化工原理(上)第二章流体输送机械资料
- 格式:ppt
- 大小:1.86 MB
- 文档页数:52
第二章:液体输送机械在化工生产中,为了满足工艺条件的要求,常需把流体从一处送到另一处,有时还需提高流体的压强或将设备造成真空,这就需采用为流体提供能量的输送设备。
为液体提供能量的输送设备称为泵为气体提供能量的输送设备称为风机及压缩机。
它们都是化工厂最常用的通用设备,因此又称为通用机械。
为气体提供能量的输送设备称为风机及压缩机。
它们都是化工厂最常用的通用设备,因此又称为通用机械。
化工生产中被输送的流体是多种多样的,且在操作条件、输送量等方面也有较大的差别,所用的输送设备必须能满足生产上不同的要求。
化工生产又多为连续过程,如果过程骤然中断,可能会导致严重事故,因此要求输送设备在操作上安全可靠。
输送设备运行时要消耗动力,动力费用直接影响产品的成本,故要求各种输送设备能在较高的效率下运转,以减少动力消耗。
为此,必须了解流体输送设备的操作原理、主要结构与性能,以便合理地选择和使用这些通用机械。
第一节液体输送设备液体输送设备的种类很多,按照工作原理的不同,分为离心泵、往复泵、旋转泵与旋涡泵等几种。
其中,以离心泵在生产上应用最为广泛。
2-1-1离心泵一、离心泵的工作原理和主要部件(一) 离心泵的工作原理上图为一台离心泵。
它的基本部件是旋转的叶轮和固定的泵壳。
具有若干弯曲叶片的叶轮安装在泵壳内,并紧固于泵轴上,泵轴可有电动机带动旋转.泵壳中央的吸入口与吸入管路相连接,而在吸入管路底部装有底阀.侧旁的排出口与排出管路相连接,其上装有调节阀.离心泵在启动前需向壳内灌满被输送的液体,启动后泵轴带动叶轮一起旋转,迫使叶片内的液体旋转,液体在离心力的作用下从叶轮中心被抛向外缘并获得了能量,使叶轮外缘的液体静压强提高,流速增大,一般可达15~25m/s。
液体离开叶轮进入泵壳后,由于泵壳中流道逐渐加宽而使液体的流速逐渐降低,部分动能转变为静压能.于是, 具有较高的压强的液体从泵的排出口进入排出管路,输送至所需的场所。
当泵内液体从叶轮中心被抛向外缘时,在中心处形成了低压区.由于贮槽液面上方的压强大于泵吸入口处的压强,致使液体被吸进叶轮中心。
化工原理流体输送机械
流体输送机械,是化工工程中常用的一类设备,其主要功能是将液体或气体从一个地方输送到另一个地方。
常见的流体输送机械有管道、泵、阀门等。
管道是流体输送的基础设施。
管道可以分为直接埋设在地下的地下管道和架空或隧道中的地上管道。
管道的材料可以选择金属、塑料、橡胶等。
泵是常用的流体输送机械之一。
泵的工作原理是利用旋转运动或往复运动产生的压力差,将液体或气体推动到设定的位置。
泵的种类很多,常见的有离心泵、容积泵、螺杆泵等。
阀门在流体输送中起到控制流体流动的作用。
阀门可以分为手动阀、自动阀和电动阀等。
通过控制阀门的开关状态,可以调节流体的流动速度和流量。
除了上述常见的流体输送机械,还有一些其他的设备和工艺可以用于特定的流体输送需求。
例如,喷雾器可以将液体变成雾状或气雾状进行输送;干燥器可以将湿润的固体物料转化为干燥的状态进行输送。
在化工生产中,正确选择和使用流体输送机械是非常重要的。
不同的流体输送机械具有不同的工作原理和适用范围,需要根据具体的流体性质和输送要求进行选择。
同时,合理设计和布置流体输送系统,合理设置管道和阀门,也是确保流体输送稳定和安全的关键。
2-l 在用常温水(其密度为1000kg/m3)测定离心泵性能的实验中,当水的流量为26m3/h时,泵出口压力表读数为 1.52×105Pa,泵入口处真空表读数为185mmHg,轴功率为2.45KW,转速为2900r/min。
真空表与压力表两测压口间的垂直距离为400mm,泵的进、以口管径相等,两测压口间管路的流动阻力可解:×105Pa,18∴41m.∴0。
2-2 某台离心泵在转速为2950r/min时,输水量为18m3/h,压头为20m H2现因电动机损坏,用一转速为2900r/min的电动机代用,问此时泵的流量、压头和轴功率各为多少(泵功效率取60%)?解:转速变化后,其他参数也相应变化。
m 695.171829502900 '' 3=⋅⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛=Q n n Q O m H n n H 222H328.192029502900 ' '=⋅⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛= kW g Q H Ne 55.16.0/81.91000328.193600695.17/ ' ' '=⨯⨯⨯==ηρ 2-3己知80Y-60型离心泵输送常温水时的额定流量Q =50m 3/h ,额定压头H =60mH 20,转速n =2950r/min ,效率V =64%。
试求用该泵输送密度为700kg/m 3、粘度为1mm 2/S 的汽油和输送密度为820kg/m 3、粘度为35mm 2/S 的柴油时的性能参数。
解:设常温下水的密度为:3/1000m kg =ρ,粘度为:cP 1=μ输送汽油时:汽油的运动粘度s mm s mm /20/1221<=ν,则粘度的影响可忽略。
h m Q Q /5031==∴,m H H 601==汽油柱,%641==ηη 输送柴油时:柴油的运动粘度s mm s mm /20/35222>=ν,查图可得:%84=ηC ,%100=Q C ,%98=H C则:h m QC Q Q /5015032=⨯== m HC H H 8.5898.0602=⨯==柴油柱 538.084.064.02=⨯==ηηηCkW gH Q N 22.121000538.081.98208.5836005022222=⨯⨯⨯⨯==∴ηρ2-4 在海拔1000m 的高原上,使用一离心泵吸水,该泵的允许吸上真空高度为6.5m ,吸入管路中的全部阻力损失与速度头之和为3mH 20。
《化工原理》内容提要第二章流体输送机械1. 基本概念1)离心泵的主要构件:叶轮和蜗壳2)泵的流量q v:指泵的单位时间内送出的液体体积,等于管路中的流量,这是输送任务所规定必须达到的输送量。
3)泵的压头(又称扬程)He是指泵向单位重量流体提供的能量。
4)流体输送机械的分类:动力式(叶轮式)、容积式(正位移式)、其他类型。
5)离心泵的主要构件:叶轮和蜗壳。
6)离心泵的主要性能参数:流量、扬程、效率、轴功率。
7)离心泵特性曲线:描述压头、轴功率、效率与流量关系的曲线。
8)离心泵的工作点:泵特性曲线与管路特性曲线的交点。
9)离心泵的调节:改变管路特性(阀门的开大关小,改变K值);改变泵的特性(改变D、n,调节工作点)。
10)往复泵的结构:由泵缸、活塞、活塞杆、吸入和排出单向阀(活门)构成,有电动和汽动两种驱动形式。
2. 基本原理1)离心泵的工作原理:电动机经泵轴带动叶轮旋转,叶片间的液体在离心力作用下,沿叶片间的通道从叶轮中心进口处甩向叶轮外围,以很高速度汇入泵壳;液体经泵壳将大部分动能转变为静压能,以较高压力从压出口进入排出管。
2)泵的汽蚀现象:当水泵叶轮中心进口出压力低于操作温度下被输送液体的饱和蒸汽压时,液体将发生沸腾部分汽化。
所生成的汽泡,在随液体从叶轮进口向叶轮外围流动时,因压强升高,气泡立即凝聚。
高速度冲向原空间,在冲击点处产生高频高压强冲击。
当气泡的凝结发生在叶轮表面时,气泡周围液体在高压作用下如细小的高频水锤撞击叶片,加之气泡中可能带有氧气等对金属材料发生化学腐蚀作用,将导致叶片过早损坏。
3)离心泵的选用原则:①根据被输送液体的性质确定泵的类型;②确定输送系统的流量和所需压头;③根据所需流量和压头确定泵的型号。
4)往复泵的工作原理:活塞往复运动,在泵缸中造成容积的变化并形成负压和正压,完成一次吸入和排出。
5)气体输送的特点:气体的密度相对液体很小,①动力消耗大;②气体输送机械体积一般都很庞大;③输送机械内部气体压力变化的同时,体积和温度也将随之发生变化。
第二章 流体输送设备§1 概述 2-1 流体输送概述气体的输送和压缩,主要用鼓风机和压缩机。
液体的输送,主要用离心泵、漩涡泵、往复泵。
固体的输送,特别是粉粒状固体,可采用流态化的方法,使气-固两相形成液体状物流,然后输送,即气力输送。
流体输送在化工中用处十分广泛,有化工厂的地方,就有流体输送。
流体输送机械主要分为三大类:(1)离心式。
靠离心力作用于流体,达到输送物料的目的。
有离心泵、多级离心泵、离心鼓风机、离心通风机、离心压缩机等。
(2)正位移式。
靠机械推动流体,达到输送流体的目的。
有往复泵、齿轮泵、螺杆泵、罗茨风机、水环式真空泵、往复真空泵、气动隔膜泵、往复压缩机等。
(3)离心-正位移式。
既有离心力作用,又有机械推动作用的流体输送机械。
有漩涡泵、轴流泵、轴流风机。
象喷射泵属于流体作用输送机械。
本章主要研究连续输送机械的原理、结构及设计选型。
§2 离心泵及其计算 2-2 离心泵构造及原理若将某池子热水送至高m 10的凉水塔,倘若外界不提供机械能,水能自动由低处向高处流吗?显然是不能的,如图2-1所示,我们在池面与凉水塔液面列柏努利方程得:图2-1 流体输送示意图f e h gu g p z h g u g p z +++=+++2222222111ρρ∵00211===p p z ,(表压),01012==u m z ,,若泵未有开动,则:0=e h代入上式得: gud l le 21010000022⎪⎭⎫ ⎝⎛++++=+++λ∴dl l gu e++⨯-=λ121022 2u 为虚数 此计算说明,泵不开动,热水就不可能流向凉水架,就需要外界提供机械能量。
能对流体提供机械能量的机器,称为流体输送机械。
离心泵是重要的输送液体的机械之一。
如图2-2 所示,离心泵主要由叶轮和泵壳所组成。
图2-2 离心泵构造示意图先将液体注满泵壳,叶轮高速旋转,将液体甩向叶轮外缘,产生高的动压头⎪⎪⎭⎫⎝⎛g u 22,由于泵壳液体通道设计成截面逐渐扩大的形状,高速流体逐渐减速,由动压头转变为静压头⎪⎪⎭⎫ ⎝⎛g P ρ,即流体出泵壳时,表现为具有高压的液体。