a⋅=235a b ab +=()1,7A -A '()1,7()1,7-()1,7--()1,7-ABC △ABC DEF △△≌4cm CF =A .4 cmB .6 cmC .8 cmD .12 cm7.如图,AD ,CE 都是的中线,连接ED ,的面积足,则的面积是()(第7题)A .B .C .D .8.如图,三座商场分别坐落在A ,B ,C 所在位置,现要规划一个地铁站,使得该地铁站到三座商场的距离相等,该地铁站应建在()(第8题)A .三条高所在直线的交点B .三条中线的交点C .三个内角的角平分线的交点D .三条边的垂直平分线的交点9.如图,直线l 是一条河,P ,Q 是两个村庄,欲在l 上的某处修建一个水泵站,向P ,Q 两地供水,现有如下四种铺设方案,图中实线表示铺设的管道,则所需管道最短的是()A .B .C .D .10.如图,在中,,,,沿过点B 的直线折叠这个三角形,使点C 落在AB 边上的点E 处,折痕为BD ,则的周长为()(第10题)A .6B .7C .8D .9第二部分 非选择题(共90分)ABC △ABC △220cm CDE △22.5cm25cm27.5cm210cmABC △ABC △ABC △ABC △ABC △10AB =7BC =6AC =AED △二、填空题(本题共5小题,每小题3分,共15分)11.如图是环己烷的结构简式(正六边形),其内角和为______°.(第11题)12.若,,则______.13.已知等腰三角形的一个底角是70°,则它的顶角的度数是______°.14.如图,中,,若沿图中虚线截去∠F ,则______°.(第14题)15.如图,四边形ABCD 中,,,,,以点B 为圆心,适当长为半径作弧,分别与AB ,BC 相交于点点E ,F ,再分别以点E ,F为圆心,大于的长为半径作弧,两弧在的内部相交于点G ,作射线BG ,与AD 相交于点H ,则HD 的长为______(用含a 的代数式表示).(第15题)三、解答题(本题共8小题,共75分.解答应写出文字说明、演算步骤或推理过程)16.(10分).计算:(1);(2).17.(8分)如图,点M ,N 在线段BD 上,,,.求证:.2ma =4na =m na+=DEF △35F ∠=︒12∠+∠=AD BC ∥AD AB >AD a =8AB =12EF ABC ∠()232462a a a a +⋅-()()()3243x y x y x x y x ++-+÷BM DN =AN CM =AN CM ∥ABN CDM △△≌(第17题)18.(8分)如图,已知中,,,.(1)画出与关于x 轴对称的图形,并写出各顶点坐标;(2)的面积为______.(第18题)19.(8分)如图,在中,AD 平分∠BAC ,于D ,于C ,且,.(1)求证:;(2)求证:.(第19题)20.(8分)如图,在中,CD 平分,E 为线段CD 上一点,过E 作交BA 的延长线于点F ,若,,求的度数.ABC △()1,3A ()3,1B ()5.4C ABC △111A B C △111A B C △ABC △ABC △AD BC ⊥EC BC ⊥AB BE =CD CE =AB AC =Rt Rt ABD BEC △△≌ABC △ACB ∠EF CD ⊥115BAC ∠=︒35B ∠=︒F ∠(第20题)21.(8分)如图,已知中,,于D ,的平分线分别交AD ,AB 于P 、Q .(1)试说明是等腰三角形;(2)若点Q 恰好在线段BC 的垂直平分线上,试说明线段AC 与线段BC 之间的数量关系.(第21题)22.(12分)阅读下列材料,解决相应问题:已知两个两位数,将它们各自的十位数字和个位数字交换位置后,得到两个与原两个两位数均不同的新数,若这两个两位数的乘积与交换位置后两个新两位数的乘积相等,则称这样的两个两位数为“倒同数对”.例如:,所以23和96与32和69都是“倒同数对”.(1)请判断43和68是否是“倒同数对”,并说明理由;(2)为探究“倒同数对”的本质,可设“倒同数对”中一个数的十位数字为m ,个位数字为n ,且;另一个数的十位数字为p ,个位数字为q ,且,请探究m ,n ,p ,q 的数量关系,并说明理由;(3)若有一个两位数,十位数字为x ,个位数字为,另一个两位数,十位数字为,个位数字为,且这两个数为“倒同数对”,则x 的值为______.23.(13分)【问题初探】(1)综合与实践数学活动课上,李老师给出了一个问题:如图1,若,,CD 平分,求证:.(第20题图1)①如图2,小明同学从结论的角度出发给出如下解题思路:在BC 上截取,连接DE ,将线段BC ,AC ,AD 之间的数量关系转化为BE 与AD的数量关系;Rt ABC △90BAC ∠=︒AD BC ⊥ACB ∠APQ △239632692208⨯=⨯=m n ≠p q ≠1x +3x +1x +60A ∠=︒90ACB ∠=︒ACB ∠BC AC AD =+CE CA =(第20题图2)②如图3,小强同学从CD 平分这个条件出发给出另一种解题思路:延长CA 至点E ,使,连接DE ,将线段BC ,AC ,AD 之间的数量关系转化为AE 与AD 的数最关系;请你选择一名同学的解题思路,写出证明过程:(第20题图3)【类比分析】(2)李老师发现两名同学都运用了转化思想,将证明三条线段的关系转化为证明两条线段的关系;为了帮助学生更好地感悟转化思想,李老师将问题进行变式,请你解答:如图4,在四边形ABCD 中,E 是BC 的中点,若AE 平分,,请你探究AB 、AD 、CD 的数量关系并证明;(第20题图4)【学以致用】(3)如图5,在中,,和的平分线交于点P ,M ,N 为AB ,AC 上的点,且P 为MN 中点,若,,,求BC 的值.(第20题图5)ACB ∠CE CB =BAD ∠90AED ∠=︒ABC △60A ∠=︒ABC ∠ABC ∠5BM =45CN =4MN =金普新区2024-2025学年度第一学期期中质量检测八年级数学参考答案及评分标准(说明:试题解法不唯一,其他方法备课组统一意见,酌情给分。
八年级上期中测试卷(B)一.选择题(共10小题,满分30分,每小题3分)1.(3分)在线段、角、等腰三角形、直角三角形四个图形中,不一定是轴对称图形的有()个.A.1B.2C.3D.42.(3分)下列运算正确的是()A.(﹣3mn)2=﹣6m2n2B.4x4+2x4+x4=6x4C.(xy)2÷(﹣xy)=﹣xy D.(a﹣b)(﹣a﹣b)=a2﹣b23.(3分)五边形的外角和为()A.360°B.540°C.720°D.900°4.(3分)如图,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC的是()A.CB=CDB.∠BAC=∠DACC.∠BCA=∠DCAD.∠B=∠D=90°,∠DAC=56°,∠BCA=34°5.(3分)若点P(m﹣1,﹣1)关于y轴的对称点是P2(2,n+2),则m+n的值是()A.4B.﹣4C.﹣2D.26.(3分)在,﹣2ab2,,,中,分式共有()A.2个B.3个C.4个D.5个7.(3分)下列各项中,两个幂是同底数幂的是()A.x2与a2B.(﹣a)5与a3C.(x﹣y)2与(y﹣x)2D.﹣x2与x28.(3分)如图,在△ABC中,DE是AB的垂直平分线,BC上的点F在AC的垂直平分线上,若AB=6,AC=8,BC=12,则△AEF的周长是()A.6B.8C.10D.129.(3分)如图,在△ABC中,DE垂直平分BC,分别交BC、AB于D、E,连接CE,BF平分∠ABC,交CE于F,若BE=AC,∠ACE=12°,则∠EFB的度数为()A.58°B.63°C.67°D.70°10.(3分)如图,在等边△ABC中,D、E分别是AB、BC边上的两个动点,使BD=CE,AE、CD交于点F,下列结论:①△ACE≌△BCD;②∠AFD=60°;③AC=CE.其中正确的结论有()A.0个B.1个C.2个D.3个二.填空题(共7小题,满分28分,每小题4分)11.(4分)因式分解:3a3﹣2ab2=.12.(4分)当a=1时,式子÷(a+3)的值为.13.(4分)若关于x的多项式x2+mx+9是完全平方式,则正数m的值为.14.(4分)如图,△ABE和△ACF分别是以△ABC的AB、AC为边的正三角形,CE、BF相交于O,则∠EOB=°.15.(4分)如图,已知AD是△ABC的角平分线,若AC=8cm,AB=6cm,则△ADC与△ADB的面积之比为.16.(4分)如图,△ABC中,D是BC的中点,E是AC上的一点,且AE=EC,则=.17.(4分)有一数值转换器如图,若开始输入x的值是5,可发现第一次输出的结果是8,第二次输出的结果是4,…,请你探索第2021次输出的结果是.三.解答题(共3小题,满分18分,每小题6分)18.(6分)(1)计算:(2)先化简,后求值:,其中x=319.(6分)如图,AB,AC表示两条相交的公路,现要在∠BAC的内部建一个物流中心.设计时要求该物流中心到两条公路的距离相等,且到公路交叉处A点的距离为1000米.(1)若要以1:50000的比例尺画设计图,求物流中心到公路交叉处A点的图上距离;(2)在图中画出物流中心的位置P.20.(6分)如图,点C是AB的中点,AD=CE,CD=BE.求证:△ACD≌△CBE.四.解答题(共3小题,满分24分,每小题8分)21.(8分)如图在平面直角坐标系xOy中,A(1,3),B(5,2),C(3,0)(1)在图中作出△ABC关于y轴对称的△A1B1C1,并写出点A1、B1、C1的坐标.(2)求出△ABC的面积.22.(8分)如图1的四边形可以用剪刀均匀分成4块完全相同的直角三角形,然后按图2的形状拼成一个边长为(m+n)的正方形(中间空白部分是一个小正方形).(1)用含m,n的代数式表示图1的面积:;(2)请用两种方法求图2中间空白部分的面积S.方法一:方法二:23.(8分)如图,已知△ABC≌△EBD.(1)若BE=6,BD=4,求线段AD的长;(2)若∠E=30°,∠B=48°,求∠ACE的度数.五.解答题(共2小题,满分10分)24.(10分)(1)已知△ABC是等腰三角形,其底边是BC,点D在线段AB上,E是直线BC上一点,且∠DEC=∠DCE,若∠A等于60°(如图①).求证:EB=AD;(2)若将(1)中的“点D在线段AB上”改为“点D在线段AB的延长线上”,其他条件不变(如图②),(1)的结论是否成立,并说明理由.25.如图(1),AB=7cm,AC⊥AB,BD⊥AB垂足分别为A、B,AC=5cm.点P在线段AB上以2cm/s的速度由点A向点B运动,同时点Q在射线BD上运动.它们运动的时间为t(s)(当点P运动结束时,点Q运动随之结束).(1)若点Q的运动速度与点P的运动速度相等,当t=1时,△ACP与△BPQ是否全等,并判断此时线段PC和线段PQ的位置关系,请分别说明理由;(2)如图(2),若“AC⊥AB,BD⊥AB”改为“∠CAB=∠DBA”,点Q的运动速度为xcm/s,其它条件不变,当点P、Q运动到何处时有△ACP与△BPQ全等,求出相应的x的值.。
安徽省合肥市第四十五中橡树湾校区2023-2024学年八年级上学期期中数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.在平面直角坐标系中,点()2,1-所在的象限是()A .第一象限B .第二象限C .第三象限D .第四象限2.以下列各组线段的长为边长,能组成三角形的是()A .1,2,3B .3,4,5C .3,5,10D .4,4,83.已知点A (﹣4,y 1),B (2,y 2)都在直线y =﹣x +2上,则y 1与y 2的大小关系是()A .y 1>y 2B .y 1=y 2C .y 1<y 2D .不能比较4.如图,AB CD ∥,且40A ∠=︒,24D ∠=︒,则E ∠等于()A .40︒B .32︒C .24︒D .16︒5.下列命题中,真命题的个数是()①对顶角相等;②两直线平行,同旁内角相等;③平行于同一条直线的两直线平行;④若正数a ,b 满足22a b =,则a b =.A .1个B .2个C .3个D .4个6.一次函数y =kx +b 与y =x +2的图象相交于如图点P (m ,4),则关于x ,y 的二元一次方程组2y kx b y x =+⎧⎨=+⎩的解是()A.34xy=⎧⎨=⎩B.14xy=⎧⎨=⎩7.下列条件能确定△ABC是直角三角形的条件有(1)∠A+∠B=∠C;(2)∠A:∠B:∠C=1:2:3A.1个B.2个8.一次函数y=mx-n与y=mnx(mn≠0A..C..9.如图,一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发匀速行驶.设慢车行驶的时间为x(h),两车之间的距离为函数关系.下列说法中正确的是A.B点表示此时快车到达乙地到达甲地C.慢车的速度为125km/h二、填空题三、解答题15.已知一次函数的图像过()3,5和()4,9--两点.(1)求此一次函数的解析式;(2)试判断点()1,3--是否在此一次函数的图像上.16.如图,D 是AB 上一点,E 是AC 上一点,BE ,CD 相交于点F ,62A ∠=︒,35ACD ∠=︒,20ABE ∠=︒,求BDC ∠和BFD ∠的度数.17.如图,在边长为1个单位长度的小正方形网格中建立平面直角坐标系.已知三角形ABC 的顶点A 的坐标为()1,4A -,顶点B 的坐标为()4,3B -,顶点C 的坐标为()3,1C -.(1)把三角形ABC 向右平移5个单位长度,再向下平移4个单位长度得到三角形A B C ''',请你画出三角形A B C ''';(2)请直接写出点A ',B ',C '的坐标;(3)若点(),P m n 是A B C ''' 内部一点,则点P 平移前对应点Q 的坐标为_________.18.已知:如图,ABC 中,90ACB ∠=︒,D 为AB 上一点,连接CD,BE 平分ABC ∠,分别交CD AC 、于点F E 、,若CFE CEF ∠=∠,求证:CD AB⊥19.已知1y -与1x +成正比例,且1x =时,=3y -.(1)求y 与x 之间的函数关系式;(2)当3y <时,求x 的取值范围.20.在等腰ABC 中,AB AC =,AC 边上的中线BD 把ABC 的周长分为15和17两部分.(1)求AB 和BC 的长;(2)若AB BC <,且点D 到BC 边的距离为4,求点D 到AB 边的距离.21.如图,直线1l :4y mx =+与与x 轴交于点B ,点B 与点C 关于y 轴对称,直线2l :(1)求直线1l 与2l 的解析式;(2)记直线2l 与y 轴的交点为D ,记直线(3)根据图象,直接写出04mx ≤+<22.问题情景:如图1,在同一平面内,点两条直角边PM PN ,上,点A 与点ABP ∠,ACP ∠与A ∠的大小是否满足某种确定的数量关系?(1)特殊探究:若55A ∠= ,则ABC ∠ABP ACP ∠+∠=______度;(2)类比探索:请猜想ABP ACP ∠+∠(3)类比延伸:改变点A 的位置,使点结论是否仍然成立?若成立,请说明理由;满足的数量关系式.23.某农场种植某种农作物,欲购买化肥施肥,相关数据如表:化肥种类化肥单价元/kg所需化肥数量甲 5.2乙2.5设该种农作物每千克单价x (元),已知(1)若施甲种化肥每亩利润为1y (元)x之间的函数表达式.(2)选用哪种化肥合算?(3)为提高产品竞争力,甲化肥厂商决定每千克化肥让利a元,要使施甲种化肥每亩地获利不低于施乙种化肥,则a的最小值为______.参考答案:1.D【分析】根据各象限内点的坐标特征进行判断即可得.【详解】因20,10>-<则点(2,1)-位于第四象限故选:D.【点睛】本题考查了平面直角坐标系象限的性质,象限的符号规律:第一象限(,)++、第二象限(,)-+、第三象限(,)--、第四象限(,)+-,熟记象限的性质是解题关键.2.B【分析】此题考查了三角形的三边关系,掌握判断能否组成三角形的方法:较小的两个边长的和是否大于第三边的长是解决问题的关键.根据三角形的三边关系:两边之和大于第三边,即两条较短的边的长之和大于最长的边即可.【详解】解:A 、123+=,不能组成三角形,故选项不符合题意;B 、345+>,能组成三角形,故选项符合题意;C 、3510+<,不能组成三角形,故选项不符合题意;D 、448+=,不能组成三角形,故选项不符合题意;故选B .3.A【分析】分别把点A (﹣4,y 1)和点(2,y 2)代入直线y =﹣x +2,求出y 1,y 2的值,再比较出其大小即可.【详解】∵点A (﹣4,y 1)和点(2,y 2)都在直线y =﹣x +2上,∴y 1=4+2=6,y 2=﹣2+2=0,∵6>0,∴y 1>y 2.故选A .【点睛】考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.4.D【分析】可求40ACD ∠=︒,再由ACD D E ∠=∠+∠,即可求解.【详解】解:AB CD ∥ ,40ACD A ∴∠=∠=︒,ACD D E ∠=∠+∠ ,2440E ∴︒+∠=︒,16E ∴∠=︒.故选:D .【点睛】本题考查了平行线的性质,三角形外角性质,掌握三角形外角的性质是解题的关键.5.C【分析】本题主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.根据对顶角相等,平行线的判定与性质及开方运算,对各小题分析判断即可得解.【详解】解:①根据对顶角的性质,对顶角相等,所以①是真命题.②两直线平行,同旁内角互补,所以②是假命题.③平行于同一条直线的两直线平行,所以③是真命题.④因为a ,b 是正数,且满足22a b =,两边开方,得到a b =.所以④是真命题.综上所述,真命题有①③④共3个.故选C .6.D【分析】先利用y =x +2确定P 点坐标,然后根据方程组的解就是两个相应的一次函数图象的交点坐标进行判断.【详解】解:把P (m ,4)代入y =x +2得m +2=4,解得m =2,所以P 点坐标为(2,4),所以关于x ,y 的二元一次方程组2y kx b y x =+⎧⎨=+⎩的解是24x y =⎧⎨=⎩故答案选:D .【点睛】本题考查了一次函数与二元一次方程(组):方程组的解就是两个相应的一次函数图象的交点坐标.7.D【分析】根据三角形的内角和为180°依次分析各小题即可.【详解】解:(1)∵∠A+∠B=∠C ,∠A+∠B+∠C=180°,∴∠C=90°,是直角三角形;(2)∵∠A:∠B:∠C=1:2:3,∠A+∠B+∠C=180°,∴∠C=90°,是直角三角形;BDQ为AC边上的高,∴∠=︒,ADB90,∠=︒A40∴∠=︒-∠ABD90,∠=︒CBD10Q为AC边上的高,BD∴∠=︒,90ADB,∠=︒40A∴∠=︒-∠90ABD其中的整点有:()0,0,()1,0,(1,1直线12y x =-+和21y kx k =-+交于(1,1),由图可知当直线21y kx k =-+与x 轴交点在(2,0)-和(3,0)-之间时,成的区域内恰有6个整点,包括(2,0)-,不包括(3,0)-,把(2,0)-代入21y kx k =-+得:021k k =--+,解得13k =;同理可得1156k -<≤-;综上所述,1143k <≤或1156k -<≤-.15.(1)21y x =-(2)点()1,3--在此一次函数的图像上【分析】(1)利用待定系数法求解;函数解析式是解题的关键.16.97︒,63︒【分析】在△ACD 中,利用三角形的外角性质,三角形的一个外角等于与它不相邻的两个内角的和计算即可;在△BFD 中,利用三角形的内角和定理计算即可.【详解】解:在ACD ∆中,62A ∠=︒ ,35ACD ∠=︒,BDC ACD A ∴∠=∠+∠6235=︒+︒97=︒;在B D F ∆中,180BFD ABE BDC ∠=︒-∠-∠1802097=︒-︒-︒63=︒.【点睛】本题主要考查了三角形的外角性质与三角形的内角和定理,熟记性质与定理是解题的关键.17.(1)见解析(2)()4,0A ',()1,1B '-,()2,3C '-(3)()5,4m n -+【分析】此题主要考查了坐标与图形的变化——平移,关键是确定组成图形的关键点平移后的位置.(1)首先确定A 、B 、C 三点平移后的位置,再连接即可;(2)根据图形得出坐标即可;(3)根据三角形的平移方法可得答案.【详解】(1)解:如图:A B C ''' 即为所画的三角形;(2)由图可得:()4,0A ',()1,1B '-,()2,3C '-;(3)点(),P m n 是A B C ''' 内部一点,则点P 平移前对应点Q 的坐标为()5,4m n -+.18.证明见解析【分析】本题考查了三角形内角和定理、三角形角平分线和高的有关知识,正确利用角的等量代换是解答本题的关键.根据90ACB ∠=︒,得出90CBE CEB ∠+∠=︒,再由角平分线的定义和CFE CEF ∠=∠,得出90CFE EBD ∠+∠=︒,最后根据CFE BFD ∠=∠,得到90BFD EBD ∠+∠=︒,即可求解.【详解】证明:90ACB ∠=︒ ,90CBE CEB ∴∠+∠=︒,BE 平分ABC ∠,CBE EBD ∴∠=∠,90CEB EBD ∴∠+∠=︒,CFE CEF ∠=∠Q ,90CFE EBD ∴∠+∠=︒,又CFE BFD ∠=∠ ,90BFD EBD ∴∠+∠=︒()9180108009B D C FD DB EB ∠+∠∴∠=︒-=︒=︒-︒,CD AB ∴⊥.19.(1)21y x =--(2)2x >-90PBC PCB ∴∠+∠= ,()1259035ABP ACP ABC ACB PBC PCB ∴∠+∠=∠+∠-∠+∠=-= .故答案为125,90,35.(2)解:猜想:90ABP ACP A ∠+∠=-∠ .理由如下:在ABC 中,180ABC ACB A ∠+∠=-∠ ,ABC ABP PBC ∠=∠+∠ ,ACB ACP PCB ∠=∠+∠,()()180ABP PBC ACP PCB A ∴∠+∠+∠+∠=-∠ ,()()180ABP ACP PBC PCB A ∴∠+∠+∠+∠=-∠ ,又 在Rt PBC 中,90P Ð= ,90PBC PCB ∴∠+∠= ,()90180ABP ACP A ∴∠+∠+=-∠ ,90ABP ACP A ∴∠+∠=-∠ .(3)解:(2)中的结论不成立.理由如下:①如图31-中,结论:90A ACP ABP ∠+∠-∠= .理由:设AB 交PN 于O .AOC BOP ∠=∠ ,90A ACP ABP ∴∠+∠=+∠ ,90A ACP ABP ∴∠+∠-∠= .②如图32-中,结论:90A ABP ACP ∠+∠-∠= .证明方法类似①③如图33-中,结论:90A ABP ACP ∠-∠-∠= .理由:180A ABC ACB ∠+∠+∠= ,180P ABP ACP ABC ACB ∠+∠+∠+∠+∠= ,A P ABP ACP ∴∠=∠+∠+∠,90A ABP ACP ∴∠-∠-∠= .23.(1)1150 5.240150208y x x =-⨯=-;2120 2.540120100y x x =-⨯=-(2)当3 3.6x ≤<时,12y y <,选乙化肥合算;当12y y =时,选甲乙化肥均可;当3.64x <≤时,12y y >,选甲化肥合算;(3)0.45【分析】(1)根据数量关系找到1y 、2y 与x 之间的函数表达式即可;(2)当12y y =时,算出两者利润相同时x 的值,再考虑12y y >和12,y y <时的结果即可;(3)根据甲化肥厂商每千克化肥让利a 元,得到施甲肥每亩利润的表达式为:()1150 5.24015020840y x a x a =--⨯=-+,再由施甲种化肥每亩地获利不低于施乙种化肥,可得不等式()150 5.240120100x a x --⨯≥-,从而得到0.75 2.7a x ≥-+,再根据34x ≤≤,即可求出最终结果.本题考查了一次函数的应用、解一元一次不等式以及一次函数的性质,解题的关键是正确列出函数解析式并加以分析.【详解】(1)解:由题意知,每亩利润=每亩农作物总售价-每亩所用化肥总价,则施甲肥每亩利润的表达式为:1150 5.240150208y x x =-⨯=-,施乙肥每亩利润的表达式为:2120 2.540120100y x x =-⨯=-.(2)解:当12y y =时,两者利润相同,则:150208120100x x -=-,解得 3.6x =,所以当3 3.6x ≤<时,12y y <,选乙化肥合算;当12y y =时,选甲乙化肥均可;当3.64x <≤时,12y y >,选甲化肥合算;(3)解:甲让利a 元,则施甲肥每亩利润为()150 5.240x a --⨯;因为要保证施甲种化肥每亩地获利不低于施乙种化肥,所以()150 5.240120100x a x --⨯≥-,整理得,0.75 2.7a x ≥-+,又因为34x ≤≤,所以当3x =时,a 的值最小,为0.753 2.70.45-⨯+=,即a 的最小值为0.45.。
八年级上册数学期中测试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是方程2x + 3 = 7的解?A. x = 1B. x = 2C. x = 3D. x = 4答案:B2. 如果一个数的平方等于9,那么这个数可能是:A. 3B. -3C. 3或-3D. 以上都不对答案:C3. 一个数的绝对值是其本身,那么这个数:A. 一定是正数B. 一定是负数C. 可以是正数或零D. 以上都不对答案:C4. 一个数的立方等于-8,那么这个数是:A. 2C. 8D. -8答案:B5. 下列哪个选项是不等式3x - 5 > 7的解集?A. x > 4B. x < 4C. x > 2D. x < 2答案:A6. 计算 (-2)^3 的结果是:A. -8B. 8C. -6D. 6答案:A7. 一个角是90°,那么它的补角是:A. 90°B. 180°C. 270°D. 360°答案:B8. 一个数的倒数是1/2,那么这个数是:B. 1/2C. 1D. 0答案:A9. 一个数的平方根是4,那么这个数是:A. 16B. -16C. 4D. -4答案:A10. 一个数的立方根是2,那么这个数是:A. 8B. -8C. 2D. -2答案:A二、填空题(每题4分,共20分)1. 一个数的平方等于16,这个数是______。
答案:±42. 如果一个角的补角是120°,那么这个角是______。
答案:60°3. 一个数的绝对值是5,这个数可以是______。
答案:±54. 一个数的立方等于27,这个数是______。
答案:35. 一个数的倒数是1/3,那么这个数是______。
答案:3三、解答题(每题10分,共50分)1. 解方程:3x - 7 = 8。
答案:x = 52. 已知一个角是45°,求它的补角。
南昌市2023—2024学年第一学期期中形成性测试八年级(初二)数学试卷说明:本卷共有六个大题,23个小题,全卷满分120分,考试时间120分钟。
一、选择题(本大题6小题,每小题3分,共18分,每小题只有一个正确选项)1.2023年暑假期间,国家高度重视预防溺水安全工作,要求各级各类学校积极落实防溺水安全教育,以下与防溺水相关的标志中是轴对称图形的是( )A .B .C .D .2.如图,是线段的垂直平分线,为直线上的一点,已知线段,则线段的长度为( )A .6B .5C .4D .33.下列计算正确的是( )A .B .C .D .4.我国的纸伞工艺十分巧妙,如图,伞圈能沿着伞柄滑动,伞不论张开还是缩拢,伞柄始终平分同一平面内所成的角,为了证明这个结论,我们的依据是( )A .B .C .D .5.如图,在Rt 中,是角平分线,,则的面积为()CD AB P CD 5PA =PB 3332b b b ⋅=()()2222x x x +-=-22(2)4a a -=222()a b a b +=+D AP BAC ∠SAS SSS AAS ASAABC △90,C AF ∠=︒35,2AB CF ==AFB △A .5 B. C . D .6.如图,在Rt 中,,以的一边为边画等腰三角形,使得它的第三个顶点在的其他边上,则可以画出的不同的等腰三角形的个数最多为( )A .5B .6C .7D .8二、填空题(本大题共6小题,每小题3分,共18分)7.在平面直角坐标系中,点关于轴对称点的坐标为______________.8.分解因式:______________.9.如图所示,已知是上的一点,,请再添加一个条件:______________,使得.10.已知:,则______________.11.如图,等腰三角形的底边长为4,面积是14,腰的垂直平分线分别交于点,若点为底边的中点.点为线段上一动点,则的周长的最小值为______________.11.已知中,如果过顶点的一条直线把这个三角形分割成两个三角形,其中一个为等腰三角形,另一个为直角三角形,则称这条直线为的关于点的二分割线.如图1,Rt 中,显然直线是的关于点的二分割线.在图2的中,,若直线是的关于点154152132ABC △90C ∠=︒ABC △ABC △()2,5y 22ax ay -=P AD ABP ACP ∠=∠ABP ACP △≌△2,3m na a ==2m n a +=ABC BC AB EF ,AB AC E F 、D BC M EF BDM △ABC △B ABC △B ABC △BD ABC △B ABC △110ABC ∠=︒BD ABC △B的二分割线,则的度数是______________.三、(本大题共5小题,每小题6分,共30分)13.(1)计算:(2)如图,点在一条直线上,,.求证:.14.先化简,再求值:,其中.15.如图所示,的顶点分别为.(1)画出关于直线(平行于轴且该直线上的点的横坐标均为2)对称的图形,则的坐标分别为(______________),(______________),(______________);(2)求的面积.16.如果,那么我们规定,例如:因为,所以.(1)【理解】根据上述规定,填空:______________,______________;(2)【应用】若,试求之间的等量关系.17.如图是由小正方形组成的网格,每个小正方形的顶点叫做格点.的三个顶点都是格点,仅CDB ∠()()424242y y y y +÷--,,,B E C F ,B DEF BE CF ∠=∠=A D ∠=∠AB DE =()()()2232a b ab b b a b a b --÷-+-1,12a b ==-ABC △()()()2,3,4,1,1,2A B C ---ABC △2x =y 111A B C △111,,A B C 1A 1B 1C 111A B C △nx y =(),x y n =239=()3,92=()2,8=()2,4=()()()4,12,4,5,4,60a b c ===,,a b c 66⨯ABC △用无刻度的直尺在给定的网格中完成作图.(1)在图1中,作边上的中线;(2)在图2中,作边上的高.四、(本大题3小题,每小题8分,共24分)18.为了测量一幢高楼的高,在旗杆与楼之间选定一点.测得旗杆顶的视线与地面的夹角,测楼顶的视线与地面的夹角,量得点到楼底距离与旗杆高度相等,等于8米,量得旗杆与楼之间距离为米,求楼高是多少米?19.如图,甲长方形的两边长分别为,面积为;乙长方形的两边长分别为.面积为(其中为正整数).(1)现有一正方形,其周长与图中的甲长方形周长相等,试探究:该正方形面积与图中的甲长方形面积的差(即)是一个常数,求出这个常数;(2)试比较与的大小.20.如图:已知等边中,是的中点,是延长线上的一点,且,垂足为.AC BH AC BD AB CD P C PC 17DPC ∠=︒A PA 73APB ∠=︒P PB 33DB =AB 1,7m m ++1S 2,4m m ++2S m S 1S 1S S -1S 2S ABC △D AC E BC ,CE CD DM BC =⊥M(1)试问和有何数量关系?并证明之;(2)求证:是的中点.五、(本大题2小题,每小题9分,共18分)21.图1是一个长为、宽为的长方形,沿图中虚线用剪刀均分成四块小长方形,然后按图2的形状拼成一个正方形.(1)图2中的阴影部分的正方形的周长等于______________;(2)观察图2,请直接写出下列三个代数式之间的等量关系;(3)运用你所得到的公式,计算:若为实数,且,试求的值;(4)如图3,点是线段上的一点,以为边向两边作正方形,设,两正方形的面积和,求图中阴影部分面积.22.课本再现:如图,一个图形经过平移、翻折、旋转后,位置变化了,但形状、大小都没有改变,即平移、翻折、旋转前后的图形全等,我们把这种图形的变换叫全等变换.生活体验:(1)数学作图工具中有一个三角尺是等腰直角三角形,它的两个锐角相等,都是______________.问题解决:(2)如图1,在等腰直角三角形中,为边上的一点(不与点重合),连接,把绕点顺时针旋转后,得到,点与点恰好重合,连接.DM DE M BE 2a 2b 22(),(),a b a b ab +-m n 、3,4mn m n =-=m n +C AB AC BC 、8AB =1226S S +=︒AOB 90,,AOB AO BO C ∠=︒=AB ,A B OC AOC △O 90︒BOD △A B CD①填空:______________;______________.②若,求的度数.结论猜想:(3)如图1,如果是直线上的一点(不与点重合),其他条件不变,请猜想与的数量关系,并直接写出猜想结论.六、(本大题共12分)23.【探究发现】(1)如图1,中,,点为的中点,分别为边上两点,若满足,则之间满足的数量关系是______________.【类比应用】(2)如图2,中,,点为的中点,分别为边上两点,若满足,试探究之间满足的数量关系,并说明理由.【拓展延伸】(3)在中,,点为的中点,分别为直线上两点,若满足,请直接写出的长.OC OD COD ∠=30AOC ∠=︒BDC ∠C AB ,A B AOC ∠BDC ∠ABC △,90AB AC BAC =∠=︒D BC E F 、AC AB 、90EDF ∠=︒AE AF AB 、、ABC △,120AB AC BAC =∠=︒D BC E F 、AC AB 、60EDF ∠=︒AE AF AB 、、ABC △5,120AB AC BAC ==∠=︒D BC E F 、AC AB 、1,60CE EDF =∠=︒AF南昌市2023—2024学年第一学期期中形成性测试八年级(初二)数学试卷参考答案一.选择题(共6小题)1.D2.B .3.C .4.B5.B6.C二.填空题(共6小题)7.(﹣2,5).8. . 9. ∠BAP=∠CAP 或∠APB=∠APC 或AP 平分∠BAC(答案不唯一) .10. 12 11. 9. 12. 140°或90°或40°三.解答题13.(1)计算:解:(1)y 4+(y 2)4÷y 4﹣(﹣y 2)2=y 4+y 8÷y 4﹣y 4=y 4+y 4﹣y 4=y 4;……………………3分(2)证明:∵BE=CF∴BE+EC=CF+EC即BC=EF……………………1分在△ABC 和△EDF 中,∴△ABC ≌△DEF (AAS ),∴AB=DE……………………3分14.解:原式…………………1分…………………3分…………………4分将代入上式得,原式…………………6分15.,,,则为所求作的三角形,…………………4分如图所示:()()y x y x a -+⎪⎩⎪⎨⎧=∠=∠∠=∠EF BC DEFB D A 22222()a ab b a b =----22222a ab b a b =---+2ab =-112a b ==-,12(1)2=-⨯⨯-1=()16,3A ()18,1B ()15,2C 111A B C △1111111111A B C DA C EB C FA B DEB F S S S S S =--- 矩形…………………6分16.解:(1)23=8,(2,8)=3,,(2,4)=2,故答案为:3;2;……………………2分(2)证明:∵(4,12)=a ,(4,5)=b ,(4,60)=c ,∴4a =12,4b =5,4c =60,∴4a ×4b =60,∴4a ×4b =4c ,∴a +b =c ;………………6分17.即中线BH 为所求 ………………3分即高BD 为所求 ………………6分18.,,,,………………2分在和中,,∴(ASA ), (5)分11132132211222=⨯-⨯⨯-⨯⨯-⨯⨯2=17CPD ∠=︒ 73APB ∠=︒90CDP ABP ∠=∠=︒73DCP APB ∴∠=∠=︒CPD ∆PAB ∆CDP ABP DC PBDCP APB ∠=∠⎧⎪=⎨⎪∠=∠⎩CPD PAB ≅,米,米,………………7分(米),答:楼高是25米.………………8分19.解:(1)图中的甲长方形周长为2(m +7+m +1)4=4m +16,∴该正方形边长为m +4,∴S ﹣S 1=(m +4)(m +4)﹣(m +1)(m +7)=(m 2+8m +16) -(m 2+8m +7)=9,∴该正方形面积S 与图中的甲长方形面积S 1的差是一个常数9;……………4分(2)S 1=(m +1)(m +7)=m 2+8m +7,S 2=(m +2)(m +4))=m 2+6m +8,S 1﹣S 2=(m 2+8m +7)﹣(m 2+6m +8)=2m ﹣1,∵m 为正整数,∴2m ﹣1>0,∴S 1>S 2.……………………8分20.(1)DM 和DE 有何数量关系为:DE=2DM证明:∵三角形ABC 是等边△ABC ,∴∠ACB =∠ABC =60°,又∵CE =CD ,∴∠E =∠CDE ,又∵∠ACB =∠E +∠CDE ,∴∠E=∠ACB =30°;又∵∠DME=90°∴DE=2DM………………………4分(2)证明:连接BD ,∵等边△ABC 中,D 是AC 的中点,∴∠DBC=∠ABC =30°由(1)知∠E =30°∴∠DBC =∠E =30°∴DB =DE又∵DM ⊥BC∴M 是BE 的中点.………………………8分21.(1)阴影部分的正方形边长为a -b ,故周长为4(a -b )=4a -4b ;故答案:4a -4b ;………………………1分(2)大正方形面积可以看作四个矩形面积加阴影面积,故可表示为:4ab +(a -b )2,大正方形边长为a+b ,故面积也可表达为:(a +b )2,因此(a +b )2=(a -b )2+4ab ;故答案为:(a +b )2=(a -b )2+4ab ; (3)分为DP AB ∴=33DB = 8PB =33825AB ∴=-=AB(3)由(2)知:(m +n )2=(m -n )2+4mn ;………………………4分已知m -n =4,mn =-3;所以(m +n )2=42+4×(-3)=16-12=4;所以m +n =2或一2;………………………6分(4)设AC =a ,BC =b ;因为AB =8,S 1+S 2=26;所以a +b =8,a 2+b 2=26;因为(a +b )2=a 2+b 2+2ab ,所以64=26+2ab ,解得ab =19,由题意:∠ACF =90°,所以S 阴影=ab =,故答案为:.………………………9分22.解:(1)∵三角形的内角和为180°,等腰直角三角形的两个锐角相等,∴它的两个锐角都是;故答案为:.………………………1分(2)①根据旋转可得,∴,∴,∴是等腰直角三角形,故答案为:.………………………3分②∵等腰直角三角形中,,∴,∵,∴∵∴∵是等腰直角三角形,∴,∴………………………7分(3)当在上时,1219219245︒45ACO BDO ≌AOC BOD ∠=∠OC OD=90COD AOB ∠=∠=︒COD △90=︒,AOB 90,AOB AO BO ∠=︒=45A ∠=︒30AOC ∠=︒105ACO ∠=︒ACO BDO≌105BDO ∠=︒COD △45CDO ∠=︒60BDC BDO CDO ∠=∠-∠=︒C AB∵,∵∴∵是等腰直角三角形,∴,∴即;………………………8分当在的延长线上时,如图所示,∵,∵∴∵是等腰直角三角形,∴,∴即;当在的延长线上,如图所示,∵,∵∴∵是等腰直角三角形,∴,∴即;………………………9分综上所述,或.23.(1)()180135ACO A AOC AOC ∠=︒-∠+∠=︒-∠ACO BDO≌135BDO AOC AOC∠=∠=︒-∠COD △45CDO ∠=︒90BDC BDO CDO AOC∠=∠-∠=︒-∠90AOC BDC ∠+∠=︒C BA 45ACO AOC ∠=︒-∠ACO BDO≌45BDO AOC AOC∠=∠=︒-∠COD △45CDO ∠=︒454590BDC BDO CDO AOC AOC ∠=∠+∠=︒+︒-∠=︒-∠90AOC BDC ∠+∠=︒C AB 180135ACO BAC AOC AOC ∠=-∠-∠=︒-∠ACO BDO≌135BDO AOC AOC∠=∠=︒-∠COD △45CDO ∠=︒()4513590BDC CDO BDO AOC AOC ∠=∠-∠=︒-︒-∠=∠-︒90AOC BDC ∠-︒=∠90AOC BDC ∠+∠=︒90AOC BDC ∠-︒=∠如图1,∵AB =AC ,∠BAC =90°,∴∠B =∠C =45°,∵D 为BC 中点,∴AD ⊥BC ,∠BAD =∠CAD =45°,AD =BD =CD ,∴∠ADB =∠ADF +∠BDF =90°,∵∠EDF =∠ADE +∠ADF =90°,∴∠BDF =∠ADE ,∵BD =AD ,∠B =∠CAD =45°,∴△BDF ≌△ADE (ASA ),∴BF =AE ,∴AB =AF +BF =AF +AE ;故答案为:AB =AF +AE ;………………………2分(2)AE +AF=AB .理由是:………………………4分如图2,作AG=AD ,∵AB =AC ,∠BAC =120°,点D 为BC 的中点,∴∠BAD =∠CAD =60°,AD ⊥BC又∵AG=AD∴△AGD 为等边三角形∴DG =AG =AD∴∠GDA =∠BAD =60°,即∠GDF +∠FDA =60°,又∵∠FAD +∠ADE =∠FDE =60°,∴∠GDF =∠ADE ,在和中,12GDF ∆ADE ∆,∴(ASA )∴GF =AE ,∵AD ⊥BC ,∠BAD=60°∴∠B=90°-60°=30°又∵∠AGD=60°∴∠GDB=∠AGD-∠B=60°-30°=30°∴BG=GD又∵GD=AG∴AG=BG∴AG=AB =AF +FG =AE +AF ,∴AE +AF =AB ;………………………8分(3)当点E 在线段AC 上时,如图3,作AH=AD 同理可得△AD H 为等边三角形当AB =AC =5,CE =1,∠EDF =60°时,AE =4,此时F 在BA 的延长线上,∴∠DAF=180-∠BAD=180°-60°=120° ∠DHC=180-∠AHD=180°-60°=120°∴∠FAD=∠CHD=120°同(2)可得:△ADF ≌△HDE (ASA ),∴AF =HE ,同(2)可得:DH=HC ,AH=DH∴AH=HC∵AH =CH =AC =,CE =1,∴,GDF ADE DG ADAGD DAE ∠=∠⎧⎪=⎨⎪∠=∠⎩GDF ADE ≅ 1212125253122AF HE CH CE ==-=-=当点E 在AC 延长线上时,如图4,同理可得:;综上:AF 的长为或.………………………12分57122AF HE CH CE ==+=+=3272。
2023~2024学年第一学期八年级期中教学质量检测数学试题(2023.11)考试时间120分钟满分150分第Ⅰ卷(选择题共40分)一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.在平面直角坐标系中,点在()A.第一象限B.第二象限C.第三象限D.第四象限2.下列各式中,是最简二次根式的是()ABCD3.下列关于的函数是一次函数的是()A.B.C.D.4.是下面哪个二元一次方程的解()A.B.C.D.5.下列计算正确的是()ABCD6.一次函数的图象过点,且随的增大而减小,则的值为()A.B.或2C.1D.27.将第一象限的“小旗”各点的横坐标保持不变,纵坐标分别乘以,符合上述要求的图形是()A.B.C.D.8.某校规定学生体测成绩由三部分组成:长跑占成绩的,50米跑占成绩的,立定跳远占成绩的.小明上述三项成绩依次是92分,100分,80分,则小明本次的体测成绩为()分.A.95B.93C.91D.899.一次函数与的图象如图所示,下列选项正确的是()()1,2Ax2yx=y=21y x=-52y x=-53xy=⎧⎨=⎩27x y-=2y x=-+2x y=--231x y-=-+===2+=()20y mx m m=+≠()0,4y x m2-2-1-50%25%25%1y kx b=+2y mx n=+第9题图①对于函数来说,随的增大而减小;②函数的图象不经过第一象限;③A .①②B .①③C .②③D .①②③10.两地相距240千米,早上9点,甲车从地出发去地,20分钟后,乙车从地出发去地.甲、乙两车离开各自出发地的路程(千米)与甲车出发的时间(小时)之间的关系如图所示,下列描述中不正确的有()个.第10题图①甲车的平均速度是60千米/小时;②乙车的平均速度是80千米/小时;③甲车与乙车在早上10点相遇;④两车在10:40或10:58时相距20千米.A .1B .2C .3D .4第Ⅱ卷(非选择题共110分)二、填空题(本大题共6个小题,每小题4分,共24分.)11.如图,在“笑脸”的“嘴巴”上找一格点,这一格点的坐标可以为______(写出一点即可).第11题图12.赵老师每天登录“学习强国”进行学习,在获得信息和知识的同时,还能获得“点点通”奖励.上表是王1y kx b =+s t y kx n =+22k m n b -=-AB A B B A 12s s 、t老师最近一周每日“点点通”奖励情况,这组数据的平均数是______点.星期一二三四五六日“点点通”(点)15202523211719第12题图13.列方程组解题:“今有马二、牛一,直金七两;马三、牛二,直金十二两.马、牛各直金几何?”其大意是:2匹马,1头牛,一共价值7两;3匹马,2头牛,一共价值12两,问每匹马、每头牛各价值多少两?设每匹马两,每头牛两.根据题意,可列方程组为______.14.直线与直线相交于点,则关于的方程组的解为______.15.下表列出了一项实验的统计数据(单位:):5080100150 (30)455580…它表示皮球从一定高度落下时,弹跳高度是下落高度的一次函数,那么变量与之间的关系式为______.16.如图,在平面直角坐标系中,直线表达式为,点是直线上一点,直线过点,且与直线的夹角,则直线的表达式为______.第16题图三、解答题(本大题共10个小题,共86分.请写出文字说明、证明过程或演算步骤.)17.(本小题满分6分)计算:(1);(2.18.(本小题满分6分)解方程组:(1);(2).19.(本小题满分6分)x y 1y x =+y mx n =+()1,M b ,x y 1x yy mx n+=⎧⎨-=⎩cm x yy x y x AB 13y x =()3,1M AB CD M AB 45AMC ∠=︒CD (22++127x y x y =+⎧⎨+=⎩351458x y x y -=-⎧⎨+=⎩和都是方程的解,求与的值.20.(本小题满分8分)如图,直线是一次函数的图象,且经过点和点.第20题图(1)求和的值;(2)求直线与两坐标轴所围成的三角形的面积.21.(本小题满分8分)如图,在平面直角坐标系中,.第21题图(1)作出;(2)作出关于轴的对称图形;(3)求的面积.22.(本小题满分8分)2023年中秋、国庆双节假期期间,济南趵突泉景区共纳客200多万人次,为迎接游客,甲、乙两个纪念品商店对标价都是每个10元纪念印章推出优惠活动:甲商店购买5个以上,从第6个开始按标价的9折卖:乙商店从第1个开始就按标价的9.5折卖.(1)直接写出两商店优惠后的价格(元)与购买数量(个)的关系式();(2)小明要买8个纪念印章,到哪个商店购买比较省钱,请说明理由;21x y =-⎧⎨=⎩14x y =⎧⎨=⎩ax y b -=a b l y kx b =+()0,4A ()5,2B --k b l ()()()4,1,3,3,2,2A B C ----ABC △ABC △y 111A B C △111A B C △y x 5x >(3)若纪念印章的成本为每个7元,请写出甲商店的利润(元)与卖出数量(个)的关系(卖出5个以上).23.(本小题满分10分)2023年10月1日是中华人民共和国成立74周年,学校开展了“迎国庆·弘扬中华传统文化”知识竞赛活动,学校从初中三个年级各随机抽取10人进行相关测试,获得了他们的成绩(单位:分),并对数据(成绩)进行整理、描述和分析,下面给出了相关信息:a .30名同学中华传统文化知识测试成绩的统计图如图1:图1b .30名同学中华传统文化知识测试成绩的频数分布直方图如图2(数据分成6组:,).图2c .测试成绩在这一组的是:70 72 72 74 74 74 75 77d .小明的中华传统文化知识测试成绩为77分.根据以上信息,回答下列问题:(1)测试成绩在这一组的同学成绩的众数为______分;(2)小明的测试成绩在抽取的30名同学的成绩中从高到低排名第______名;(3)抽取的30名同学的成绩的中位数为______分;(4)序号(见图1横轴)为1-10的学生是七年级的,他们成绩的方差记为;序号为11-20的学生是八年级的,他们成绩的方差记为;序号为21-30的学生是九年级的,他们成绩的方差记为.直接写出①,②,③中最小的是______(填序号);(5)成绩80分及以上记为优秀,若该校初中三个年级1800w x 4050x ≤<5060,6070,7080,8090,90100x x x x x ≤<≤<≤<≤<≤<7080x ≤<7080x ≤<21s 22s 23s 21s 22s 23s名同学都参加测试,请估计成绩优秀的同学人数.24.(本小题满分10分)根据以下素材,探索完成任务.如何设计布料剪裁方案?素材1图1中是第31届世界大学生夏季运动会吉祥物“蓉宝”玩偶,经测量,制作该款吉祥物头部所需布料尺寸为,身子布料尺寸.图2是两部分布料的尺寸示意图.图1图2素材2某工厂制作该款式吉祥物,经清点库存时发现,需在市场上购进某型号布料加工制作该款式的玩偶.已知该布料长为,宽为.(剪裁时不计损耗)我是布料剪裁师任务一拟定剪裁方案若要不造成布料浪费,请你设计出一匹该布料的所有剪裁方案:方案一:剪裁头部布料16张和身子布料0张.方案二:剪裁头部布料______张和身子布料______张.方案三:剪裁头部布料______张和身子布料______张.任务二解决实际问题工厂目前已有裁剪好的12张头部布料和4张身子布料,经商议,现需购买一批该型号布料,其中一部分按照方案二裁剪,另一部分按照方案三裁剪,一共制作700个“蓉宝”玩偶.请问:需要购买该型号布料共多少匹(恰好全部用完)?25.(本小题满分12分)为激发学生们对科技的好奇心和探索欲,培养学生的创新意识和创新精神,某学校开展了“智能小车实验探究”50cm 15cm ⨯50cm 40cm ⨯240cm 50cm活动.某小组观察探究小车运动中的函数关系,如图,在一条长为的水平直线轨道上,放置一辆长为的智能小车,开始时小车左端与处挡板重合,然后以的速度匀速向右行驶,当小车接触到处的挡板时因为要改变方向需停顿,然后以相同的速度返回,至再次与处的挡板接触时小车停止运动.在这个过程中,设小车的右端与处挡板的距离为,小车出发后的时间为,请根据所给条件解决下列问题:第25题图(1)小车运动时间为时,的值为______;(2)小车从处驶向处的过程中,求与的函数表达式;(3)当小车左端与处挡板的距离比小车右端与处挡板距离的2倍多时,请求出的值.26.(本小题满分12分)如图,直线与轴、轴分别交于点,直线与轴、轴分别交于点.第26题图第26题备用图(1)直线过定点的坐标为______(填写合适的选项);A .B .C .D .(2)若直线将的面积分为两部分,请求出的值.(3)当时,将直线沿直线作轴对称得直线,此时直线与轴平行,直接写出此时的值.初二年级期中检测数学试题参考答案(2023.11)一、选择题(本大题共10个小题,每小题4分,共40分.)50cm 4cm A 2cm /s B 1s A B ()cm s ()s t 3s s cm B A s t A B 4cmt 1:l y =+x y ,60A B BAO ∠=︒、2:l y kx k =-+x y C D、y kx k =-+M ()1,3(32⎛⎝(2,2l AOB △1:7k 0k >2l 1l 3l 3lx 2:l y kx k =-+k题号12345678910答案ACDABABCDC二、填空题(本大题共6个小题,每小题4分,共24分.)题号111213141516答案答案不唯一20三.解答题(本大题共9个小题,共78分.请写出文字说明、证明过程或演算步骤)17.(满分共6分)(1)(218.(满分共6分)(1)解:将①代入②得:,解得:将代入①得:原方程组的解为(2)解:由①+②得:,解得:将代入②得:,解得:原方程组的解为19.(满分共6分)解:将代入,得:()0,2-273212x y x y +=⎧⎨+=⎩12x y =⎧⎨=⎩152y x =+1522y x =-+()2222431+=-=-=0+=-+=127x y x y =+⎧⎨+=⎩①②127y y ++=2y =2y =213x =+=∴32x y =⎧⎨=⎩351458x y x y -=-⎧⎨+=⎩①②77x =1x =1x =458y +=45y =∴145x y =⎧⎪⎨=⎪⎩21x y =-⎧⎨=⎩ax y b -=21a b--=将代入,得:解得:20.(满分共8分)解:(1)将点和点代入得:解得:,直线的表达式为(2)点把代入,得解得:点,即点21.(满分共8分)解:(1)即为所求;(2)即为所求;(3)22.(满分共8分)解:(1)14x y =⎧⎨=⎩ax y b -=4a b -=1,3a b ==-()0,4A ()5,2B --y kx b=+452b k b =⎧⎨-+=-⎩654k b ⎧=-⎪⎨⎪=⎩6,45k b ∴==∴l 645y x =-+ ()0,4,4A OA ∴=0y =645y x =+6405x +=103x =-∴10,03C ⎛⎫- ⎪⎝⎭103OC = ()0,4,4A OA ∴=11102042233AOC S OA OC ∴=⋅=⨯⨯=△ABC △111A B C △1111117251523122222A B C S =⨯-⨯⨯-⨯⨯-⨯⨯=△()500.910595y x x =+⨯⨯-=+甲0.95109.5y x x=⨯=乙(2)到乙商店购买较省钱把代入得:(元)把代入得:(元),到乙商店购买较省钱(3)23.(满分共10分)解:(1)74(2)11(3)73(4)③(5)(人)答:成绩优秀的同学人数为600人.24.(满分共10分)解:任务一:设一卷该布料裁切头部布料张,身子布料张,,,为非负整数,或或故答案为:8 30 6(方法二和方法三可以互换位置)任务二:设用卷该布料裁切头部布料8张,身子布料3张,用卷该布料裁切头部布料0张,身子布料6张,解得:(卷),需要购买该布料159卷.25.(满分共12分)解:(1)40(2)(秒)(3)①当小车从到运动时:解得:②当小车从到运动时:解得:或26.(满分共12分)解:(1)B8x =y 甲98577y =⨯+=甲8x =y 乙9.5876y =⨯=乙7677< ∴95725w x x x =+-=+10180060030⨯=m n 1540240m n +=4883nm -∴=,m n 160m n =⎧∴⎨=⎩83m n =⎧⎨=⎩0,6m n =⎧⎨=⎩x y 870012,367004x x y =-⎧⎨+=-⎩8673x y =⎧⎨=⎩8673159+= ∴()504223-÷= 23124∴+=()224s t ∴=⨯-248s t ∴=-A B ()224624t t =⨯-+16t =B A ()()50424822484t t ---=⨯-+31t =16t ∴=31t =(2)将代入得:将代入得:直线过定点,直线也过定点,是两直线的交点直线将的面积分为两部分,①当时,②当时,(3)0x=y =+y=(0,,B OB ∴=0y=y =+=4x ()4,0,4A OA ∴=11422AOB S OA OB ∴=⨯⨯=⨯⨯=△ 2l (M 1l (M M ∴ 2l AOB △1:70k>18BMD AOB S S ∴=⨯=△△12BMD M S BD x =⨯⨯=△BD=(0,D∴k ∴=0k<18AMC AOB S S ∴=⨯=△△12AMC M S AC y =⨯⨯= △23AC ∴=10,03C ⎛⎫∴ ⎪⎝⎭k ∴=k =。
湘教版数学八年级上册期中测试卷
班级____________ 姓名____________
一、选择题(每题3分,共30分) 1、在3125,0,52.3,3
,311,
414.1,2,25 π-中,无理数有 ( ) A .1个 B .2个 C .3个 D .4个 2、下列说法不正确的是 ( )
A .
1125
5
的平方根是
; B .
3=-
C .81的平方根是3±;
D .981是的算术平方根 3、一个正数的平方根为m -2与12+m ,则m 的值为 ( ) A .
31 B .3
1
或3- C .3- D .3 4、如果直线y=3x+6与y=2x-4的交点坐标为(a,b ),则x a
y b
=⎧⎨
=⎩是方程组______的解( )
A 、
3624y x y x -=⎧⎨+=-⎩ B 、3624y x x y -=⎧⎨-=⎩ C 、3634x y x y -=⎧⎨-=⎩ D 、36
24
x y x y -=-⎧⎨
-=-⎩ 5、已知点P(3,-2)与点Q 关于y 轴反射,则点Q 的坐标为( )
A.(-3,2)
B.(-3,-2)
C.(3,2)
D.(3,-2) 6、小亮早晨从家里骑车到学校,先上坡后下坡,行程
情况如图所示。
若返回时上坡、下坡的速度仍保持不变, 那么小亮从学校骑车回家用的时间是( )
A 、37.2分
B 、48分
C 、30分
D 、33分
7、点A(2,m)和点B(-4,n)都在直线y =32
1
+-
x 上,则m 与n 的大小关系应是( ) A .m > n B.m < n C.m = n D.条件不够,无法确定 8. 若△ABC ≌△DEF ,且△ABC 的周长为20,AB=5,BC=8,则DF 的长为 ( ) A. 5 B. 8 C. 7 D. 5或8
9.已知函数y=-x+1,下列哪个函数的图象可看作由它的图象向下平移3个单位得到( ) A .y=-x-2 B .y=x-2 C .y=-x+4 D .y=x-1
x
第8题图
10、已知一次函数y=kx+b(k≠0)的草图如右所示,则下列结论正确的是( )
A .k>0,b>0
B .k>0,b<0
C .k<0,b>0
D .k<0,b<0
二、填空题(每题3分,共24分)
11、81的平方根是 ;5的相反数 ;=-32 .
12、比较大小,填>或<号:
32; 13、函数3
2
-+=
x x y 的自变量x 的取值范围是 。
14、已知y与x-3成正比例,当x=4时,y=3-。
y与x之间的函数关系式为 。
15、已知一次函数y=-3x+1的图象经过点(a ,1)和点(-2,b ),则a=______,b=_____. 16、已知函数y=1-3x ,则函数y 随x 的增大而 . 17、一次函数y= -2x+4的图象与x 轴交点坐标是 .
18、设a 是倒数等于本身的数,b 是最大的负整数,c 是平方根等于本身的数,则
=++c b a .
三、计算(每题8分,共48分) 19、(1). 44.18
1
25+-
(2). 已知 0102=-++b b a ,求b a +的值。
20、正比例函数y=2x的图像与一次函数y=-3x+k的图像交于点P(1,m),
求:(1)k的值;(2)两条直线与y 轴围成的三角形的面积。
21、求下列各式中的x .
(1) 02783=+x (2) ()333
1
2=-x
22.已知函数y=-2x+3
(1)画出这个函数的图像(2分)
(2)写出这个函数的图像与x 轴,y 轴的交点的坐标(2分) (3)求此函数的图象与坐标轴围成的三角形的面积。
(3分)
23、某蜡烛点燃后按下表规律燃烧。
(1)观察表中数据,你能求出y 与x 的函数表达式吗?,若能并确定自变量的取值范围。
(2)这根蜡烛原来多长?,全部点燃需多少分钟?
四、综合题(每题9分,共18分)
24.一农民带了若干千克自产的土豆进城出售,为了方便,他带了一些零钱备用,按市场价售出一部分后又降价出售.售出土豆千克数与他手中持有的钱数(含备用零钱)的关系如图所示,结合图象回答下列问题:(1)农民自带的零钱是多少?(1分)(2)降价前他每千克土豆出售的价格是多少?(2分)(3)降价后他按每千克0.4元将剩余土豆售完,这时他手中的钱(含备用零钱)是26元,求两个函数解析式(6分)
25. 已知羊角塘服装厂有A种布料70m,B种布料52m,现计划用这两种布料生产甲、乙两
种型号的时装共80套,已知做一套甲型号的时装需用A种布料0.6m,B种布料0.9m,可
获利润45元;做一套乙型号的时装需用A种布料1.1m,B种布料0.4m,可获利润50元,
若生产乙型号的时装x套,用这批布料生产这两种型号的时装所获的总利润为y元。
(1)求y(元)与x(套)之间的函数关系式,并求自变量x的取值范围;(5分)
(2) 羊角塘服装厂在生产这批时装时,当乙型号的时装为多少套时,所获总利润最大?
最大总利润是多少?(4分)。