液体静压轴承的设计与应用
- 格式:pdf
- 大小:8.24 MB
- 文档页数:91
液体静压双向止推轴承的设计与分析液体静压轴承由于具有一系列优点而被广泛应用于各种精密及重型机械中。
分析研究了液体静压止推轴承的结构形式及其工作原理;根据实际应用需求,在一台大型立式车床的主轴系统上,采用小孔节流及周向回油槽等结构形式,设计了液体静压双向止推轴承的结构,并设计计算了其主要参数。
标签:液体静压轴承结构工作原理设计0 引言液体静压止推轴承的主要特点是静摩擦系数极小,承载能力高并且和转速无关,转盘的启动转矩小,使用寿命长,而且由于液体油膜有非常好的阻尼特性,使得切削时产生的振动较小,主轴回转精度较高。
正是由于具有上述一系列优点,液体静压止推轴承被广泛应用于各种精密机床的运动部件中。
而作为机床设备中的主要部件,其性能的优劣直接关系到设备的加工质量和运行效率。
1 液体静压止推轴承的结构及工作原理根据油腔的结构形式的不同,静压止推轴承的结构形式分为环形油腔静压止推轴承、多油腔静压止推轴承。
对于环形油腔静压止推轴承,这种结构形式结构简单、加工方便,但是只能够承受通过轴心的轴向载荷,无支承倾覆力矩的能力,因此必须与径向静压轴承一起使用。
本文中设计的液体静压止推轴承为外部定量供油轴承。
因为轴承与主轴间的润滑油膜压力主要由外部供油系统供给,借助改变流量补偿轴承载荷的变化来保持主轴的稳定性能的。
因此,静压轴承必须有一套液压供油系统。
供油系统输出的压力油经过节流器或定量阀输送到轴承油腔。
由于油腔四周的封油面与轴径间的配合间隙很小,形成了出流液阻,油腔内形成压力油膜,将受载主轴浮起并实现液体润滑。
2 液体静压止推轴承的结构设计双向止推轴承是两个单向止推轴承的组合,其承载能力是两个单向止推轴承承载能力之差,而刚度与流量分别是两个单向止推轴承刚度与流量之和。
根据要求,加工过程中,主轴系统的总负载约为10000N,因此,为了增加承载能力及提高主轴的定心能力,在止推轴承上、下幅板分别设计八个相同的扇形油腔,两油腔中间设计轴向回油槽,防止油腔内的回流现象,增加系统的稳定性。
静压轴承的设计方法(1)
静压轴承是一种常见的工业轴承,它通过液体静压力来支撑和
减少机械设备中的摩擦。
静压轴承的设计方法是非常重要的,它直
接影响轴承的性能和使用寿命。
在本文中,我们将探讨静压轴承的
设计方法,以帮助工程师和设计师更好地理解和应用这一技术。
首先,静压轴承的设计需要考虑到工作条件和要求。
这包括轴
承所承受的载荷、转速、温度、润滑方式等因素。
根据这些条件,
需要选择合适的轴承材料、润滑方式和密封结构。
其次,静压轴承的设计需要考虑到轴承的结构和尺寸。
这包括
轴承的内径、外径、长度、壁厚等参数。
这些参数的选择需要考虑
到轴承所承受的载荷和转速,以确保轴承具有足够的强度和刚度。
另外,静压轴承的设计还需要考虑到轴承的润滑方式。
静压轴
承通常采用液体静压力来支撑轴承,因此需要设计合适的润滑系统,包括润滑油的供给方式、压力和流量控制等。
最后,静压轴承的设计还需要考虑到轴承的制造和装配。
这包
括轴承的加工精度、表面质量和装配间隙等因素。
这些因素直接影
响轴承的性能和使用寿命,因此需要在设计阶段充分考虑。
总之,静压轴承的设计方法是一个复杂而关键的过程,它需要综合考虑载荷、转速、润滑、结构和制造等多个因素。
通过合理的设计方法,可以确保静压轴承具有良好的性能和可靠的使用寿命。
液体静压轴承yeti jingya zhoucheng液体静压轴承hydrostatic bearing靠外部供给压力油、在轴承内建立静压承载油膜以实现液体润滑的滑动轴承。
液体静压轴承从起动到停止始终在液体润滑下工作,所以没有磨损,使用寿命长,起动功率小,在极低(甚至为零)的速度下也能应用。
此外,这种轴承还具有旋转精度高、油膜刚度大、能抑制油膜振荡等优点,但需要专用油箱供给压力油,高速时功耗较大。
简史 1862年,法国的L.D.吉拉尔发明液体静压轴承,指出摩擦系数可小至1/500。
1917年,英国科学家瑞利发表求解液体静压推力轴承的承载能力、流量和摩擦力矩方程。
1938年,美国在大型天文望远镜上应用液体静压轴承,承载总重量500吨,每昼夜转动一周,驱动功率仅1/12马力。
1948年法国开始把液体静压轴承用于磨床上。
现代液体静压轴承已成功地用于重型、精密、高效率的机器和设备上。
分类液体静压轴承分径向轴承、推力轴承和径向推力轴承(图1[液体静压轴承的类型])。
它有供油压力恒定和供油流量恒定两种系统。
供油压力恒定系统较为常用。
作用原理图2 [供油压力恒定系统的液体静压轴承]为供油压力恒定系统的液体静压轴承和轴瓦的构造。
外部供给的压力油通过补偿元件后从供油压力降至油腔压力,再通过封油面与轴颈间的间隙从油腔压力降至环境压力。
多数轴承在轴不受外力时,轴颈与轴承孔同心,各油腔的间隙、流量、压力均相等,这称为设计状态。
当轴受外力时轴颈位移,各油腔的平均间隙、流量、压力均发生变化,这时轴承外力与各油腔油膜力的向量和相平衡。
补偿元件起自动调节油腔压力和补偿流量的作用,其补偿性能会影响轴承的承载能力、油膜刚度等。
供油压力恒定系统中的补偿元件称为节流器,常见的有毛细管节流器小孔节流器滑阀节流器、薄膜节流器等多种。
供油流量恒定系统中的补偿元件有定量泵和定量阀补偿元件不同,轴承载荷-位移性能也不同(图3[不同补偿元件液体静压径向轴承的载荷-位移性能比较])由于轴的旋转,在轴承封油面上有液体动压力产生,有利于提高轴承的承载能力。
液体静压支承原理和设计引言:液体静压支承是一种基于液体的力学原理,通过液体的静压力来实现物体的支撑和平衡。
它在工程领域中被广泛应用,特别是在高精度和高速运动的机械系统中。
本文将介绍液体静压支承的原理和设计方法,并探讨其在工程实践中的应用。
一、液体静压支承的原理液体静压支承的原理基于帕斯卡定律,即在静止的液体中,液体对任何内表面的压力都是相等的。
液体静压支承利用这一原理,通过在物体的底部注入压力大于外界压力的液体,使液体在物体底部形成一个压力区域,从而达到支承和平衡物体的目的。
二、液体静压支承的设计1. 选用合适的液体:液体静压支承的设计首先需要选用合适的液体。
一般情况下,低粘度的液体更适合用于高速旋转的机械系统,而高粘度的液体则适合用于承载重量较大的物体。
同时,液体的温度特性也需要考虑,以确保在不同温度下系统的工作稳定性。
2. 设计支承结构:液体静压支承的设计需要考虑支承结构的形状和尺寸。
一般情况下,支承结构可以设计成圆形、方形或其他形状,以适应不同的物体形态。
支承结构的尺寸需要根据物体的负载和运动速度来确定,以确保支承结构的稳定性和可靠性。
3. 注液系统的设计:注液系统是液体静压支承中的关键组成部分,它负责将液体注入支承结构中。
注液系统的设计需要考虑注液的流量、压力和精度。
流量和压力的选择需要根据物体的负载和运动速度来确定,而精度的选择则需要考虑系统的工作要求和控制能力。
4. 控制系统的设计:液体静压支承的工作需要通过控制系统来实现。
控制系统的设计需要考虑物体的位置和姿态的控制精度,以及系统的响应速度和稳定性。
同时,控制系统还需要具备故障检测和故障处理的功能,以确保系统的安全和可靠性。
三、液体静压支承的应用液体静压支承在工程实践中有广泛的应用,特别是在高精度和高速运动的机械系统中。
以下是一些典型的应用案例:1. 高速轴承:液体静压支承可以用于高速轴承系统,实现轴承的支持和平衡。
它具有较高的承载能力和较低的摩擦损失,可以提高轴承的工作效率和寿命。
液体动静压电主轴关键技术综述一、本文概述本文旨在对液体动静压电主轴的关键技术进行全面的综述。
液体动静压电主轴,作为一种高精度、高稳定性的主轴系统,广泛应用于数控机床、精密加工设备以及超精密制造领域。
本文将从液体动静压电主轴的基本原理、关键技术、应用领域以及发展趋势等方面进行深入探讨,以期为读者提供全面而深入的理解。
本文将介绍液体动静压电主轴的基本原理,包括其结构特点、工作原理以及与传统主轴的区别。
将重点分析液体动静压电主轴的关键技术,如液体动静压技术、电主轴驱动技术、高精度轴承技术等,并对这些技术的现状和发展趋势进行详细阐述。
本文还将对液体动静压电主轴在各个领域的应用进行概述,以展示其在现代制造业中的重要地位。
本文将展望液体动静压电主轴的未来发展趋势,探讨其在新材料、新工艺以及智能制造等领域的潜在应用,以期为我国制造业的转型升级提供有益的参考。
通过本文的综述,读者可以对液体动静压电主轴的关键技术有更加清晰的认识,为相关研究和应用提供有益的借鉴。
二、液体动静压电主轴的基本原理液体动静压电主轴是一种集成了液体动静压技术和电主轴技术的高精度、高刚度、高转速主轴装置。
其基本原理主要包括液体动静压原理和电主轴原理两部分。
液体动静压原理是基于帕斯卡定律和流体力学原理,通过特定的供油系统和油腔设计,使主轴在高速旋转时,主轴与轴承之间形成一层均匀、稳定的油膜,从而实现主轴的液体动压支撑。
这种支撑方式不仅可以显著降低主轴与轴承之间的摩擦,提高主轴的旋转精度和稳定性,还能有效吸收振动和冲击,延长主轴的使用寿命。
电主轴原理则是通过内置电机直接驱动主轴旋转,省去了传统的传动机构,从而实现了主轴的高速化、高精度化和高刚度化。
电主轴具有结构紧凑、重量轻、动态响应快等优点,能够满足现代高精度加工设备对主轴的高性能要求。
在液体动静压电主轴中,液体动静压技术和电主轴技术相互融合,形成了独特的工作原理。
一方面,液体动静压技术为电主轴提供了稳定、可靠的支撑,保证了电主轴的高速旋转精度和稳定性;另一方面,电主轴的高速旋转又促进了油膜的均匀分布和稳定形成,进一步提高了液体动静压技术的效果。
液体静压轴承yeti jingya zhoucheng液体静压轴承hydrostatic beari ng靠外部供给压力油、在轴承内建立静压承载油膜以实现液体润滑的滑动轴承。
液体静压轴承从起动到停止始终在液体润滑下工作,所以没有磨损,使用寿命长,起动功率小,在极低(甚至为零)的速度下也能应用。
此外,这种轴承还具有旋转精度高、油膜刚度大、能抑制油膜振荡等优点,但需要专用油箱供给压力油,高速时功耗较大。
简史1862年,法国的L.D.吉拉尔发明液体静压轴承,指出摩擦系数可小至1/500。
1917年,英国科学家瑞利发表求解液体静压推力轴承的承载能力、流量和摩擦力矩方程。
1938年,美国在大型天文望远镜上应用液体静压轴承,承载总重量500吨,每昼夜转动一周,驱动功率仅1/12马力。
1948年法国开始把液体静压轴承用于磨床上。
现代液体静压轴承已成功地用于重型、精密、高效率的机器和设备上。
分类液体静压轴承分径向轴承、推力轴承和径向推力轴承(图1[液体静压轴承的类型]田丄.蚁4"上细求的'匹)。
它有供油压力恒定和供油流量恒定两种系统。
供油压力恒定系统较为常用。
)由于轴的旋转,在轴承封油面上有液体动压力产生 ,有利于提高轴承的承统的液体静压轴承和轴瓦的构造。
外部供给的压力油通过补偿元件后从供油压力降至油腔压力,再通过封油面与轴颈间的间隙从油腔压力降至环境压力。
多数轴承在轴不受外力时 ,轴颈与轴承孔同心,各油腔的间隙、 流量、压力均相等,这称为设计状态。
当轴受外力时轴颈位移,各油腔的平均间隙、流量、压力均发生变化, 这时轴承外力与各油腔油膜力的向量和相平衡。
补偿元件起自动调节油腔压力和补偿流量的作用,其补偿性 能会影响轴承的承载能力、油膜刚度等。
供油压力恒定系统中的补偿元件称为节流器,常见的有毛细管节流 器•小孔节流器•滑阀节流器、薄膜节流器等多种。
供油流量恒定系统中的补偿元件有定量泵和定量阀补偿元件不同,轴承载荷-位移性能也不同(图3[不同补偿元件液体静压径向轴承的载荷-位移性能比较]作用原理图2 [供油压力恒定系统的液体静压轴承为供油压力恒定系KJtWtfl 3俱笛匹労區定藝呢二匚圖*卜栏无件池“體世铉直晁术的就幕-代护扛隹比较载能力。
液体静压轴承工作原理介绍液体静压轴承是一种常见的机械元件,广泛应用于各种旋转机械中。
它通过在轴套和轴承之间形成一层液体膜,在轴与轴承之间提供支撑和摩擦减小的作用。
本文将深入探讨液体静压轴承的工作原理。
工作原理液体静压轴承利用液体静压效应来支撑轴与轴承之间的载荷。
当轴在轴承上运动时,液体静压轴承可以有效地减少摩擦和磨损,提供良好的支撑力和稳定性。
1. 原理一:液体隔离液体静压轴承的第一原理是通过液体的隔离来实现轴与轴承之间的支撑。
在轴承的内、外壁之间形成一个封闭的空间,该空间由液体填充。
当轴运动时,液体在轴承内形成一个液体膜,使得轴与轴承之间实现了隔离,减少了直接的金属接触和摩擦,从而提高了轴承的使用寿命。
2. 原理二:压力平衡液体静压轴承的第二原理是通过液体的压力平衡来实现支撑。
在液体静压轴承内部,液体会受到外部施加的压力,这个压力通过轴与轴承之间的间隙传递到液体,使液体产生一个与轴向相反的压力。
这个压力可以平衡轴承所受到的外部载荷,从而实现对轴的支撑。
3. 原理三:液体黏性液体静压轴承的第三原理是通过液体的黏性来实现摩擦减小。
液体具有一定的黏性,当轴运动时,液体黏性产生的内摩擦可以减小轴与轴承之间的相对速度,对轴承起到一定的减摩作用。
4. 原理四:液体冷却液体静压轴承的第四原理是通过液体的冷却来降低轴承的温度。
液体在高速旋转的轴上形成的液膜可以起到冷却的作用,将热量带走,保持轴承的正常工作温度。
优点与应用液体静压轴承相比于其他类型的轴承具有一些明显的优点,因此广泛应用于各种机械设备中。
1. 优点一:载荷能力高液体静压轴承的载荷能力很高,能够承受大的径向和轴向载荷。
这使得它在工业机械领域中得到广泛应用,能够提供可靠的支撑和稳定性。
2. 优点二:摩擦小液体静压轴承的液体膜可以有效减少摩擦和磨损,从而延长轴承的使用寿命。
对于高速旋转的轴,液体静压轴承能够提供良好的摩擦减小效果,减少能量损耗。
3. 优点三:工作平稳液体静压轴承通过液体的隔离和压力平衡,能够实现对轴的稳定支撑,使得机械设备的工作更加平稳,减少振动和噪音。