液压缸单向阀缓冲结构
- 格式:pdf
- 大小:116.27 KB
- 文档页数:2
1 常见故障的诊断方法5。
液压设备是由机械、液压、电气等装置组合而成的,故出现的故障也是多种多样的。
某一种故障现象可能由许多因素影响后造成的,因此分析液压故障必须能看懂液压系统原理图,对原理图中各个元件的作用有一个大体的了解,然后根据故障现象进行分析、判断,针对许多因素引起的故障原因需逐一分析,抓住主要矛盾,才能较好的解决和排除。
液压系统中工作液在元件和管路中的流动情况,外界是很难了解到的,所以给分析、诊断带来了较多的困难,因此要求人们具备较强分析判断故障的能力。
在机械、液压、电气诸多复杂的关系中找出故障原因和部位并及时、准确加以排除。
5.1.1 简易故障诊断法简易故障诊断法是目前采用最普遍的方法,它是靠维修人员凭个人的经验,利用简单仪表根据液压系统出现的故障,客观的采用问、看、听、摸、闻等方法了解系统工作情况,进行分析、诊断、确定产生故障的原因和部位,具体做法如下:1)询问设备操作者,了解设备运行状况。
其中包括:液压系统工作是否正常;液压泵有无异常现象;液压油检测清洁度的时间及结果;滤芯清洗和更换情况;发生故障前是否对液压元件进行了调节;是否更换过密封元件;故障前后液压系统出现过哪些不正常现象;过去该系统出现过什么故障,是如何排除的等,需逐一进行了解。
2)看液压系统工作的实际状况,观察系统压力、速度、油液、泄漏、振动等是否存在问题。
3)听液压系统的声音,如:冲击声;泵的噪声及异常声;判断液压系统工作是否正常。
4)摸温升、振动、爬行及联接处的松紧程度判定运动部件工作状态是否正常。
总之,简易诊断法只是一个简易的定性分析,对快速判断和排除故障,具有较广泛的实用性。
5.1.2 液压系统原理图分析法根据液压系统原理图分析液压传动系统出现的故障,找出故障产生的部位及原因,并提出排除故障的方法。
液压系统图分析法是目前工程技术人员应用最为普遍的方法,它要求人们对液压知识具有一定基础并能看懂液压系统图掌握各图形符号所代表元件的名称、功能、对元件的原理、结构及性能也应有一定的了解,有这样的基础,结合动作循环表对照分析、判断故障就很容易了。
液压缸通常由后端盖、缸筒、活塞杆、活塞组件、前端盖等主要部分组成;为防止油液向液压缸外泄漏或由高压腔向低压腔泄漏,在缸筒与端盖、活塞与活塞杆、活塞与缸筒、活塞杆与前端盖之间均设置有密封装置,在前端盖外侧,还装有防尘装置;为防止活塞快速退回到行程终端时撞击缸盖,液压缸端部还设置缓冲装置;有时还需设置排气装置。
上图给出了双作用单活塞杆液压缸的结构图,该液压缸主要由缸底1、缸筒6、缸盖10、活塞4、活塞杆7和导向套8等组成;缸筒一端与缸底焊接,另一端与缸盖采用螺纹连接。
活塞与活塞杆采用卡键连接,为了保证液压缸的可靠密封,在相应位置设置了密封圈3、5、9、11和防尘圈12。
下面对液压缸的结构具体分析。
3.2.1 缸体组件•缸体组件与活塞组件形成的密封容腔承受油压作用,因此,缸体组件要有足够的强度,较高的表面精度可靠的密封性。
3.2.1.1 缸筒与端盖的连接形式常见的缸体组件连接形式如图3.10所示。
(1)法兰式连接(见图a),结构简单,加工方便,连接可靠,但是要求缸筒端部有足够的壁厚,用以安装螺栓或旋入螺钉,它是常用的一种连接形式。
(2)半环式连接(见图b),分为外半环连接和内半环连接两种连接形式,半环连接工艺性好,连接可靠,结构紧凑,但削弱了缸筒强度。
半环连接应用十分普遍,常用于无缝钢管缸筒与端盖的连接中。
(3)螺纹式连接(见图f、c),有外螺纹连接和内螺纹连接两种,其特点是体积小,重量轻,结构紧凑,但缸筒端部结构复杂,这种连接形式一般用于要求外形尺寸小、重量轻的场合。
•(4)拉杆式连接(见图d),结构简单,工艺性好,通用性强,但端盖的体积和重量较大,拉杆受力后会拉伸变长,影响效果。
只适用于长度不大的中、低压液压缸。
(5)焊接式连接(见图e),强度高,制造简单,但焊接时易引起缸筒变形。
3.2.1.2 缸筒、端盖和导向套的基本要求•缸筒是液压缸的主体,其内孔一般采用镗削、绞孔、滚压或珩磨等精密加工工艺制造,要求表面粗糙度在 0.1~0.4μm,使活塞及其密封件、支承件能顺利滑动,从而保证密封效果,减少磨损;缸筒要承受很大的液压力,因此,应具有足够的强度和刚度。
液压缸的结构•液压缸通常由后端盖、缸筒、活塞杆、活塞组件、前端盖等主要部分组成;为防止油液向液压缸外泄漏或由高压腔向低压腔泄漏,在缸筒与端盖、活塞与活塞杆、活塞与缸筒、活塞杆与前端盖之间均设置有密封装置,在前端盖外侧,还装有防尘装置;为防止活塞快速退回到行程终端时撞击缸盖,液压缸端部还设置缓冲装置;有时还需设置排气装置。
上图给出了双作用单活塞杆液压缸的结构图,该液压缸主要由缸底1、缸筒6、缸盖10、活塞4、活塞杆7和导向套8等组成;缸筒一端与缸底焊接,另一端与缸盖采用螺纹连接。
活塞与活塞杆采用卡键连接,为了保证液压缸的可靠密封,在相应位置设置了密封圈3、5、9、11和防尘圈12。
下面对液压缸的结构具体分析。
3.2.1 缸体组件•缸体组件与活塞组件形成的密封容腔承受油压作用,因此,缸体组件要有足够的强度,度可靠的密封性。
3.2.1.1 缸筒与端盖的连接形式 常见的缸体组件连接形式如图3.10(1)法兰式工方便筒端部有足够的壁厚,用以安装螺栓或旋入螺钉,它是常用的一种连接形式。
半环连接接可靠,结构紧凑,但削弱了缸筒强度。
半环连接应用十分普遍,常用于无缝钢管缸筒与端盖的连接中。
(3)螺纹式连接(接两种,其特点是体积小,重量轻,结构紧凑,但缸筒端部结构复杂,这种连接形式一般用于要求外形尺寸小、重量轻的场合。
较高的表面精所示。
连接(见图a),结构简单,加,连接可靠,但是要求缸(2)半环式连接(见图b),分为外半环连接和内两种连接形式,半环连接工艺性好,连见图f、c),有外螺纹连接和内螺纹连•工艺性好,(4)拉杆式连接(见图d),结构简单,通用性强,但端盖的体积和重量较大,拉杆受力后会拉伸变长,影响效果。
只适用于长度不大的•3.2.1.2 缸筒、端盖和导向套的基本要求• 缸筒是液压缸的主体,其内孔一般采用镗削、绞孔、滚压或珩磨等精密加工工艺制造,要求表面粗糙度在 0.1~0.4μm,使活塞及其密封件、支承件能顺利滑动,从而保证密封效果,减少磨损;缸筒要承受很大的液压力,因此,应具有足够的强度和刚度。
.液压缸常见故障及处理故障现象原因分析消除方法〔一〕活塞杆不能动作1.压力缺乏〔 1〕油液未进入液压缸1〕换向阀未换向2〕系统未供油〔 2〕虽有油,但没有压力1〕系统有故障,主要是泵或溢流阀有故障2〕内部泄漏严重,活塞与活塞杆松脱,密封件损坏严重〔 3〕压力达不到规定值1〕密封件老化、失效,密封圈唇口装反或有破损2〕活塞环损坏3〕系统调定压力过低4〕压力调节阀有故障5〕通过调整阀的流量过小,液压缸内泄漏量增大时,流量缺乏,造成压力缺乏 1 〕检查换向阀未换向的原因并排除2〕检查液压泵和主要液压阀的故障原因并排除1〕检查泵或溢流阀的故障原因并排除2〕紧固活塞与活塞杆并更换密封件1〕更换密封件,并正确安装2〕更换活塞杆3〕重新调整压力,直至到达要求值4〕检查原因并排除5〕调整阀的通过流量必须大于液压缸内泄漏量2.压力已到达要求但仍不动作〔 1〕液压缸结构上的问题1〕活塞端面与缸筒端面紧贴在一起,工作面积缺乏,故不能启动2〕具有缓冲装置的缸筒上单向阀回路被活塞堵住〔 2〕活塞杆移动“别劲〞1〕缸筒与活塞,导向套与活塞杆配合间隙过小2〕活塞杆与夹布胶木导向套之间的配合间隙过小3〕液压缸装配不良〔如活塞杆、活塞和缸盖之间同轴度差,液压缸与工作台平行度差〕〔 3〕液压回路引起的原因,主要是液压缸背压腔油液未与油箱相通,回油路上的调速阀节流口调节过小或连通回油的换向阀未动作 1 〕端面上要加一条通油槽,使工作液体迅速流进活塞的工作端面2〕缸筒的进出油口位置应与活塞端面错开1〕检查配合间隙,并配研到规定值2〕检查配合间隙,修刮导向套孔,到达要求的配合间隙3〕重新装配和安装,不合格零件应更换检查原因并消除〔二〕速度达不到规定值1.内泄漏严重(1〕密封件破损严重(2〕油的粘度太低(3〕油温过高〔 1〕更换密封件(2〕更换适宜粘度的液压油(3〕检查原因并排除2.外载荷过大(1〕设计错误,选用压力过低(2〕工艺和使用错误,造成外载比预定值大〔 1〕核算后更换元件,调大工作压力(2〕按设备规定值使用3.活塞移动时“别劲〞(1〕加精度差,缸筒孔锥度和圆度超差(2〕装配质量差1〕活塞、活塞杆与缸盖之间同轴度差2〕液压缸与工作台平行度差3〕活塞杆与导向套配合间隙过小检查零件尺寸,更换无法修复的零件1〕按要求重新装配2〕按照要求重新装配3〕检查配合间隙,修刮导向套孔,到达要求的配合间隙4.脏物进入滑动部位(1〕油液过脏(2〕防尘圈破损(3〕装配时未清洗干净或带入脏物〔1〕过滤或更换油液(2〕更换防尘圈(3〕拆开清洗,装配时要注意清洁5.活塞在端部行程时速度急剧下降(1〕缓冲调节阀的节流口调节过小,在进入缓冲行程时,活塞可能停止或速度急剧下降(2〕固定式缓冲装置中节流孔直径过小(3〕缸盖上固定式缓冲节流环与缓冲柱塞之间间隙过小〔1〕缓冲节流阀的开口度要调节适宜,并能起到缓冲作用(2〕适当加大节流孔直径(3〕适当加大间隙6.活塞移动到中途发现速度变慢或停止(1〕缸筒内径加工精度差,外表粗糙,使内泄量增大(2〕缸壁胀大,当活塞通过增大部位时,内泄漏量增大(1〕修复或更换缸筒(2〕更换缸筒〔三〕液压缸产生爬行1.液压缸活塞杆运动“别劲〞参见本表〔二〕 3。
液控单向阀构和工作原理图1是FDY400/45液控单向阀的结构简图。
该阀是由先导阀芯和主阀芯共同完成对承载腔的密封,先导阀芯和主阀芯的材料均为金属,其对应的阀座为聚甲醛材料。
我国现有的液控单向阀CPT,CPDT,CPG,CPDG,CPF,CPD大部分采用金属材料和煤研三号来完成密封面的可靠封闭。
而该液控单向阀PCV,PCDV在采用上述锥面结构后,其使用寿命大幅度延长,最重要的是该阀主阀芯前部和后部采用密封圈把前后腔隔开,阀套后部采用单向节流堵,这样在阀芯打开的过程中,单向节流堵相对来说不起节流作用,这样主阀芯可以快速地打开;而在主阀芯关闭的过程中由于主阀芯前后腔用密封圈可靠隔开,液体只能通过单向节流堵来充满由于阀芯向前移而增大的空间,故通过控制节流堵的通流面积,来调节阀芯的关闭移动速度,大大减小了阀芯对阀座的瞬间冲击力,有效地延长了该阀的使用寿命。
由于采用了先导结构,其卸载控制压力低,阀的流量大,关闭压力好。
冲式液控单向阀的结构特点及工作原理缓冲式液控单向阀结构如图1所示,其主要由二大部分组成,图示左边为由接头座l、阀座2、阀杆3及复位弹簧5构成的单向缓冲阀组件,右边为螺纹插装式液控单向阀CPDT-06组件,图示为该阀处于非工作状态,此状态下左边单向缓冲阀组件中PA13的压力pl、A口的压力p2均为零压(或近似零压),在复位弹簧5的作用力,的作用下,阀杆3与阀座2接触形成密封面;右边单向阀组件处于自然关闭状态。
图1结构图该阀单向缓冲的工作原理是:当高压液体从PA 口流入阀内时,开始由于阀杆与阀座接触形成密封面,高压液体只能从中间的节流口D3流至A 口,这时A口的压力逐渐开始上升,该阀起到缓冲作用,同时PA口高压油通过小孔dl进入右边单向阀CRNG组件控制腔,使单向阀组件迅速打开,实现从B口到PA口的通道快速畅通。
如假设密封圈对阀杆的摩擦力为Fo,当A口压力p2满足p2×ぇr×D12/4>,F+Fo+pl×ぇ×D42/4一p1(ぇ×D22—ぇ×D12)/4关系时,阀杆开始向下移动至最大位移L,此时阀杆与阀座间形成最大通流面积,这样先从阀杆上的多个φd孔再经阀杆与阀座间通流腔,大流量的高压液体开始进入A口处,也就是说当A口压力升至一定值时,从PA口到A口最大通道在几乎没有压力损失情况下全部打开;当高压液体从A口流入阀内时,高压液体推动阀杆下移,使阀杆与阀座问的最大通道直接打开,显然该过程无缓冲作用。
浅析液压缸的缓冲装置液压缸带动工作部件运动,当达到行程终点时,由于运动件的惯性作用,会产生液压冲击以及使活塞与端盖之间产生机械撞击。
加速各部件的损坏。
为防止这种现象的发生,通常当活塞运动速度大于0.2m/s 时,需采取缓冲措施,即在液压缸末端设置缓冲装置。
缓冲装置结构形式虽然多种多样,但原理是一样的,都是利用对油液的节流措施产生背压来降低运动部件的速度。
液压缸中使用的缓冲装置,常见的有环状间隙式、可调式以及外加缓冲回路等。
图1所示是环状间隙式缓冲装置。
它由活塞上的圆柱形凸台和缸盖上的凹腔组成。
当活塞运动近端盖时,凸台进入凹腔中,将封闭在活塞与端盖间的油液从环状间隙&中挤出。
这样活塞就受到一个很大的阻力,运动速度就减慢下来,这就是缓冲。
这种形式的缓冲只适用于运动惯性不大、运动速度不高的场合。
环状间隙的凸台也可以制成圆锥形的。
图2所示是一种可调式的缓冲装置。
液压缸同样具有由缓冲头和缓冲室所形成的油腔,且在端盖上设有针形节流阀和单向阀。
当活塞移近终端时,活塞缓冲头进入缓冲室,油液须经针形节流阀的油口流出,借助节流阀的节流作用,达到缓冲目的。
单向阀的作用在于保证活塞返回时油液能进入缓冲室,使活塞能按正常速度启动并避免推力不足现象。
这种缓冲装置可按负载情况调整节流阀的开口、改变吸收能量的大小。
图3(a)所示为采用溢流阀的液压缸端部缓冲装置。
图3(b)为采用溢流阀的缓冲回路。
在这两种缓冲装置中,是在液压缸两侧的油路上设制灵敏的小型直动式溢流阀(安全阀),当缓冲柱塞1进入柱塞孔2内(图3a)或换向阀处于中位(图3b)时,液压缸回油腔的油液要开启相应的溢流阀方能回油,借此消除活塞在行程中停止或换向时出现的液压冲击。
液压缸的缓冲装置的形式还有弹簧式、行程开关式等等。
每种形式都有各自的优缺点。
在实际应用中,采取何种缓冲形式要根据液压缸的使用工况、使用要求来确定。
参考书目(1)《液压传动》江苏省《液压传动》编写组编,江苏科学技术出版社,1986年(2)《液压传动与控制》林国重、盛东初主编,北京工业学院出版社,1985年(3)《液压传动系统》官忠范主编,机械工业出版社,1981年目录内容提要写作提纲正文一、资产减值准备的理论概述 (4)(一)固定资产减值准备的概念 (4)(二)固定资产减值准备的方法 (5)(三)计提资产减值准备的意义 (5)二、固定资产减值准备应用中存在的问题分析 (5)(一)固定资产减值准备的计提模式不固定 (5)(二)公允价值的获取 (6)(三)固定资产未来现金流量现值的计量 (7)(四)利用固定资产减值准备进行利润操纵 (8)三、解决固定资产减值准备应用中存在的问题的对策 (10)(一)确定积累时间统一计提模式 (10)(二)统一的度量标准 (11)(三)提高固定资产可收回金额确定方式的操作性 (11)(四)加强对固定资产减值准备计提的认识 (12)(五)完善会计监督体系 (12)参考文献 (15)内容提要在六大会计要素中,资产是最重要的会计要素之一,与资产相关的会计信息是财务报表使用者关注的重要信息。
液压缸通常由后端盖、缸筒、活塞杆、活塞组件、前端盖等主要部分组成;为防止油液向液压缸外泄漏或由高压腔向低压腔泄漏,在缸筒与端盖、活塞与活塞杆、活塞与缸筒、活塞杆与前端盖之间均设置有密封装置,在前端盖外侧,还装有防尘装置;为防止活塞快速退回到行程终端时撞击缸盖,液压缸端部还设置缓冲装置;有时还需设置排气装置。
上图给出了双作用单活塞杆液压缸的结构图,该液压缸主要由缸底1、缸筒6、缸盖10、活塞4、活塞杆7和导向套8等组成;缸筒一端与缸底焊接,另一端与缸盖采用螺纹连接。
活塞与活塞杆采用卡键连接,为了保证液压缸的可靠密封,在相应位置设置了密封圈3、5、9、11和防尘圈12。
下面对液压缸的结构具体分析。
3.2.1 缸体组件•缸体组件与活塞组件形成的密封容腔承受油压作用,因此,缸体组件要有足够的强度,较高的表面精度可靠的密封性。
3.2.1.1 缸筒与端盖的连接形式常见的缸体组件连接形式如图3.10所示。
(1)法兰式连接(见图a),结构简单,加工方便,连接可靠,但是要求缸筒端部有足够的壁厚,用以安装螺栓或旋入螺钉,它是常用的一种连接形式。
(2)半环式连接(见图b),分为外半环连接和内半环连接两种连接形式,半环连接工艺性好,连接可靠,结构紧凑,但削弱了缸筒强度。
半环连接应用十分普遍,常用于无缝钢管缸筒与端盖的连接中。
(3)螺纹式连接(见图f、c),有外螺纹连接和内螺纹连接两种,其特点是体积小,重量轻,结构紧凑,但缸筒端部结构复杂,这种连接形式一般用于要求外形尺寸小、重量轻的场合。
•(4)拉杆式连接(见图d),结构简单,工艺性好,通用性强,但端盖的体积和重量较大,拉杆受力后会拉伸变长,影响效果。
只适用于长度不大的中、低压液压缸。
(5)焊接式连接(见图e),强度高,制造简单,但焊接时易引起缸筒变形。
3.2.1.2 缸筒、端盖和导向套的基本要求•缸筒是液压缸的主体,其内孔一般采用镗削、绞孔、滚压或珩磨等精密加工工艺制造,要求表面粗糙度在 0.1~0.4μm,使活塞及其密封件、支承件能顺利滑动,从而保证密封效果,减少磨损;缸筒要承受很大的液压力,因此,应具有足够的强度和刚度。