6.6kW单级三相PFC DC-DC车载充电机设计研究
- 格式:doc
- 大小:12.48 KB
- 文档页数:2
新能源汽车车载充电机OBC产业发展研究报告01车载充电机概述新能源汽车车载充电机概念车载充电机将交流充电桩的交流电转换为动力电池所需的直流电,实现对动力电池的充电;使用交流充桩充电的新能源汽车需要搭载车载充电机。
新能源汽车车载充电机分类车载充电机根据结构分类可分为单向车载充电机、双向车载充电机和集成式车载充电机。
新能源汽车充电系统的组成新能源汽车充电系统包括车载充电机、高压动力电池、电池管理系统、整车控制器和充电桩五个部分;交流充电桩对动力电池进行充电时,需要通过车载充电机与BMS、VCU通并动态调整充电电压和电流。
新能源汽车车载充电机功能车载充电机具有与BMS、车辆监控系统通以及完备的安全防护等功能。
新能源汽车车载充电机的构成车载充电机由交流输入端口、功率单元、控制单元、低压辅助单元和直流输出端口五部分构成。
新能源汽车车载充电机技术参数车载充电机的技术参数主要包括输入电压、工作效率、功率因素、谐波、输出纹波、输出电压和输出电流等,QC/T 895-2011标准中对输入电压、电流及输出电压推荐值等提出明确要求。
新能源汽车车载充电机国内外标准体系国内外对车载充电机分别出台了相关技术规范、测试标准等,我国已发布行业推荐标准和国家标准征求意见稿。
新能源汽车车载充电机国内外标准体系车载充电机生产测试标准行业推荐标准已发布,因整车充电及安全标准的更新,目前国家正在制定国家推荐标准以适应市场需求,国家推荐标准的征求意见稿已发布,在行业标准的基础上进行了删减和增加。
2车载充电器技术分析新能源汽车车载充电机技术发展动力电池技术的快速发展推动了车载充电器的技术创新,车载充电器在大功率、新功能、一体化、新材料等方面取得了长足的进步。
新能源汽车车载充电机主流电路拓扑结构车载充电器的主流拓扑结构是两级结构。
高频、高功率因数和高效率是车载充电器的设计目标。
前级结构多采用buck 或boost等非隔离拓扑,后级结构多采用全桥移相或llc等隔离拓扑。
开题报告
二、国内外研究现状
目前市场上常用的车载逆变器按功率等级大致可以分为75W、100W、150W、30W、500W、800W、1000W、1500W、2000W、2500W等规格。
车载逆变器的输入为汽车点烟器或者蓄电池,一般汽车点烟器10A左右的电流,故点烟器输出的功率约为150W。
对于功率等级小于150W的车载逆变器可以直接由点烟器供电,大于150W功率等级时需要直接从车载蓄电池供电,否则会因为过流烧毁汽车配件及保险丝。
随着车上使用电器种类的增多,对车载逆变器的容量提出了更高的要求,小功率150W及以下规格的车载逆变器已经不能满足人们的需求,中大功率的车载逆变器是今后的发展趋势[1]。
目前市场上所使用的车载逆变器一般是先升压再逆变
三、研究内容及拟解决的关键问题
1、设计内容:设计宽输入、高增益、大功率车载逆变电源。
(1)分析当前可行的主电路拓扑和控制方案,选择电路拓扑和控制方案。
(2)计算主电路主要元器件参数。
(3)完成控制电路的硬件电路设计和软件设计。
(4)通过仿真实验对理论分析进行验证。
2、设计要求:
(1)输入电压为:DC18V-36V
(2)输出电压:AC220V
(3)额定输出功率:3kW
(4)谐波畸变率:<3%
3、关键问题:
(1)前级DC/DC变换器需满足宽输入电压范围内的稳定输出;
(2)DC/DC变换器需要有髙升压比,可以满足逆变所需360V-380。
车载充电机在新能源汽车拆解应用分析消费者关注(新能源)汽车的两类体验:驾驶体验(动力、舒适、娱乐、安全)、充电(速度)。
1车载OBC简介从(产品)/系统角度看OBC及在新能源汽车的作用。
威迈斯的OBC车载充电机,威迈斯今年刚上市,是OBC和(DC/DC)的领先企业。
车载充电机OBC(On-Board Charger)属于安装在新能源电动车内的零部件,它将交流(充电桩)输出的交流电转化为(高压)直流电,给整车高压动力电池充电。
图片来源:mobility f(or)esight新能源汽车的核心零件可分为三部分:动力电池,电驱((控制器)、(电机)、减速器),小三电(PDU+(DC)-DC+OBC)。
OBC 也是电动汽车设计及其性能最关键的方面之一。
图片来源:《小三电系统的技术研究》新能源汽车的OBC分为单向OBC和双向OBC,电路包括功率电路((PFC)+ 移相全桥/LLC)和(控制电路)组成。
单向OBC只能给动力电池充电,双向OBC可以把动力电池的直流电逆变成为家用220V交流电。
产品特性:• 额定输出功率:6.6kW• 交流输入电压:85V(ac)~ 265Vac• 最大交流(电流):32A• 直流输出电压:230Vdc ~ 450Vdc• 最大输出电流:22A•功率因素:≥ 0.99• 峰值效率:≥ 94%2车载OBC指标OBC的部件主要有以下的技术指标:图片来源:OBC技术指标,来自浙江大学电气工程学院功率等级:国内和海外的新能源汽车充电功率不同。
常见的OBC 充电功率为3.3 kW、6.6 kW、11 kW 和22 kW。
11kW的OBC,意味着充满66kWh的动力电池需要6h。
转换效率:效率是很重要的目标,与整个单元的散热方式息息相关。
图:wolfspeed某6.6KW 双向OBC的主要设计参数。
容积&重量&功率密度:汽车对于部件的体积和重量都有着严格的要求,设计要求比较高;目前趋势是DC/DC、OBC二合一集成,或者DC/DC和OBC,PDU做三合一集成,功率密度大幅提升,体积降低。
浅究电动汽车车载大功率快速充电机充电机作为电动汽车的充电设备,在电动汽车应用中发挥着重要的作用,是电动汽车不可缺少的子系统之一。
与传统汽车加油方式不同,电动汽车的能量补给方式是将电网的电能转化为电动汽车车载蓄电池的电能,电能补给方式的高效、安全和便捷对于电动汽车的推广至关重要,因此发展车载大功率快速充电机是电动汽车产业发展壮大的基础,具有十分重要的意义。
1 快速充电技术的原理对充电机实际充电性能的研究应该是根据车载锂电池的充放电曲线,应用合适的充电方法,从而有效控制充电电压、电流及时间等参数,实现对电动汽车动力锂电池安全、快速、可靠地充电。
大功率智能化快速充电机由三相三开关三电平PFC、全桥逆变器、LC滤波器、PWM图腾驱动与反馈环节、充电控制系统及相关的通讯接口组成。
输入三相交流电经过三相三开关三电平PFC作为全桥逆变器的输入,控制系统采集到相关的反馈信号,经过处理后,并以此为依据输出PWM信号,此信号经过PWM图腾驱动,进而驱动移相全桥逆变的MOS管。
全桥逆变器的输出经过整流和LC滤波获得直流电压,配合防反接电路给电池充电,其技术原理图如图1所示:2 快速充电技术策略研究影响充电系统的实际充电性能的主要因素是如何有效控制充电电压、电流及时间等参数,安全、可靠、快速地完成对电动汽车动力电池的充电。
不同种类的蓄电池具有不同的充放电曲线,其相应的充电方法也有很大的不同。
传统的蓄电池充电方法可分为三种,即恒流恒压充电、多级恒流充电和脉冲充电,一些新型的快速充电策略也是建立在这三种传统充电方法的基础之上,通过改进、演化并加入新的理论、思想得到的。
针对锂电池的充放电曲线及不同充电方法存在的优缺点,我们对车用锂电池实现快速充电提出了新的技术策略,主要包括两个方面的内容:(1)通过多级恒流充电与脉冲充电相结合的方式,实现快速充电。
所谓多级恒流充电与脉冲充电相结合的方式,就是在充电的初期以较大的电流进行充电,随着蓄电池端电压的升高逐渐降低充电电流,当蓄电池端电压达到一定电压阀值时采用脉冲充电的方式进行充电。
单三相兼容车载充电机的研究电动汽车作为一种低碳环保的新能源汽车,可以很好的解决燃油汽车所引起的环保和能源危机的问题。
作为给电动汽车充电的车载充电机的应用也越来越来越广泛。
为了满足电动汽车多种充电时间的要求,本课题设计了一种多输入型的车载充电机。
可实现单相与三相输入工况切换,实现不同的输出功率等级目标,满足对不同充电时间要求的应用场景。
为了满足单相和三相输入工况兼容的要求,完成了对单相和三相兼容的多输入型车载充电机的整机设计。
采用前级APFC变换器级联后级DC-DC变换器的二级结构,前级可对单相和三相交流输入实现功率因数校正,后级采用高效率的全桥LLC变换器实现高效率、高功率密度和大功率的要求。
在单相工况下,采用两相交错并联图腾柱PFC电路拓扑,实现高功率、高效率、低纹波的目标。
针对交错电路出现的不均流问题,详细分析了产生两相不均流问题的影响因素并提出了一种优化控制策略完成对两相交错电路均流目标的实现。
对三相工况下的电路拓扑进行了建模分析,并完成其控制策略和参数设计,并针对单三相兼容的电路拓扑参数进行了最优化设计。
搭建相关仿真模型进行分析验证。
分别对时域和频域下的全桥LLC变换器进行工作特性分析,绘制出其增益曲线。
完成了其电气参数的设计并提出可实现恒压、恒流充电的控制策略。
完成闭环控制系统参数设计并搭建仿真模型进行分析验证理论的正确性。
关键词:车载充电机;多输入;功率因数校正;交错并联第1章绪论1.1 课题研究的背景和意义化石能源的探索与运用引发了人类社会的第三次工业革命,导致大量的机器走进人类社会代替人类进行机械化的工业生产。
汽车、火车、轮船和飞机等交通运输工具的发展也给人类带来了极大的便利。
同时,燃油汽车作为人们日常的出行的重要交通工具之一,其保有量逐年增加。
然而,传统的燃油汽车会排放大量的有害汽车尾气,这对环境造成非常严重的污染,严重影响社会的可持续性发展。
因此,对于风能、太阳能和核能等可再生的清洁能源的研究和利用也引起了越来越大的重视。
电动汽车车载充电器Boost PFC AC/DC变换器设计随着能源危机、资源枯竭以及大气污染等危害的加剧,我国已将新能源汽车确立为战略性新兴产业,车载充电器作为电动汽车的重要组成部分,其研究兼具理论研究价值和重要的工程应用价值。
采用前级AC/DC 和后级DC/DC 相结合的车载充电器结构框图如图1 所示。
当车载充电器接入电网时,会产生一定的谐波,污染电网,同时影响用电设备的工作稳定性。
为了限制谐波量,国际电工委员会制定了用电设备谐波限制标准IEC61000-3-2,我国也发布了国标GB/T17625。
为了符合上述标准,车载充电器必须进行功率因数校正(PFC)。
PFC AC/DC 变换器一方面为后级DC/DC 系统供电,另一方面为辅助电源供电,其设计的好坏直接影响车载充电器性能。
图1 电动汽车车载充电器结构框图鉴于纯电动汽车车载充电器对体积、谐波有着苛刻的要求,本设计采用有源功率因数校正(APFC)技术。
APFC 有多种拓扑结构,由于升压式拓扑具有驱动电路简单、PF 值高和具有专门控制芯片的优点,选取Boost拓扑结构的主电路。
考虑各种基本控制方式,选取了具有谐波失真小、对噪声不敏感和开关频率固定技术优势的平均电流控制方式。
本文针对功率为2 kW 的纯电动汽车车载充电器,考虑谐波含量、体积及抗干扰性能等方面的设计需求,重点研究PFC AC/DC 变换器,包含系统主电路和控制电路设计,并在上述研究的基础上,开展系统仿真和实验测试验证研究,电路图见图2。
图2 Boost PFC AC/DC 变换器电路原理图1 Boost PFC AC/DC 变换器本文针对功率为2 kW 的车载充电器PFC AC/DC 变换器,采用基于Boost拓扑的主电路结构,以及连续模式下的平均电流控制控制策略。
主电路由整流电路和Boost升压电路构成;控制电路采用电流内环、电压外环的双闭环控制方式,原理框图见图3 。
电动汽车车载充电机(OBC)与车载DC/DC转换器王正仕(wzs@)浙江大学电气工程学院电力电子技术研究所中国电源学会.世纪电源网工程师交流会上海,2017年7月8日内容一、高性能电动汽车车载充电机(OBC)二、双向充电机(Bi‐OBC)技术方案三、车载DC/DC转换器电路拓扑比较四、充电桩电路方案王正仕:wzs@ ,一、高性能电动汽车车载充电机On-Board-Charger (OBC)王正仕:wzs@ ,一、高性能车载OBC电路结构PFC—满足网侧要求:PF、THD、宽范围电网 DC/DC—电气隔离、电池端压宽范围每一级电路高效率电路拓扑:主流方案* PFC—满足网侧要求:PF、THD、宽范围电网* DC/DC —电气隔离、电池端压宽范围* 每一级电路高效率技术性能内容功率 3.3kW @220V(AC) ;1.6kW @110V(AC)。
6.6kW, 9.9kW 输入电压范围85-265V(AC)功率因数(PF)>0.99(典型值)输入电流THD<4%额定输出电压360V(DC)输出电压范围200-400V(DC)输出电流范围0-12A整机效率96.3% (典型值)工作模式恒压、恒流(@ BMS指令或预设充电曲线)保护功能OVP、OCP、OLP、OTP支持CAN通讯变换器工作状态与故障诊断电路方案1:传统桥式PFC+LLC桥式PFC适合高电网电压,不利于110Vac系统应用的高效率电路方案2:无桥式PFC+LLC无桥PFC适合宽范围电网电压,有利于110Vac应用的高效率差分采样——无桥PFC低成本方案电路方案3:无桥式PFC+LLC双变压器LLC,有利于提高功率密度(减低变压器高度) 电力电子电路调试的GUI界面,方便调试PFC控制框图I-V-PFC控制模型PFC网侧波形Vac& IsLmLC 串联谐振LLC 谐振?(Lm)频率范围太宽!LLC 软开关变换器Lm 为变压器磁化电感Lm 减小LLC 网络的(Vo/Vi)传输1o r r L C w =?Vo / Viw s / w om e m e s s m e me m e s s m e i o L j R L j R C j L j L j R L j R L j R C j L j L j R V ω+ω⨯+ω+ωω+ω⨯=ω+ω+ωω=1//1//V 1.可升/可降2.增益更陡f 2f 1LLC 设计要点2111/r r L C w =?1. 效率优化点频率位置f 22.变压器变比Np:Ns, Vi/Vo, fs@ f2,考虑电压与负载宽范围3. Lm:Lr, 结合宽范围要求4. Lr&Cr, 考虑谐振Q 值、Cr 耐压ZVSZCS性能:充电机效率二、双向充电机(Bi-OBC)技术方案王正仕:wzs@ ,二、6.6kW车载双向充电机(Bi-OBC )电路拓扑特点:正向充电6.6kW 反向逆变3.3kW 供车220VAC 两个3.3kW 模块并联模块化汽车级器件数字化控制:400V /320V-400V内容指标内容指标输入电压85V ‐265V AC/45‐65Hz 电流纹波1A pk‐pk输入电流24‐30A (32A Max )最大输出功率 6.6kW @230VAC ,3.3kW@115VAC 输出电压200V‐400V 充电方式恒流、恒压、根据电池容量可设定电压精度/分辨率±2 V保护过压、过流、短路、过温系统效率95% @ 220Vac 92% @ 115Vac接口CAN 通讯接口,变换器工作状态信息输出PFC 效率98%工作环境温度‐40~+85°C功率因数(PF )>0.99 @120VAC,>0.98@230VAC冷却方式水冷(水温度‐40~+75°C )最大输出电流32A Max 运行时间15000小时电流精度/分辨率3 % / 200mA <±0.2A防水等级建议IP67技术指标二、车载双向OBC (续)采用(英飞凌)器件serial number type Main characteristic Footprint quantity 1IKW40N65F5A IGBT 40A 650V TO‐24712 2TC234MCU 100M TQFP14413TLE4284DV Voltage Regulator 15V TO‐25224TLE4275V50Voltage Regulator 5V TO26315AUIRS2191S Half Bridge Drive SO‐1686AUIRB24427S Drive Two MOSs SO‐817IPW65R048CFDAIPW65R080CFDMOSFET48mohm650V/80mohm 650VTO‐24768IDW30E65D1Diode 30A 650V TO‐2476 9TLE7368Power manager1 10TLE6250CAN收发器1二、车载双向OBC (续)反向变换效率关键技术:双向LLC变换器、双向宽范围、双向高效率固有谐振频率(fr)计算王正仕:wzs@ ,:折算:总电容:固有频率:三、车载DC/DC转换器电路拓扑比较王正仕:wzs@ ,(1)全桥PWM 硬开关变换器特点硬开关工作,效率较低副边有电压过冲Co电感Ld大电流(220A!)一级变换宽范围调节输出纹波小,Co的ESR要求低典型效率:92%(2)移相全桥ZVS 变换器特点MOS:ZVS,有利高效率副边有电压过冲Co电感Ld大电流(220A!)Ip有环流,变压器发热一级变换宽范围调节输出纹波小,Co的ESR要求低典型效率:94%(3)LLC变换器(ZVS,ZCS)特点LLC MOS:ZVS;D:ZCS;有利高效率二级变换不需要大电流输出电感输出纹波大,Co的ESR要求高对二极管要求低(ZCS)典型效率> 95.5%王正仕:wzs@ ,主要指标内容功率3kW输入电压范围200-400VDC, 340V Normi 输出电压范围9-16VDC ,13.8V Normi 输出电流范围0-220A DC综合效率>95%@75%以上负载,>92%@50%负载,>90%@25%负载保护功能OVP 、OCP 、OLP 、OTP 支持CAN 通讯变换器工作状态与故障诊断信息冷却方式水冷技术指标三、车载DC/DC 转换器(续)采用器件实物样机照片3kW车载高效率DC/DC转换器90%91%92%93%94%95%96%97%98%3006009001200150018002100240027003000效率负载(W )Vo=13.8V 效率曲线200V340V 400V效率vs 功率三、车载DC/DC 转换器(续)四、充电桩电路方案三相维也纳整流PFC 2个LLC DC/DC 串并联三相AC锂电池Vdc 400V 400V功率:15kW~60kW(120kW)采用多模块并联欢迎交流!2017年7月8日上海.兴华宾馆。
DC/DC部分采用的是氮化镓MOS 此部分是采用氮化镓MOS的•输出电压170 to 500 V DC •输出功率: 3.3kW max•输出电流: 12 A DC max •效率: > 96%输出•输入电压: 85 to 265 V AC •频率: 45 to 70 Hz•输入电流: 20 A RMS max •PFC:≥0.99输入•输出电压: 12V—24V DC •输出功率: 2.0kW max•输出电流: 12 A DC max •效率: > 97%输出•输入电压: 200-500 Vdc•输入电流: 15 A RMS max输入充电机部分:高达99%效率(PFC)车载DC/DC 部分高效率,要求我们PFC 部分及DC/DC 部分均达98%以上效率方可,这里介绍采用氮化镓的无桥PFC (效率高达99%)及采用氮化镓的全桥DC/DC ,效率亦达99%。
方可使整机方案0.99*0.99=98%效率PFC电路升级传统单级PFC,有整流桥交错式PFC,有整流桥适合中小功率含有整流桥,当大功率输出时,桥上损耗较大。
MOSFET及二极管损耗较大单电感。
大功率常会选此电路含有整流桥,当大功率输出时,桥上损耗较大。
MOSFET及二极管损耗较大需要二个电感,二个SIC二极管体积较大Coolmos无桥PFC,没有整流桥氮化镓MOS无桥PFC,无整流桥,采用SIC二极管氮化镓MOS无桥PFC,无整流桥,采用同步整流目前主流的无桥PFC无整流桥,通过DSP/MCU控制S1,S2实现无桥PFC。
节省了整流桥上的损耗,效率大大提高。
但需需二个电感,二个SIC二极管,二个MOSFET。
体积相对交错PFC,一样较大采用氮化镓MOS的无桥PFC只要一个电感,二个MOSFET,二个硅二极管实现99.0%的效率,PF>99相对Coolmos方案。
效率提高,成本下降,体积减少1/3采用同步整流的氮化镓无桥PFCS1,S2是工频开关,50HZ,Q1,Q2采用高频50K—500K 开关实现无桥PFC.99.4%效率。
车载充电PWM软开关DC-DC变换器研究综述合肥工业大学电气与自动化工程学院的研究人员李红梅、张恒果、崔超,在2017年第24期《电工技术学报》上撰文指出,作为车载充电机的关键部分,DC-DC变换器直接影响其运行效率,近年来,众多学者围绕PWM软开关DC-DC变换器开展研究并已取得可供借鉴的研究成果,旨在实现DC-DC变换器在整个充电过程中的高效运行。
针对车载充电系统,首先指出DC-DC变换器设计要求,并分析传统原边移相控制全桥DC-DC变换器固有的不足,再从主电路拓扑、驱动方式和控制策略三个方面,详述车载充电机中PWM软开关DC-DC 变换器研究进展。
最后,剖析现有PWM软开关DC-DC变换器技术方案的优势与不足,并指出未来工作方向以实现DC-DC变换器系统效率全面提升。
电动汽车(Electric Vehicles, EV)利用动力电池组的储能为电驱动系统提供能量,通常该电池组通过充电机接入工频电网进行充电,其中车载充电机以其体积小、成本低及便捷性被广泛使用[1-4]。
由于单级车载充电机在输入功率因数和输出精度上不易同时满足设计需求,因而只适用于铅酸电池的充电[3,5-9]。
图1所示为应用广泛的车载充电机两级功率架构。
前级AC-DC变换器通常为升压型变换器,实现功率因数校正和电能交直流转换,后级的隔离DC-DC变换器级联在前级AC-DC变换器输出直流母线上,进一步进行能量转换以满足动力电池组充电要求[1,4,10,11]。
图1 车载充电机两级功率架构全桥拓扑兼具较高的功率密度和功率传输能力,因而被广泛采用为DC-DC变换器拓扑,且通常控制变换器开关器件运行在软开关状态以降低开关损耗,实现DC-DC变换器的高效运行。
采用脉冲频率调制的谐振变换器可实现变压器一次侧开关管的零电压开关(Zero Voltage Switching, ZVS)及二次侧整流器的零电流开关(Zero CurrentSwitching, ZCS),具有电能转换效率较高的技术特点,尤其以LLC型谐振变换器性能突出[12-14]。
6.6kW单级三相PFC DC-DC车载充电机设计研究
在环境保护和节能减排双重旗帜的号召下,近几年电动汽车得到了迅猛发展,与其相关的产业也得到了市场和消费者的高度重视。
为了响应电动汽车长续航和快充的需求,开发一台具有低输入电流总谐波失真度、高功率因数和高效率的大功率车载充电机具有重要意义。
本文以6.6kW全数字控制车载充电机作为主要研究内容,来探讨一种新型单级三相PFC离线式DC-DC变换器拓扑在大功率应用场合的可行性。
首先,对现有的功率因数校正和隔离调压拓扑方案进行了技术调研,分析讨论了单级拓扑所具有的天然优势,并给出本文设计所采用的一种新型单级三相PFC+变压器串并联DC-DC隔离调压拓扑,并简要分析了其工作特点。
第二章在仔细分析所提单级三相拓扑结构特点的基础上,给出相应的等效工作拓扑模型,并在这基础上分析了电路各个时刻的工作原理;对主功率电路如何实现功率因数校正的机理进行了分析,探讨了输入输出电压转换系数M对系统功率因数校正的影响;分别探讨了在所提单级三相拓扑中,移相全桥部分滞后和超前臂零电压软开通的实现条件;针对所提的三变压器原边串副边经过输出整流桥和滤波电感后并联的结构,并对此结构的功率自动均衡和均流的特性进行了分析;对拓扑固有的占空比丢失问题和变压器副边电压振荡问题的机理,进行了详细地分析讨论,并设计了相应的解决方案。
根据车载充电机各项的设计指标要求,给出了主功率回路关键参数的设计方法和结果,并基于PSIM搭建了相应的开环仿真平台,以验证了设计参数的有效性;详细阐述了PFC电感和变压器的设计要点,并给出了一般性的设计步骤;针对所提拓扑母线电压和输出电压双环控制高耦合、动态差和难闭环的问题,提出了一种新型有效的频率脉宽调控输出电压+移相滞
环调控母线电压的控制策略,并给出了相应的数字实现流程;最后,完成了实验样机的制作和相应的数据波形测试,并针对测试的结果和电路的典型波形,进行了详细地分析;最后,在额定工频输入线电压(380Vac@50Hz),额定输出电压工况下,实验样机的最高效率可达96%,满载效率高于93%;在全负载工作条件下,样机的功率因数均大于0.98,THD均小于3.5%;实验测试所得结果,验证了本文设计参数的有效性,同时也充分展示了所提单级三相拓扑优异的电气性能。