七年级数学上册 第一章《有理数的减法(2)》课堂教学实录 新人教版
- 格式:doc
- 大小:79.00 KB
- 文档页数:4
人教版七年级第一章第三节 有理数的减法(二) 教案【教学目标】(一) 知识技能1.使学生理解有理数的加减法法可以互相转化,并了解代数和的概念。
2.在正确理解省略括号和的形式基础上,熟练地进行有理数的加减混合运算。
3.在加减混合运算中,能灵活运用运算律简化运算,提高学生的运算能力。
(二)过程方法通过学生参与探索运算律在加减混合运算中作用的数学活动,体会有理数运算中分析和转化的思想方法.培养学生的运算能力。
(三)情感态度体验数、符号是有效地描述现实世界的重要手段,认识到数学是解决实际问题的重要工具。
教学重点把加、减混合的算式化为省略加号的和式,并运用加法运算律合理地进行运算。
教学难点把加、减混合运算统一成加法运算,需要一个比较复杂的思维和表述过程,是本节教学难点。
【复习引入】1. 有理数的减法法则是___________________________________________.2. 把下列减法改写成加法:(1)(-8)-(-10)=_____________ (2)(-6)-(+4)=_____________ (3)(54-)-(+51)=___________ (4)-(-31)-(+1)=____________ (5)(-8)-(-10)+(-6)-(+4)=____________________ (6))1()31()51()54()32(+---+--++=____________________________【教学过程】1.我们知道有理数的减法是先把它化为有理数的加法,即加减统一成加法。
把(-8)-(-10)+(-6)-(+4)统一成只有加法可写成(-8)+(+10)+(-6)+(-4)像这样的的一个和式里,通常把各个加数的括号与它前面的加号省略不写,如上式可写成-8+10-6-4这个式子仍看作和式,叫做代数和。
按和式读做“负8,正10,负6负4的和”;按运算意义读做“负8加10减6减4”。
有理数的减法(第一课时)
教学任务分析
教学流程按排
课前准备
教学过程设计
教学后记
根据斯托利亚尔的观点,我们把教学作为一个过程,那么在教学一个新的内容时,我们总是把学生视为探索者,将教学过程模拟成一个“科研过程”,引导学生发现矛盾,提出问题,最后用新的理论来解决原先提出问题,解决原先发现的矛盾.这种教法,归纳起来就是“三部曲”:提出问题——建立理论——解决问题.这节课的设计正是这一教学方法的具体体现.
第十四课时有理数的减法(第二课时)
教学任务分析
教学流程按排
课前准备
教学过程设计
教学后记
根据斯托利亚尔的观点,我们把教学作为一个过程,那么在教学一个新的内容时,我们总是把学生视为探索者,将教学过程模拟成一个“科研过程”,引导学生发现矛盾,提出问题,最后用新的理论来解决原先提出问题,解决原先发现的矛盾.这种教法,归纳起来就是“三部曲”:提出问题——建立理论——解决问题.这节课的设计正是这一教学方法的具体体现.。
有理数的减法第2课时有理数的加减混合运算一、导学1.课题导入:前面我们学习了有理数的加法和减法运算,本节课我们来学习有理数的加减混合运算.2.三维目标:〔1〕知识与技能使学生理解加减法统一成加法的意义,能熟练地进行有理数加减法的混合运算.〔2〕过程与方法通过加减法的相互转化,培养学生的应变能力,口头表达能力及计算能力.〔3〕情感态度敢于面对数学活动中的困难,并获得独立克服困难和运用知识解决问题的成功体验.3.学习重、难点:重点:加减法统一成加法.难点:有理数加法的省略写法和读法.4.自学指导:〔1〕自学内容:教材第23页至24页内容.〔2〕自学时间:6分钟.〔3〕自学要求:认真阅读课本,然后在组内交流讨论有理数加减法的运算步骤及本卷须知.〔4〕自学参考提纲:①例5中,根据有理数减法法那么,把原算式统一为加法运算.②例5的计算过程中,使用了哪些运算律?加法交换律,加法结合律.③引入相反数后,加减混合运算可以统一为加法运算,用字母表示是a+b-c=a+b+(-c).④有理数的加法运算可以省略算式中的括号和加号,你会做吗?简化后的算式你会读吗?会计算吗?用下面算式检验一下:计算:(-8)+(-5)+(+3)+(+6)原式=-8-5+3+6=-4⑤完成课本上的探究,可得结论:数轴上两点A、B的距离AB与这两点所对应的数a、b的关系为:AB=a-b.二、自学同学们可结合自学指导进行自学.三、助学1.师助生:〔1〕明了学情:深入学生之中,了解学生学习情况,特别是探究的结果是否正确,存在哪些问题.〔2〕差异指导:对学习困难的学生予以帮助.2.生助生:学生通过相互交流探讨解决一些自学中的疑难问题.四、强化1.解题要领:〔1〕引入相反数后,加减运算可以统一成加法运算.〔2〕遇到一个式子既有加法,又有减法,第一步应该先把减法转化为加法,然后再运用加法法那么运算,并要注意运用运算律进行简便运算.2.数轴上两点之间的距离等于这两个点所对应的数的差的绝对值.3.练习:〔1〕1-4+3-0.5;〔2〕-2.4+3.5-4.6+3.5;〔3〕〔-7〕-〔+5〕+〔-4〕-〔-10〕;〔4〕34-72+〔-16〕-〔-23〕-1答案:〔1〕-0.5;〔2〕0;〔3〕-6;〔4〕-134.五、评价1.学生的自我评价〔围绕三维目标〕:对自己的自学、交流的收获和缺乏进行自我评价.2.教师对学生的评价:〔1〕表现性评价:对本节课同学们自主学习和合作交流的积极表现和缺乏之处进行总结.〔2〕纸笔评价:课堂评价检测.3.教师的自我评价〔教学反思〕:本课时主要通过学生习题的训练,稳固有理数加法、减法及加减混合运算的法那么与技能,教师要认真归纳学生在进行有理数加法、减法运算时常犯的错误,以便在本节课教学时针对性指导.训练以学生自主解答为主,教师根据学生所做的解法,及时指出最具代表性的方法给学生指明解题方向.一、根底稳固〔70分〕1.〔20分〕把18-〔+33〕+〔-21〕-〔-42〕写成省略括号的和是〔B〕A.18+(-33)+(-21)+42B.18-33-21+42D.18+33-21-422.〔20分〕算式-3-5不能读作〔C〕B.-3与-5的和3.〔30分〕计算.〔1〕-4.2+5.7-8.4+10 〔2〕-14+56+23-12〔3〕12-(-18)+(-7)-15 〔4〕4.7-(-8.9)-7.5+(-6) (6)-23+0-516+-456+-913解:〔1〕3.1;(2)34;(3)8;(4)0.1;(5)-634;(6)0.二、综合应用〔20分〕4.〔10分〕计算:-1+2-3+4-5+6-7+8-9+…+ 2021-2021.解:原式=(-1+2)+(-3+4)+…+(-2021+2021)-2021=1+1+…+1-2021=-1014.5.〔10分〕一天早晨的气温是-7 ℃,中午上升了11 ℃,半夜又下降了9 ℃,半夜的气温是多少摄氏度?解:半夜的气温为-7+11-9=-5(℃).三、拓展延伸〔10分〕6.〔10分〕一种股票第一天的最高价比开盘价高0.3元,最低价比开盘价低0.2元;第二天的最高价比开盘价高0.2元,最低价比开盘价低0.1元;第三天的最高价等于开盘价,最低价比开盘价低0.13元,计算每天的最高价与最低价的差,以及这些差的平均值.平均值:〔0.5+0.3+0.13〕÷答:第一天最高价与最低价的差为0.5元,第二天最高价与最低价的差为0.3元,第三天最高价与最低价的差为0.13元;差的平均值是0.31元.第1课时教学目标1.认识三角形,了解三角形的意义,认识三角形的边、内角、顶点,能用符号语言表示三角形.2.经历度量三角形边长的实践活动中,理解三角形三边不等的关系.3.懂得判断三条线段可否构成一个三角形的方法,并能运用它解决有关的问题.4.帮助学生树立几何知识源于客观实际,用客观实际的观念,激发学生学习的兴趣.重点、难点重点:1.对三角形有关概念的了解,能用符号语言表示三条形.2.能从图中识别三角形.3.通过度量三角形的边长的实践活动,从中理解三角形三边间的不等关系.难点:1.在具体的图形中不重复,且不遗漏地识别所有三角形.2.用三角形三边不等关系判定三条线段可否组成三角形.教学过程一、看一看1.投影:图形见章前P1图.教师表达: 三角形是一种最常见的几何图形之一.(看条件许可, 可以把古埃及的金字塔、飞机、飞船、分子结构……的投影,给同学放映)从古埃及的金字塔到现代的飞机、上天的飞船,从宏大的建筑如P68-69的图,到微小的分子结构, 处处都有三角形的身影.结合以上的实际使学生了解到:我们所研究的“三角形〞这个课题来源于实际生活之中.学生活动:(1)交流在日常生活中所看到的三角形.(2)选派代表说明三角形的存在于我们的生活之中.2.板书:在黑板上老师画出以下几个图形.(1)教师引导学生观察上图:区别三条线段是否存在首尾顺序相接所组成的.图(1)三条线段AC、CB、AB是否首尾顺序相接.(是)(2)观察发现,以上的图,哪些是三角形?(3)描述三角形的特点:板书:“不在一直线上三条线段首尾顺次相接组成的图形叫做三角形〞.教师提问:上述对三角形的描述中你认为有几个局部要引起重视.学生答复:一直线上的三条线段.b.首尾顺次相接.二、读一读指导学生阅读课本P2,第一局部至思考,一段课文,并答复以下问题:(1)什么叫三角形?(2)三角形有几条边?有几个内角?有几个顶点?(3)三角形ABC用符号表示________.(4)三角形ABC的边AB、AC和BC可用小写字母分别表示为________.三角形有三条边,三个内角,三个顶点.组成三角形的线段叫做三角形的边;相邻两边所组成的角叫做三角形的内角; 相邻两边的公共端点是三角形的顶点, 三角形ABC用符号表示为△ABC,三角形ABC的三边,AB可用边AB的所对的角C的小写字母c 表示,AC可用b表示,BC可用a表示.三、做一做画出一个△ABC,假设有一只小虫要从B点出发,沿三角形的边爬到C,它有几种路线可以选择?各条路线的长一样吗?同学们在画图计算的过程中,展开议论,并指定答复以上问题:(1)小虫从B出发沿三角形的边爬到C有如下几条路线.a.从B→Cb.从B→A→C(2)从B沿边BC到C的路线长为BC的长.从B沿边BA到A,从A沿边C到C的路线长为BA+AC.经过测量可以说BA+AC>BC,可以说这两条路线的长是不一样的.四、议一议1.在同一个三角形中,任意两边之和与第三边有什么关系?2.在同一个三角形中,任意两边之差与第三边有什么关系?3.三角形三边有怎样的不等关系?通过动手实验同学们可以得到哪些结论?三角形的任意两边之和大于第三边;任意两边之差小于第三边.五、想一想三角形按边分可以,分成几类?六、练一练有三根木棒长分别为3cm、6cm和2cm,用这些木棒能否围成一个三角形?分析:(1)三条线段能否构成一个三角形, 关键在捡判定它们是否符合三角形三边的不等关系,符合即可的构成一个三角形,看不符合就不可能构成一个三角形.(2)要让学生明确两条木棒长为3cm和6cm,要想用三根木棒合起来构成一个三角形,这第三根木棒的长度应介于3cm和9cm之间,由于它的第三根木棒长只有2cm,所以不可能用这三条木棒构成一个三角形.错导:∵3cm+6cm>2cm∴用3cm、6cm、2cm的木棒可以构成一个三角形.错因:三角形的三边之间的关系为任意两边之和大于第三边,任意两边之差小于第三边,这里3+6>2,没错,可6-3不小于2,所以答复这类问题应先确定最大边,然后看小于最大量的两量之和是否大于最大值,大时就可构成,小时就无法构成.七、忆一忆今天我们学了哪些内容:1.三角形的有关概念(边、角、顶点)2.会用符号表示一个三角形.3.通过实践了解三角形的三边不等关系.八、作业课本P8习题11.2第1、2、6、7题.。
2.1.2有理数的减法(2)---加减法混合运算(教案,新教材)第二章有理数的运算2.1有理数的加法与减法2.1.2有理数的减法(2)---加减法混合运算【教学目标】1.能够把有理数的加、减混合运算统一成加法运算;探究数轴上两点间的距离;2. 熟练掌握有理数的加、减混合运算及其运算顺序,能运用运算律进行简化运算;3.通过对于同一个算式可以给出不同的解释,体现了数学的发散思维和转化思想.通过实例让学生感受有理数加减混合运算在实际问题中的广泛应用.【教学重点】能够把有理数的加、减混合运算统一成加法运算.【教学难点】运用运算律进行简化运算;数轴上两点间的距离.【教学过程】一、情境导入问题1:下表是某水文站记录的潮汛期某河流一周内的水位变化情况(“+”号表示水位比前一天上升,“-”号表示水位比前一天下降,上周末的水位恰好达到警戒水位.单位:米).与上周末相比,本周末河流的水位是上升还是下降了?小组探究与上周末相比,本周末河流的水位是上升还是下降,得出以下两种计算方法:(1) 0.20+0.81-0.35+0.13+0.28-0.36-0.01;(2)0.20+(+0.81)+(-0.35)+(+0.13)+(+0.28)+(-0.36)+(-0.01);比较以上两种算法,你发现了什么?我们怎样计算?点出课题,本节课学习——2.1.2有理数的加减混合运算(板书课题)二、合作探究活动一:运用加、减法法则进行加减混合运算例1. 计算: (-20)+(+3)-(-5)-(+7).学生活动:探讨上式有加,也有减法,可以先根据有理数减法法则,按顺序把减法化为加法计算.师生活动:减法变成加法后,运用加法运算律,将正数和负数分别相加. 引导学生注意:括号前是“+”号时,将括号连同它前边的“+”号直接去掉;括号前是“-”号时,将括号连同它前边的“-”去掉,括号内要变号.师生共同活动:(-20)+(+3)-(-5)-(+7)=(-20)+(+3)+(+5)+(-7)(减法变成加法)=[(-20)+(-7)]+[(+3)+(+5)](加法运算律,正负数分别相加)=(-27)+(+8)=-19活动二: 有理数的加减混合运算统一成加法运算问题2.怎样将a b c +-,加减混合运算统一成加法运算?学生活动:讨论归纳,根据相反数意义和减法法则,统一为加法:()a b c a b c +-=++-. 问题3.上面的算式:(-20)+(+3)-(-5)-(+2),怎样改写成省略括号和加号的形式,上面的两种书写形式怎样读?学生活动:学生试着写,试着读;教师活动:教师对学生活动进行评价,要求学生再分组换数字写和读.师生活动:师生共同用简单的方式写出上面的运算(-20)+(+3)-(-5)-(+7)=-20+3+5-7=-20-7+3+5=-27+8=-19.例2. 计算: 14-25+12-17.学生活动:统一成加法,运用加法运算律,把正负数分别相加;教师活动:提醒学生在式子中,要每两个数之间都视为有一个“+”省略没写,运用加法运算律具有把共同特点的数放到一起加.14-25+12-17=14+12-25-17=26-42=-16.活动三:探究数轴上两点间的距离问题4.在数轴上,点A,B分别表示数,a b .对于下列各组数,a b :2,6;0,6;2,6;2, 6.a b a b a b a b ======-=-=-(1)观察点A,B在数轴上的位置,你能得出它们之间的距离吗?(2)你能用,a b 的算式表示上述各组点A,B的距离吗?学生活动:小组合作,画数轴,探究结果.教师活动:再换几组数字,你能归纳A,B两点间的距离与数,a b 的关系?师生共同活动:A,B两点的距离与数,a b 的关系为:AB=()a b a b ->,即AB=a b -. 例3.如图,在数轴上,点A 、B 分别表示数a 、b ,且20a b +=.若A 、B 两点间的距离为12,则点A 表示的数为( )A .4B .4-C .8D .8-学生活动:由20a b +=可得2a b =-,再根据A 、B 两点间的距离为12列式求得b ,进而求得a 即可教师活动:对学生活动进行评价,分析如下:∵20a b +=,∴2a b =-;∵A 、B 两点间的距离为12,∴()212b b --=,解得:4b =,∴8a =-,点A 表示的数为8-.故选:D三、强化巩固1.解答课堂导入中的问题1.学生解答对比,教师评价.2.练习1、2抽学生板演,其余学生独立完成.3.拓展训练:如图,将一刻度尺放在数轴上(数轴的单位长度是1cm ),刻度尺上的“0cm ”和“6cm ”分别对应数轴上表示2-和实数x 的两点,那么x 的值为( )A .3B .4C .5D .6师生共同讨论,引导学生讨论解答.(参考答案:将刻度尺放在数轴上(数轴的单位长度是1cm ),刻度尺上的0cm 和6cm 分别对应数轴上表示2-和实数x 的两点,∵0到6之间是6个单位,∴(2)6x --=.∴4x =,故答选:B )四、总结拓展学生小组合作对知识总结:1.有理数加减混合运算:一般统一为加法,再利用加法运算律,把具有某些特点的数结合在一起,再运用有理数加法法则;也可以从左向右依次按加减法法则进行.2. 数轴上A,B两点的距离与数,a b 的关系为:AB=()a b a b ->,即AB=a b -. 学生小组合作对思想方法总结:在加减混合运算中,对于“+”“-”既可以看作性质符号(正、负),又可以看作运算符号(加、减),对于同一个算式可以给出不同的解释,体现了数学的发散思维和转化思想,感受数学的实际应用.五、作业布置必做作业: 1. 课本习题2.1第5题的2、4、6、8小题;2. 课本习题2.1第6、7、10、11题.选做作业:课本习题2.1第5题的2、4、6小题;2.课本习题第8、9、12、13题。
1.3.2 有理数的减法(第二课时)教学设计一、内容和内容解析1.内容本节课是人教版《义务教育教科书•数学》七年级上册(以下统称“教材”)第一章“有理数”1.3.3 有理数的减法(第二课时),内容包括:有理数加减法的混合运算及其应用.2.内容解析《有理数的减法》是人教版教科书《数学》七年级上册第一章第三节第二课时的内容.本节课主要学习有理数的加减混合运算的学习远接小学阶段关于非负有理数的加减混合法运算,近承本章有理数的加法和减法运算.通过对有理数的加减法运算的学习,学生将对加减法运算有进一步的认识和理解,也为后继对有理数的混合运算、实数、整式、方程等运算的学习奠定了坚实的基础.同时也为生活中的地理、物理等各类问题的解决提供帮助.基于以上分析,确定本节课的教学重点为:理解加减法统一成加法的意义,能熟练地进行有理数加减法的混合运算.二、目标和目标解析1.目标(1)理解加减法统一成加法的意义,能熟练地进行有理数加减法的混合运算.(运算能力)(2)通过加减法的相互转化,培养应变能力、计算能力.(转化思想、运算能力)2.目标解析使学生理解加减法统一成加法的意义,能熟练地进行有理数加减法的混合运算.经历探索有理数的加减混合运算可以统一成加法,加法运算可以写成省略括号及括号前“+”号形式的过程.培养学生敢于面对数学活动中的困难,并有独立克服困难和运用知识解决问题的成功体验.通过学生间合作、交流、竞争等活动方式,培养学生的合作、互助精神和竞争意识.三、教学问题诊断分析学生已经学习了有理数的基础知识,认识了正、负数;理解了相反数、绝对值等概念;学习了有理数的加法运算、减法运算,这就为学习有理数加减混合运算奠定了基础.而本节的有理数加减混合运算,其核心是通过把减法运算转化为加法运算,向学生渗透转化思想,理解它的关键就是要正确加法的运算律合理的进行简便运算.本节课的易错点是混合运算时将算式简单的写成“和”的形式,即便于数学,也便于运算,教学中要结合实际问题总结规律,提升计算能力因此,本节课通过有理数的加减混合学习进一步提升学生的运算能力.基于以上学情分析,确定本节课的教学难点为:法则中减法到加法的转变过程,在实际情境中体会减法运算的意义并利用有理数的减法法则解决实际问题.四、教学过程设计(一)复习回顾1.有理数的加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加.(2)绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得0;(3)一个数同0相加,仍得这个数.2.有理数的减法法则:减去一个数,等于加这个数的相反数.(二)情境引入一架飞机作特技表演,起飞后的高度变化如下表:此时飞机比起飞点高了多少千米?方法一:4.5+(3.2)+1.1+(1.4)=1.3+1.1+(1.4)=2.4+(1.4)=1(千米)方法二:=1(千米)比较以上两种算法,你发现了什么?(三)自学导航尝试计算:(20)+(+3)(5)(+7)分析:1.算式中都含有什么运算?2.动脑思考这个算式应该怎样解决?把你的想法和同桌交流一下?3.请按照你的思路动笔做一做?解:原式=(20)+(+3)+(+5)+(7)=[(20)+(7)]+[(+5)+(+3)]=(27)+(+8)=19这里使用了哪些运算律?【点睛】引入相反数后,加减混合运算可以统一为加法运算:().a b c a b c +-=++-(四)考点解析例1.把下列算式写成和的形式:(1)125+31(9)(+7); (2)0(6)(11)13.解:(1)原式=(12)+(5)+31+9+(7);(2)原式=0+6+11+(13).【迁移应用】1.式子2(3)+(+1)(4)写成和的形式为( )A.(2)+(+3)+(+1)+(4)B.(2)+(3)+(+1)+(4)C.(2)+(+3)+(+1)+(+4)D.(2)+(3)+(+1)+(+4)2.把下列算式写成和的形式:(1)2(8)+(3)5; (2)4.7(8.9)7.5+(6).解:(1)原式=2+8+(3)+(5);(2)原式=4.7+8.9+(7.5)+(6).(五)自学导航算式(20)+(+3)+(+5)+(7)是 , , , 这四个数的和.为书写简单,省略算式中的括号和加号写为________________这个算式可以读作 的和, 或读作 .快速练习:同桌互相出算式,并读出两种读法.(六)考点解析例2.把(+9)(+10)+(2)(8)+(+3)写成省略括号和加号的形式,并说出它的两种读法.分析:第一步:统一成加法;第二步:省略括号和加号;第三步:按照两种读法规则读出算式.解:(+9)(+10)+(2)(8)+(+3)=9+(10)+(2)+8+3=9102+8+3.读法一:正9、负10、负2、正8、正3的和.读法二:9减10减2加8加3.【迁移应用】1.式子20+35+7正确的读法是( )A.负20加3减5加7的和B.负20加3减负5加7的和C.负20加3减5加7D.负20加3减负5加72.下列各式中,与式子12+3不相等的是( )A.(1)+(2)+(+3)B.(1)2+(+3)C.(1)+(2)(3)D.(1)(2)(3)(七)合作探究在数轴上,点A,B分别表示数a,b. 利用有理数减法,分别计算下列情况下点A,B之间的距离: a=2,b=6;a=0,b=6;a=2,b=6;a=2,b=6.你能发现点A,B之间的距离与数a,b之间的关系吗?A,B之间的距离分别为:62=4;60=6;2(6)=8;(2)(6)=4.A,B之间的距离分别为:|2-6|=4;|0-6|=6;|-6-2|=8;|-6-(-2)|=4.数轴上两点A、B的距离|AB|与这两点所对应的数a、b的关系为:|AB|=|a-b|.(八)考点解析例3.计算:(1)(5)(10)+(32)(7); (2)835(1.93)(+35)+(3.07)(6);(3)(23)+(35)(78)(+13)(+25)(18). 解:(1)原式=(5)+(+10)+(32)+(+7)=[(5)+(32)]+(10+7)=37+17=20(2)原式=835+(+1.93)+(35)+(3.07)+(+6) =[(835)+(35)]+[(+1.93)+(3.07)]+(+6)=9.2+(1.14)+6=10.34+6=4.34(3)原式=2335+781325+18=23133525+78+18=11+1=1【迁移应用】计算:(1)2.4(3.7)+(4.6)3.7; (2)23+(16)(25)+12−110;(3)(+1.5)(414)+3.75(+812).=7;(2)原式=2316+25+12−110=2316+12+25−110=13+310=130; (3)原式=1.5+414+3.75812 =1.5812+414+3.75=10+8=2.例4.计算:(1)[1.4(3.6+5.2)4.3](1.5); (2)43.8[(3.7+4)6.9].解:(1)原式=(1.41.64.3)+1.5=4.5+1.5=3:(2)原式=43.8(0.36.9)=43.8(6.6)=43.8+6.6=6.8.例5.在班级元旦联欢会上,主持人邀请李强、张华两位同学参加一个游戏,游戏规则是每人每次抽取四张卡片,如果抽到红色卡片,那么加上卡片上的数;如果抽到蓝色卡片,那么减去卡片上的数.比较两人所抽4张卡片的计算结果较小的为同学们唱歌.李强同学抽到如图①所示的四张卡片,张华同学抽到如图②所示的四张卡片.李强、张华谁会为同学们唱歌呢?解:李强同学所抽卡片的计算结果:12+(32)(5)+4=1232+5+4=12−32+5+4=2+9=7.张华同学所抽卡片的计算结果:−76(113)0+5=−76+113+5=516.因为7>516 所以张华会为同学们唱歌.【迁移应用】2020年的“新冠肺炎”疫情的蔓延,使得医用口罩销量大幅增加,某口罩加工厂每名工人计划每天生产300个医用口罩,每人每周计划生产2100个口罩,由于种种原因,实际每天生产量与计划量相比有出入.如表是工人小王某周的生产情况(超产记为正,减产记为负):(1)根据表格记录的数据,求出小王本周实际生产口罩数量;(2)若该厂实行每周计件工资制,每生产一个口罩可得0.5元,若超额完成每周计划工作量,则超过部分每个另外奖励0.15元,若完不成每周的计划量,则少生产一个扣0.2元,求小王这一周的工资总额是多少?解:(1)由题意得,2100+(524+139+158)=2110(个),∴小王本周实际生产口罩数量是2110个;(2)∵本周多生产口罩数为524+139+158=10(个),∴小王这一周的工资总额是 21000.510(0.50.15)1056.5⨯+⨯+= (元)例6.【古代数学文化】“九宫图”源于我国古代的“洛书”(如图①),是世界上最早的矩阵,又称幻方.用今天的数学符号表示,洛书就是一个三阶幻方(如图若图③是一个三阶幻方,同一横行、同一竖列、同一斜对角线上的3个数之和相等,求图中a,b 的值.分析:利用同一横行(或同一竖列或同一斜对角线)上的3个数之和相等求a,b.解:由题意可知,4+a+2=1+1+3,b+5+(2)=1+1+3,所以a=3,b=0.【迁移应用】观察图,找出规律.【解析】因为5+(2)3=10,6+6(4)=4,7+(10)(17)=0,所以 =11+(12)7=8. (九)小结梳理有理数加减法混合运算的步骤为:方法一:减法转化成加法1.减法变加法:a+bc=a+b+(c)2.运用加法交换律使同号两数分别相加;3.按有理数加法法则计算.方法二:省略加号和括号法1.省略括号;2.同号放一起;3.进行加减运算.五、教学反思。
2.5 有理数的减法教与学 反思 你有什么收获? 教学反思: 1、本节在引入有理数减法时花了较多的时间,目的是让学生有充分的思考空间与时间进行探索,法那么的得出,是在经历从实际例子〔温度计上的温差〕到抽象的过程中形成种,减法法那么的归纳得出是本节课的难点,在这个过程中,设计了师生的交流对话,教师适时、适度的引导,也表达教师是学生教学的引导者、伙伴的新型师生关系.2、在教学设计中,除了考虑学生探索新知的需要,还考虑学生对法那么的理解和掌握是建立在一定量的练习根底之上的,因此,在例题中增加了一道实际问题,让学生在解决实际间题过程中培养运算能力.另外教师引导〔提倡〕学生进行解题后的反思,意在逐步培养学生思维的全面性、系统性.在反思的根底上又让学生〔或教师启发引导〕去寻找一些〔如减正数即加负数;减负数即加正数〕规律,目的。
第1课时 有理数的加减混合运算及运算律在其中的应用1.理解有理数加减混合运算统一成加法运算的意义,掌握有理数加减混合运算的方法,并能熟练运算.2.能根据具体问题,适当运用运算律简化运算.一、情境导入甲、乙两队进行拔河比赛,规定标志物向某队方向移动2米,该队即可获胜.比赛开始后,标志物先向乙队方向移动0.2米,又向甲队方向移动0.5米,相持一会儿后,又向乙队方向移动了0.4米,随后又向甲队方向移动了1.3米,在大家欢呼声鼓励中,标志物又向甲队移动了0.9米,请你通过计算判断哪队获胜.就让我们带着这一问题去学习有理数的加减混合运算.二、合作探究探究点一:有理数的加减混合运算计算:12+(-23)-(-45). 解析:先将减法统一为加法,再按有理数的加法运算法那么进行计算.解:原式=12+(-23)+(+45)=-16+45=1930.方法总结:有理数加减混合运算的步骤是:(1)用减法法那么将减法转化为加法;(2)写成省略加号的和的形式;(3)进行有理数的加法运算.探究点二:利用加法运算律进行计算计算:(1)-9.2-(-7.4)+915+(-625)+(-4)+|-3|; (2)-1423+11215-(-1223)-14+(-11215); (3)23-18-(-13)+(-38). 解析:此题根据有理数加减互为逆运算的关系把减法统一成加法,省略加号后运用加法运算律简化运算,求出结果.其中互为相反数的两数先结合,能凑成整数的各数先结合.另外,同号各数先结合,同分母或易通分的各数先结合.解:(1)-9.2-(-7.4)+915+(-625)+(-4)+|-3|=-9.2+7.4+9.2+(-6.4)+(-4)+|-3|=-9.2+7.4+9.2-6.4-4+3=(-9.2+9.2)+(7.4-6.4)-4+3=0+1-4+3=0;(2)-1423+11215-(-1223)-14+(-11215)=-1423+11215+1223-14-11215=(-1423+1223)+(11215-11215)-14=-2-14=-16; (3)23-18-(-13)+(-38)=23-18+13-38=(23+13)+(-18-38)=1+(-12)=12. 方法总结:(1)为使运算简便,可适当运用加法的结合律与交换律.在交换加数的位置时,要连同前面的符号一起交换.(2)注意同分母分数相加,互为相反数相加,凑成整数的数相加,这样计算简便.(3)当一个算式中既有小数又有分数时,一般要统一,具体是统一成分数还是小数,要看哪一种计算简便.三、板书设计本课时在学习了有理数加减法运算的根底上,通过对同一具体情境两种算法的比较,让学生体会加减混合运算可以统一成加法运算,以及加法运算可以写成省略括号及前面加括号的形式,渗透“转化〞思想.通过师生、生生之间的交流,培养学生的口头表达能力和计算能力.。
1.3.2 有理数的减法(2)
(一) 情境导入
师:竞赛活动,比一比,看谁算得快.
(-20)+(+3)-(-5)-(+7)①
(-7)+(+5)+(-4)-(-10)②
(二)合作交流,解读探究
师:对比上式①,你首先想到将原式如何变形?
生:根据有理数的减法法则把减号统一成加号,即原式变为:
-20+(+3)+(+5)+(-7)③
师:很好,可见在引入相反数后,加减混合运算可以统一为加法运算.用字母可表示成:a+b-c=a+b+(-c).
师:(强调)减去一个数,等于加上这个数的相反数.
师:下面请大家一起来练习计算以上两道题,独立完成.
〖评析〗由于学生刚刚接触有理数减法运算难度较大,为面向全体,通过此题给予学生进一步观察比较的机会,学生自己总结、归纳、思考,此时学生的思维活跃,易于充分发挥学生的学习主动性,同时也培养了学生分析问题的能力,达到能力培养的目标.
(学生独自完成上面的两道题)
师:(2分钟后)下面大家一起来交流一下各人的解题方法和过程找几位同学就此题的解题思路和过程进行回答.
生:两两进行运算,用加法法则或减法法则.
师:很好.
师:其他同学呢?
生:我们可以把括号去掉.
师:去掉的目的有时什么呢?
生:可以看每个数字前的符号,相同的放在一起,便于计算.
师:好的,回答的很棒,大家说,她的方法叫什么.
生(全体):交换律和结合律.
师:是的,这跟我们小学的计算方法是相同的,可以用交换律和结合律来进行.
师:针对学生做的方法评析,作以下说明.
1.式③表示的是-20,+3,+5,-7的和,为了书写简单,可以省略式中的括号,从而有-20+3+5-7.
大家要注意到,虽然加号和括号都省略了,但-20+3+5-7仍表示-20,+3,+5,-•7的和,所以这个算式可以读作“负20,正3,正5,负7的和”.当然,按运算意义也可读作“负20加3加5减7”.
师:同学们不妨尝试用两种读法读.同桌间互相出式,并读出两种读法.
2.刚才在大家练习的过程中,我们看到有两种典型的处理方法,•一是将原式按次序计算;二是将原式换成(-20-7)+(3+5).大家观察比较一下,•你看哪种方法更好,为什么?
生:第二种过程更简便、合理.因为它运用了有理数加法的交换律、结合律.
师:太棒了,在有理数的加法运算中,通常应用加法运算律,可使计算简化,根据刚才过程可见,在有理数加减混合运算统一成加法后,一般应注意运算的合理性,适当运用运算律.
师:下面,大家来做做下面几道题目:
课堂探究1(问题探究,自主学习)
1.把(-10)-(+11)+(+7)-6写成省略括号的和的形式为_____________.
2.-8-3+1-7:按“和”的意义读作:_________________.
按“运算”意义读作:___________________.
3.把+3-(+2)-(-4)+(-1)写成省略括号的和的形式是()
A. -3-2+4-1 B.3-2+4-1 C.3-2-4-1 D.3+2-4-1
4.运用交换律填空:-8+4-7+6= – + +
生:1.-10-11+7-6
师:不错,非常好!
生:2.负八,负3,正七,负六的和; 负8减3加1减7.
师:你能回答第三道吗?
生:能,选B.
师:太勇敢了,正确.(大家给出掌声!)
师:大家一起回答一下第四题.
生(全体):-8减7加4加6
师:大家的表现太棒了,相信大家在下面的探究中会更出色.
师:例1 把(+1)+(-3)-(+2)-(-1)-(+1)写成省略括号的和的形式,并计算.〖评析〗教师发挥主导作用,注重学生的参与意识,充分发展学生的思维能力,让学生通过尝试,对刚学知识的获得形成一种良性的心理,成功的果实让其有更好的状态投入到下面的学习中,更深入地理解减法可以转化为加法计算.
师:让学生回答,老师书写(老师板演)
解:(+1)+(-3)-(+2)-(-1)-(+1)
= 1-3-2+1-1
= 1-3-2
= 1+[-3+(-2)]
= 1+(-5)
= -4.
说明:解题过程由学生口述、教师板演,同时提问每步的根据和目的,并强调书写的规范化.
师:纵观这道题的解答过程,你能总结得到什么?小组同学可作交流.
(学生小组交流,并总结)
生:有理数的加减混合运算的计算有如下几个步骤:
1.将减法转化成加法运算:
2.省略加号和括号;
3.运用加法交换律和结合律,将同号两数相加;
4.按有理数加法法则计算.
师:(出示小黑板)例2 比谁算得对,算得快
(1)(+0)+(-5)-(+7)-(-4)-(+1)
(2)-7-(-8)-(-7)-(+9)+(-10)+11
(3)-99+100-97+98-95+96+…+2
(4)-1-2-3-…-100
师:找二位同学到黑板来练习第(1)(2)两道题目
〖评析〗学生自主练习,让学生自查自纠,把学习的主动权交给学生,培养学生的课堂接受能力,增强自主意识.
师:再找两位帮助批改,错误的用红粉笔指出来,并写出正确的解答.
(气氛浓烈,正确率也比较高,答案是7和0)
生:老师,第二道我还有一种不同的方法,就是先把它化成-7+8+7-9-10+11,然后将-7和+7结合,因为互为相反数,所以和为0.
师:你太聪明了,不错,我们以后有理数的加减运算,如果碰到互为相反数的一些数时,就应该将互为相反数的两个数先结合,然后将减法转化成加法进行运算.
师:那第(3)道呢?在下面试试看.
(巡回指点).
师:是否存在规律性,观察符号与数字之间的关系.
(学生举手要求板演,任意挑选一位写字比较清晰的)
师:(就同学的板演说明)从符号看一负一正的规律和数值的差是1,我们需要进行两两组合,每一组的和为1,那有多少组呢?
生:50.
师:怎么看的呢?
生:看第奇数个数,从100到2的偶数的个数当然是50个了.
师:(赞许的目光)同学们的大脑太神了,我佩服!
师:最后的答案是50.
师:好的,有了这倒题的体验,我们来试试第(4)题.
生:提取负号,求1到100的和.但是,求和我忘了.
师:有谁能帮她的忙的?
生:将1到100按顺序写,再将它们逆序写,两行上下进行相加组合,共有100个101,最后除以2.
师:好的,那位同学你会了吗?
生:会了.
师:很好,那你看看,答案应该是多少?
生:-5050.
(三)探究活动
银行储蓄所办理了8件工作业务,取出900元,存进450元,取出800元,•存进1200元,存进了2500元,取出1000元,取出200元,存进400元,这时,银行现款是增加了,还是减少了?增加或减少了多少元?
〖评析〗此题是实际问题,与新课引入中的实际问题前后呼应,贯彻新课标中规定的“要使学生受到把实际问题抽象成教学问题的训练,逐步形成用数学意识”的要求,把实际
问题转化为有理数减法,说明数学来源于实际,又用于实际.
师:对于实际问题,我们往往需要借助于数学模型,数学思想与意识来解决,我们不妨来看看这个例子.
师:(点拨)根据题意把取出记为“-”,存进记为“+”,列出算式进行运算.
生:(学生自主解答)
解:每次存款数记为-900,+450,-800,+1200,+2500,-1000,-200,+400.则总额为:
-900+450+(-800)+1200+2500+(-1000)+(-200)+400
=(-900-800-1000-200)+(450+1200+2500+400)
=-2900+4550
=1650(元)
答:增加了,增加了1650元.
师:完成课内探究中的四和巩固练习
(四)总结反思,拓展升华
师:回顾一下本节课所学内容,你学会了什么?
生:减法法则的应用.
生:混合运算的步骤:
1.将减法转化成加法运算:
2.省略加号和括号;
3.运用加法交换律和结合律,将同号两数相加;
4.按有理数加法法则计算.
生:遇到互为相反数的两个数是,我们常常先结合这两个数,然后进行运算.
师:不错,大家总结得非常好,那在这里我还要补充一点:碰到整数和分数混合运算时,通常将整数与整数结合,分数和分数结合.知道了吗?
生:知道了.
师:好的,课后作业完成课后提升部分. 师:下课!。